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Description of F2 as set

Start with 2 symbols: a and b.

Form words with symbols, ‘a’, ‘b’, ‘a−1’, ‘b−1’

−→ e.g. aab−1a−1abbb−1

Reduce words by deleting aa−1, bb−1, a−1a, b−1b
−→ example becomes aab−1a−1abbb−1 = aab−1b = aa

Notation: aa = a2, similarly for all an, bn for n ∈ Z

F2 is set of reduced words in a, a−1, b, b−1.



Description of F2 as set

Start with 2 symbols: a and b.

Form words with symbols, ‘a’, ‘b’, ‘a−1’, ‘b−1’
−→ e.g. aab−1a−1abbb−1

Reduce words by deleting aa−1, bb−1, a−1a, b−1b
−→ example becomes aab−1a−1abbb−1 = aab−1b = aa

Notation: aa = a2, similarly for all an, bn for n ∈ Z

F2 is set of reduced words in a, a−1, b, b−1.



Description of F2 as set

Start with 2 symbols: a and b.

Form words with symbols, ‘a’, ‘b’, ‘a−1’, ‘b−1’
−→ e.g. aab−1a−1abbb−1

Reduce words by deleting aa−1, bb−1, a−1a, b−1b

−→ example becomes aab−1a−1abbb−1 = aab−1b = aa

Notation: aa = a2, similarly for all an, bn for n ∈ Z

F2 is set of reduced words in a, a−1, b, b−1.



Description of F2 as set

Start with 2 symbols: a and b.

Form words with symbols, ‘a’, ‘b’, ‘a−1’, ‘b−1’
−→ e.g. aab−1a−1abbb−1

Reduce words by deleting aa−1, bb−1, a−1a, b−1b
−→ example becomes aab−1a−1abbb−1 = aab−1b = aa

Notation: aa = a2, similarly for all an, bn for n ∈ Z

F2 is set of reduced words in a, a−1, b, b−1.



Description of F2 as set

Start with 2 symbols: a and b.

Form words with symbols, ‘a’, ‘b’, ‘a−1’, ‘b−1’
−→ e.g. aab−1a−1abbb−1

Reduce words by deleting aa−1, bb−1, a−1a, b−1b
−→ example becomes aab−1a−1abbb−1 = aab−1b = aa

Notation: aa = a2, similarly for all an, bn for n ∈ Z

F2 is set of reduced words in a, a−1, b, b−1.



Description of F2 as set

Start with 2 symbols: a and b.

Form words with symbols, ‘a’, ‘b’, ‘a−1’, ‘b−1’
−→ e.g. aab−1a−1abbb−1

Reduce words by deleting aa−1, bb−1, a−1a, b−1b
−→ example becomes aab−1a−1abbb−1 = aab−1b = aa

Notation: aa = a2, similarly for all an, bn for n ∈ Z

F2 is set of reduced words in a, a−1, b, b−1.



Group structure of F2

Group structure?

I Concatenation + reduction

E.g.
(b−1a2ba) · (a−1b−1ab2) = b−1a2baa−1b−1ab2 = b−1a3b2

I Empty word is identity, also denoted by e

‘Free’ group, since a and b satisfy no relations.

Similarly, for n ∈ N we get Fn by starting with n symbols
t1, t2, ..., tn.
More generally, start with any set S , form words with symbols
S ∪ S−1 −→ construct FS .

FS only depends on |S |, in particular unique free group on n
generators Fn for any n ∈ N.
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Cayley Graph of F2

Figure: Source: Jim.belk,
commons.wikimedia.org/wiki/File:F2_Cayley_Graph.png

commons.wikimedia.org/wiki/File:F2_Cayley_Graph.png


Universal property

Free groups are characterized by universal property:

Let FS be the free group on the set of generators S and denote by
ι : S ↪→ FS the natural inclusion. For any other group G and map
f : S → G , there exists a unique group morphism g : FS → G such
that f = g ◦ ι.
This property uniquely determines FS up to isomorphism:
whenever another group F ′ with a map ι′ satisfies the same
property, then there is a unique group isomorphism h : FS → F ′

such that ι′ = h ◦ ι

FS

S G

ι g

f



Universal property

Free groups are characterized by universal property:

Let FS be the free group on the set of generators S and denote by
ι : S ↪→ FS the natural inclusion. For any other group G and map
f : S → G , there exists a unique group morphism g : FS → G such
that f = g ◦ ι.

