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Introduction



Algebraic Tensor Product

H and K are two vector spaces. The algebraic tensor product is
denoted H ⊗ K .

Note that H ⊗ K is spanned by the elementary tensors x ⊗ y (but
they are not a basis).
{bilinear H × K −→ L} ∼= L(H ⊗ K , L)
We’d like to build a vector space H ⊗ K so that bilinear maps
H × K −→ L are linear maps H ⊗ K −→ L.
Multilinear algebra–which initially appeared more complicated than
linear algebra–is subsumed by linear algebra.
Vectors in H ⊗ K are sums of x ⊗ y for x ∈ H, y ∈ K .
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Algebraic Tensor Product

Definition (N. P. Brown and N. Ozawa 2008)
Given vector spaces H and K , their algebraic tensor product is the
quotient vector space

H ⊗ K = Cc(H × K )/R,
where Cc(H × K ) is the vector space of compactly (i.e. finitely) supported
functions and R is a linear subspace of Cc(H × K ) spanned by elements of
the following four types:

1 χ(x1+x2,y) − χ(x1,y) − χ(x2,y)

2 χ(x ,y1+y2) − χ(x ,y1) − χ(x ,y2),
3 λχ(x ,y) − χ(λx ,y) and
4 λχ(x ,y) − χ(x ,λy).

The image of the characteristic function over the point (x , y) ∈ H × K ,
(an element) χ(x , y) ∈ Cc(H × K ), under the canonical quotient map
Cc(H ×K ) −→ H ⊗K is called an elementary tensor and is denoted x ⊗ y .
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Universality

The other crucial fact about tensor products is their universal property;
they are designed to turn bilinear maps H × K −→ L into linear maps
H ⊗ K −→ L. Moreover, H ⊗ K is the unique vector space (up to
isomorphism), with this property. Before making this precise first note that
the natural mapping

H × K −→ H ⊗ K , (x , y) 7−→ x ⊗ y

is not linear − it is bilinear.



Geometrically

H × K

H ⊗ K



Geometrically

H × K H ⊗ K



Universality

Proposition
For any vector space L and any bilinear map σ : H × K −→ L, there exists
a unique linear map σ′ : H ⊗ K −→ L such that

H × K σ //

i %%

L

H ⊗ K
σ′

<<

commutes (i.e. σ′(x ⊗ y) = σ((x , y)) for all x ∈ H, y ∈ K ).



Calculating with Tensors

Proposition
The following identities hold for all vectors and scalars:

1 (x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y and x ⊗ (y1 + y2) = x ⊗ y1 + x ⊗ y2.
2 λ(x ⊗ y) = (λx)⊗ y = x ⊗ (λy)

This is rigged so that
a linear map H ⊗ K −→ L is the same as a bilinear map H × K −→ L
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Calculating with Tensors

Example

R2 = 〈e1, e2〉.
R2 ⊗ R2 is spanned by e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2

Observe how these add:

(e1 ⊗ e1) + (e1 ⊗ e2) = e1 ⊗ (e1 + e2)

Warning:
You cannot combine (e1 ⊗ e1) + (e2 ⊗ e2).
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Calculating with Tensors

Remark
Note that the vector space structures on H ⊗K and H ×K are completely
different. For example, in H × K we have
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) while there is no way to “simplify”
x1 ⊗ y1 + x2 ⊗ y2 (in general).



Calculating with Tensors

Question: What is (x1 + x2)⊗ (y1 + y2) ?

Answer: x1 ⊗ y1 + x1 ⊗ y2 + x2 ⊗ y1 + x2 ⊗ y2.

Remark
In many proofs involving tensor products it will suffice to consider only
elementary tensors. But this is because they form a spanning set for
H ⊗ K and one must not forget that H ⊗ K contains a lot more than just
the elementary tensors.
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Tensor Product vs Cartesian Product

Question: What is dim(H ⊗ K ) ?

Answer: (dimH).(dimK )

Different than the cartesian product of vector spaces,

dim(H × K ) = (dimH) + (dimK )
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Tensor Product Maps

Proposition
If u : H −→ H ′ and v : K −→ K ′ are linear maps between vector spaces,
then by elementary linear algebra there exists a unique linear map:

u ⊗ v : H ⊗ K −→ H ′ ⊗ K ′

such that (u ⊗ v)(x ⊗ y) = u(x)⊗ v(y) for all x ∈ H and all y ∈ K.

