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2

Notation: aa = a“, similarly for all a”, b" for n € Z

[, is set of reduced words in a,a~ !, b, b~1.
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Group structure of [F,

Group structure?

> Concatenation + reduction

Eg.

(b~ta?ba) - (a~ b tab?) = b1a’baa—tblab? = b~1a3h?
> Empty word is identity, also denoted by e

‘Free’ group, since a and b satisfy no relations.

Similarly, for n € N we get ', by starting with n symbols

t1, to, ..., ty.

More generally, start with any set S, form words with symbols
SuUS~! — construct Fs.

Fs only depends on |S|, in particular unique free group on n
generators I, for any n € N.
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Amenability

A group G is amenable if it admits a finitely additive probability
measure 4 that is translation invariant.

So p: P(G) — [0,1] s.t.
> u(P) =0 and u(G) =1,
» w(AUB) = u(A) + u(B) whenever A/ B C G and AN B = 0);
> 1(gA) = p(A) forall g € G and AC G.
Amenable groups include all finite groups and all solvable groups.
Moreover, for a countable group G we have that
» if G is amenable, then all subgroups are amenable;
» if N <G is a normal subgroup, then G is amenable if and only
if both N and G/N are amenable;
» if (Gn)nen is an increasing sequence of subgroups of G and
G = Upen Gy, then G is amenable if and only if all G, are
amenable.
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Claim: F» is not amenable.
— Any group containing 2 also not amenable.

Idea: split IF> in disjoint subsets G, and Gp:
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IF» is not amenable

Suppose Fy is amenable with mean p. Since Fo = G, U Gy is a
disjoint union, we have

1 = u(F2) = u(Ga) + p(Gp). (1)

Note that bG, and b?G, are disjoint subsets of G, so
#(Gp) = p(bGa) + u(b?Ga) = 21(Gs).
On the other hand, aG, C G,, hence
211(Ga) < p(Gp) = p(aGp) < p(Ga).

Then 1(G,) = u(Gp) = 0. Contradiction with (1).
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We can attach two C*-algebras to a countable group G: the
reduced and full group C*-algebras C}(G) and C;(G) resp.
In general: C¥(G) 2 C7(G).

As we will see: simplicity of C}(Fz) implies that indeed
Cr(F2) 2 G (F2).

It turns out that C}(G) = C(G) if and only if G is amenable!
In fact, for any dynamical system (A, G, «), we have an
isomorphism A xr, G = A X, G when G is amenable.



