The free group on 2 generators \mathbb{F}_2

Milan Donvil

June 4, 2021

(ロ)、(型)、(E)、(E)、 E) の(()

Start with 2 symbols: *a* and *b*.

Form words with symbols, 'a', 'b', ' a^{-1} ', ' b^{-1} '

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Start with 2 symbols: a and b.

Form words with symbols, 'a', 'b', 'a⁻¹', 'b⁻¹' \rightarrow e.g. $aab^{-1}a^{-1}abbb^{-1}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Start with 2 symbols: a and b.

Form words with symbols, 'a', 'b', 'a⁻¹', 'b⁻¹' \rightarrow e.g. $aab^{-1}a^{-1}abbb^{-1}$

Reduce words by deleting aa^{-1} , bb^{-1} , $a^{-1}a$, $b^{-1}b$

Start with 2 symbols: a and b.

Form words with symbols, 'a', 'b', 'a⁻¹', 'b⁻¹' \rightarrow e.g. $aab^{-1}a^{-1}abbb^{-1}$

Reduce words by deleting aa^{-1} , bb^{-1} , $a^{-1}a$, $b^{-1}b$ \rightarrow example becomes $aab^{-1}a^{-1}abbb^{-1} = aab^{-1}b = aa$

Start with 2 symbols: a and b.

Form words with symbols, 'a', 'b', 'a⁻¹', 'b⁻¹' \rightarrow e.g. $aab^{-1}a^{-1}abbb^{-1}$

Reduce words by deleting aa^{-1} , bb^{-1} , $a^{-1}a$, $b^{-1}b$ \rightarrow example becomes $aab^{-1}a^{-1}abbb^{-1} = aab^{-1}b = aa$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Notation: $aa = a^2$, similarly for all a^n , b^n for $n \in \mathbb{Z}$

Start with 2 symbols: a and b.

Form words with symbols, 'a', 'b', 'a⁻¹', 'b⁻¹' \rightarrow e.g. $aab^{-1}a^{-1}abbb^{-1}$

Reduce words by deleting aa^{-1} , bb^{-1} , $a^{-1}a$, $b^{-1}b$ \rightarrow example becomes $aab^{-1}a^{-1}abbb^{-1} = aab^{-1}b = aa$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Notation: $aa = a^2$, similarly for all a^n , b^n for $n \in \mathbb{Z}$

 \mathbb{F}_2 is **set** of reduced words in a, a^{-1}, b, b^{-1} .

Group structure?

Concatenation + reduction

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Group structure?

Concatenation + reduction E.g. $(b^{-1}a^{2}ba) \cdot (a^{-1}b^{-1}ab^{2}) = b^{-1}a^{2}baa^{-1}b^{-1}ab^{2} = b^{-1}a^{3}b^{2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Group structure?

Concatenation + reduction E.g. $(b^{-1}a^{2}ba) \cdot (a^{-1}b^{-1}ab^{2}) = b^{-1}a^{2}baa^{-1}b^{-1}ab^{2} = b^{-1}a^{3}b^{2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Empty word is identity, also denoted by e

Group structure?

Concatenation + reduction E.g. $(b^{-1}a^{2}ba) \cdot (a^{-1}b^{-1}ab^{2}) = b^{-1}a^{2}baa^{-1}b^{-1}ab^{2} = b^{-1}a^{3}b^{2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Empty word is identity, also denoted by e

'Free' group, since *a* and *b* satisfy **no relations**.

Group structure?

Concatenation + reduction E.g. $(b^{-1}a^{2}ba) \cdot (a^{-1}b^{-1}ab^{2}) = b^{-1}a^{2}baa^{-1}b^{-1}ab^{2} = b^{-1}a^{3}b^{2}$

Empty word is identity, also denoted by e

'Free' group, since a and b satisfy **no relations**.

Similarly, for $n \in \mathbb{N}$ we get \mathbb{F}_n by starting with n symbols $t_1, t_2, ..., t_n$.

Group structure?

Concatenation + reduction E.g. $(b^{-1}a^{2}ba) \cdot (a^{-1}b^{-1}ab^{2}) = b^{-1}a^{2}baa^{-1}b^{-1}ab^{2} = b^{-1}a^{3}b^{2}$

Empty word is identity, also denoted by e

'Free' group, since a and b satisfy **no relations**.

Similarly, for $n \in \mathbb{N}$ we get \mathbb{F}_n by starting with n symbols $t_1, t_2, ..., t_n$. More generally, start with any set S, form words with symbols $S \cup S^{-1} \longrightarrow \text{construct } \mathbb{F}_S$.

Group structure?

Concatenation + reduction E.g. $(b^{-1}a^{2}ba) \cdot (a^{-1}b^{-1}ab^{2}) = b^{-1}a^{2}baa^{-1}b^{-1}ab^{2} = b^{-1}a^{3}b^{2}$

Empty word is identity, also denoted by e

'Free' group, since a and b satisfy **no relations**.