This property uniquely determines FS up to isomorphism:
whenever another group F ′ with a map ι′ satisfies the same
property, then there is a unique group isomorphism h : FS → F ′

such that ι′ = h ◦ ι

FS

S G

ι g

f



Universal property

Free groups are characterized by universal property:

Let FS be the free group on the set of generators S and denote by
ι : S ↪→ FS the natural inclusion. For any other group G and map
f : S → G , there exists a unique group morphism g : FS → G such
that f = g ◦ ι.
This property uniquely determines FS up to isomorphism:
whenever another group F ′ with a map ι′ satisfies the same
property, then there is a unique group isomorphism h : FS → F ′

such that ι′ = h ◦ ι

FS

S G

ι g

f



Universal property

Free groups are characterized by universal property:

Let FS be the free group on the set of generators S and denote by
ι : S ↪→ FS the natural inclusion. For any other group G and map
f : S → G , there exists a unique group morphism g : FS → G such
that f = g ◦ ι.
This property uniquely determines FS up to isomorphism:
whenever another group F ′ with a map ι′ satisfies the same
property, then there is a unique group isomorphism h : FS → F ′

such that ι′ = h ◦ ι

FS

S G

ι g

f



Amenability

A group G is amenable if it admits a finitely additive probability
measure µ that is translation invariant.

So µ : P(G )→ [0, 1] s.t.

I µ(∅) = 0 and µ(G ) = 1;

I µ(A ∪ B) = µ(A) + µ(B) whenever A,B ⊂ G and A ∩ B = ∅;
I µ(gA) = µ(A) for all g ∈ G and A ⊂ G .

Amenable groups include all finite groups and all solvable groups.
Moreover, for a countable group G we have that

I if G is amenable, then all subgroups are amenable;

I if N CG is a normal subgroup, then G is amenable if and only
if both N and G/N are amenable;

I if (Gn)n∈N is an increasing sequence of subgroups of G and
G = ∪n∈NGn, then G is amenable if and only if all Gn are
amenable.
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F2 is not amenable

Claim: F2 is not amenable.
−→ Any group containing F2 also not amenable.

Idea: split F2 in disjoint subsets Ga and Gb:

Figure: F2 = Ga ∪ Gb



F2 is not amenable

Claim: F2 is not amenable.
−→ Any group containing F2 also not amenable.

Idea: split F2 in disjoint subsets Ga and Gb:

Figure: F2 = Ga ∪ Gb



F2 is not amenable

Suppose F2 is amenable with mean µ. Since F2 = Ga ∪ Gb is a
disjoint union, we have

1 = µ(F2) = µ(Ga) + µ(Gb). (1)

Note that bGa and b2Ga are disjoint subsets of Gb, so

µ(Gb) ≥ µ(bGa) + µ(b2Ga) = 2µ(Ga).

On the other hand, aGb ⊂ Ga, hence

2µ(Ga) ≤ µ(Gb) = µ(aGb) ≤ µ(Ga).

Then µ(Ga) = µ(Gb) = 0. Contradiction with (1).
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Amenability and group C∗-algebras

We can attach two C∗-algebras to a countable group G : the
reduced and full group C∗-algebras C ∗r (G ) and C ∗f (G ) resp.
In general: C ∗r (G ) � C ∗f (G ).

As we will see: simplicity of C ∗r (F2) implies that indeed
C ∗r (F2) � C ∗f (F2).

It turns out that C ∗r (G ) ∼= C ∗f (G ) if and only if G is amenable!
In fact, for any dynamical system (A,G , α), we have an
isomorphism Aof ,α G ∼= Aor ,α G when G is amenable.
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