Similarly, for $n \in \mathbb{N}$ we get \mathbb{F}_n by starting with n symbols $t_1, t_2, ..., t_n$. More generally, start with any set S, form words with symbols $S \cup S^{-1} \longrightarrow \text{construct } \mathbb{F}_S$.

 \mathbb{F}_S only depends on |S|, in particular unique free group on n generators \mathbb{F}_n for any $n \in \mathbb{N}$.

Cayley Graph of \mathbb{F}_2

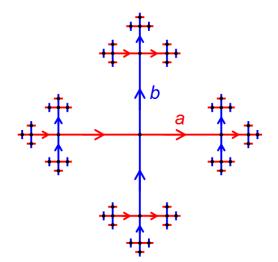


Figure: Source: Jim.belk, commons.wikimedia.org/wiki/File:F2_Cayley_Graph.png

Free groups are characterized by universal property:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Free groups are characterized by **universal property**:

Let \mathbb{F}_S be the free group on the set of generators S and denote by $\iota: S \hookrightarrow \mathbb{F}_S$ the natural inclusion. For any other group G and map $f: S \to G$, there exists a unique group morphism $g: \mathbb{F}_S \to G$ such that $f = g \circ \iota$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Free groups are characterized by **universal property**:

Let \mathbb{F}_S be the free group on the set of generators S and denote by $\iota: S \hookrightarrow \mathbb{F}_S$ the natural inclusion. For any other group G and map $f: S \to G$, there exists a unique group morphism $g: \mathbb{F}_S \to G$ such that $f = g \circ \iota$.

This property uniquely determines \mathbb{F}_S up to isomorphism: whenever another group F' with a map ι' satisfies the same property, then there is a unique group isomorphism $h: \mathbb{F}_S \to F'$ such that $\iota' = h \circ \iota$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Free groups are characterized by **universal property**:

Let \mathbb{F}_S be the free group on the set of generators S and denote by $\iota: S \hookrightarrow \mathbb{F}_S$ the natural inclusion. For any other group G and map $f: S \to G$, there exists a unique group morphism $g: \mathbb{F}_S \to G$ such that $f = g \circ \iota$.

This property uniquely determines \mathbb{F}_S up to isomorphism: whenever another group F' with a map ι' satisfies the same property, then there is a unique group isomorphism $h: \mathbb{F}_S \to F'$ such that $\iota' = h \circ \iota$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A group G is **amenable** if it admits a finitely additive probability measure μ that is translation invariant.

A group G is **amenable** if it admits a finitely additive probability measure μ that is translation invariant.

So $\mu : \mathcal{P}(G) \rightarrow [0,1]$ s.t.

A group G is **amenable** if it admits a finitely additive probability measure μ that is translation invariant.

So
$$\mu : \mathcal{P}(G) \to [0,1]$$
 s.t.
• $\mu(\emptyset) = 0$ and $\mu(G) = 1$;

A group G is **amenable** if it admits a finitely additive probability measure μ that is translation invariant.

So
$$\mu : \mathcal{P}(G) \to [0, 1]$$
 s.t.
• $\mu(\emptyset) = 0$ and $\mu(G) = 1$;
• $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever $A, B \subset G$ and $A \cap B = \emptyset$;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A group G is **amenable** if it admits a finitely additive probability measure μ that is translation invariant.

So
$$\mu : \mathcal{P}(G) \rightarrow [0, 1]$$
 s.t.
• $\mu(\emptyset) = 0$ and $\mu(G) = 1$;
• $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever $A, B \subset G$ and $A \cap B = \emptyset$;
• $\mu(gA) = \mu(A)$ for all $g \in G$ and $A \subset G$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A group G is **amenable** if it admits a finitely additive probability measure μ that is translation invariant.

So
$$\mu : \mathcal{P}(G) \to [0, 1]$$
 s.t.
• $\mu(\emptyset) = 0$ and $\mu(G) = 1$;
• $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever $A, B \subset G$ and $A \cap B = \emptyset$;
• $\mu(gA) = \mu(A)$ for all $g \in G$ and $A \subset G$.

Amenable groups include all **finite** groups and all **solvable** groups. Moreover, for a countable group G we have that

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

A group G is **amenable** if it admits a finitely additive probability measure μ that is translation invariant.

So
$$\mu : \mathcal{P}(G) \to [0, 1]$$
 s.t.
• $\mu(\emptyset) = 0$ and $\mu(G) = 1$;
• $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever $A, B \subset G$ and $A \cap B = \emptyset$;
• $\mu(gA) = \mu(A)$ for all $g \in G$ and $A \subset G$.
Amenable groups include all **finite** groups and all **solvable** groups

Amenable groups include all **finite** groups and all **solvable** groups. Moreover, for a countable group G we have that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ if *G* is amenable, then all subgroups are amenable;

A group G is **amenable** if it admits a finitely additive probability measure μ that is translation invariant.

So
$$\mu : \mathcal{P}(G) \to [0, 1]$$
 s.t.
• $\mu(\emptyset) = 0$ and $\mu(G) = 1$;
• $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever $A, B \subset G$ and $A \cap B = \emptyset$;
• $\mu(gA) = \mu(A)$ for all $g \in G$ and $A \subset G$.

Amenable groups include all **finite** groups and all **solvable** groups. Moreover, for a countable group G we have that

- ▶ if *G* is amenable, then all subgroups are amenable;
- ▶ if $N \lhd G$ is a normal subgroup, then G is amenable if and only if both N and G/N are amenable;

A group G is **amenable** if it admits a finitely additive probability measure μ that is translation invariant.

So
$$\mu : \mathcal{P}(G) \to [0, 1]$$
 s.t.
• $\mu(\emptyset) = 0$ and $\mu(G) = 1$;
• $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever $A, B \subset G$ and $A \cap B = \emptyset$;
• $\mu(gA) = \mu(A)$ for all $g \in G$ and $A \subset G$.

Amenable groups include all **finite** groups and all **solvable** groups. Moreover, for a countable group G we have that

- ▶ if *G* is amenable, then all subgroups are amenable;
- if $N \lhd G$ is a normal subgroup, then G is amenable if and only if both N and G/N are amenable;
- if (G_n)_{n∈N} is an increasing sequence of subgroups of G and G = ∪_{n∈N}G_n, then G is amenable if and only if all G_n are amenable.

Claim: \mathbb{F}_2 is **not** amenable.

 \longrightarrow Any group containing \mathbb{F}_2 also not amenable.

Claim: \mathbb{F}_2 is **not amenable**.

 \longrightarrow Any group containing \mathbb{F}_2 also not amenable.

Idea: split \mathbb{F}_2 in **disjoint** subsets G_a and G_b :

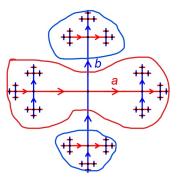


Figure: $\mathbb{F}_2 = \mathbf{G}_a \cup \mathbf{G}_b$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Suppose \mathbb{F}_2 is amenable with mean $\mu.$ Since $\mathbb{F}_2=\mathit{G_a}\cup\mathit{G_b}$ is a disjoint union, we have

$$1 = \mu(\mathbb{F}_2) = \mu(G_a) + \mu(G_b).$$
 (1)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Suppose \mathbb{F}_2 is amenable with mean μ . Since $\mathbb{F}_2 = G_a \cup G_b$ is a disjoint union, we have

$$1 = \mu(\mathbb{F}_2) = \mu(G_a) + \mu(G_b).$$
 (1)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Note that bG_a and b^2G_a are disjoint subsets of G_b , so

$$\mu(G_b) \geq \mu(bG_a) + \mu(b^2G_a) = 2\mu(G_a).$$

Suppose \mathbb{F}_2 is amenable with mean μ . Since $\mathbb{F}_2 = G_a \cup G_b$ is a disjoint union, we have

$$1 = \mu(\mathbb{F}_2) = \mu(G_a) + \mu(G_b).$$
 (1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note that bG_a and b^2G_a are disjoint subsets of G_b , so

$$\mu(G_b) \geq \mu(bG_a) + \mu(b^2G_a) = 2\mu(G_a).$$

On the other hand, $aG_b \subset G_a$, hence

$$2\mu(G_a) \leq \mu(G_b) = \mu(aG_b) \leq \mu(G_a).$$

Then $\mu(G_a) = \mu(G_b) = 0$. Contradiction with (1).

Amenability and group C*-algebras

We can attach two C*-algebras to a countable group G: the **reduced** and **full** group C*-algebras $C_r^*(G)$ and $C_f^*(G)$ resp. In general: $C_r^*(G) \ncong C_f^*(G)$.

Amenability and group C*-algebras

We can attach two C*-algebras to a countable group G: the **reduced** and **full** group C*-algebras $C_r^*(G)$ and $C_f^*(G)$ resp. In general: $C_r^*(G) \ncong C_f^*(G)$.

As we will see: simplicity of $C_r^*(\mathbb{F}_2)$ implies that indeed $C_r^*(\mathbb{F}_2) \ncong C_f^*(\mathbb{F}_2)$.

It turns out that $C_r^*(G) \cong C_f^*(G)$ if and only if G is amenable! In fact, for any dynamical system (A, G, α) , we have an isomorphism $A \rtimes_{f,\alpha} G \cong A \rtimes_{r,\alpha} G$ when G is amenable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・