Remark
The map (u, v) 7→ u ⊗ v is bilinear.
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Corollary (Tensor product functionals)
If τ, ρ are linear functionals on the vector spaces H,K respectively, then
there is a unique linear functional τ ⊗ ρ on H ⊗ K such that

(τ ⊗ ρ)(x ⊗ y) = τ(x)ρ(y) (x ∈ H, y ∈ K )

since the function H × K −→ C, (x , y) 7→ τ(x)ρ(y), is bilinear.



Linear Independence

Question: How can one show that a set of elementary tensors is
linearly independent ?

Proposition
If {x1, · · · , xn} ⊂ H are linearly independent, {y1, · · · , yn} ⊂ K are
arbitrary and

0 =
n∑

i=1
xi ⊗ yi ∈ H ⊗ K

then y1 = y2 = · · · = 0.
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Sketch of proof:∑n
i=1 xi ⊗ yi = 0, where xi ∈ H and yi ∈ K .

{τ1, · · · , τn} ⊂ H∗ a dual set of functionals (i.e. τj(xi ) = δi ,j) and
ρ ∈ K ∗.
For 1 ≤ j ≤ n

0 = τj ⊗ ρ
( n∑

i=1
xi ⊗ yi

)
0 = ρ(yj).
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There are many norms on H ⊗ K

Remark
If H and K are normed, then there are in general many possible
norms on H ⊗ K which are related in a suitable manner to the norms
on H and K , and indeed it is this very lack of uniqueness that creates
the difficulties of the theory, as we shall see in the case that H and K
are C∗-algebras.
When the spaces are Hilbert spaces, however, matters are simple.



Tensor Product of Hilbert Spaces

Theorem
Let H and K be Hilbert spaces. Then there is a unique inner product
< ·, · > on H ⊗ K such that

< x ⊗ y , x ′ ⊗ y ′ >=< x , x ′ >< y , y ′ > (x , x ′ ∈ H, y , y ′ ∈ K ).



Sketch of proof:

τ and ρ are conjugate-linear maps from H and K , respectively, to C.

there is a unique conjugate-linear map τ ⊗ ρ from H ⊗ K to C such
that (τ ⊗ ρ)(x ⊗ y) = τ(x)ρ(y) for x ∈ H and y ∈ K .
x ∈ H, let τx be the conjugate-linear functional defined by setting
τx (y) =< x , y >.
X be the vector space of all conjugate-linear functionals on H ⊗ K .
The map

H × K −→ X , (x , y) 7→ τx ⊗ τy ,

is bilinear.
there is a unique linear map M : H ⊗ K −→ X such that
M(x ⊗ y) = τx ⊗ τy for all x and y .
The map < ·, · >: (H ⊗ K )2 −→ C, (z , z ′) 7→ M(z)(z ′), is a
sesquilinear form on H ⊗ K such that

< x ⊗ y , x ′ ⊗ y ′ >=< x , x ′ >< y , y ′ > (x , x ′ ∈ H, y , y ′ ∈ K ).
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Let e1, · · · , em be an orthonormal basis for linear span of y1, · · · , yn.
Then z =

∑n
j=1 x ′j ⊗ ej for some x ′1, · · · , x ′m ∈ H

< z , z > =
m∑

i ,j=1
< x ′i ⊗ ei , x ′j ⊗ ej >

=
m∑

i ,j=1
< x ′i , x ′j >< ei , ej >

=
m∑

j=1
‖x ′j ‖2.

< ·, · > is an inner product.
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If z ∈ H ⊗ K , then z =
∑n

j=1 xj ⊗ yj for some x1, · · · , xn ∈ H and
y1, · · · , yn ∈ K .
Let e1, · · · , em be an orthonormal basis for linear span of y1, · · · , yn.
Then z =

∑n
j=1 x ′j ⊗ ej for some x ′1, · · · , x ′m ∈ H

< z , z > =
m∑

i ,j=1
< x ′i ⊗ ei , x ′j ⊗ ej >

=
m∑

i ,j=1
< x ′i , x ′j >< ei , ej >

=
m∑

j=1
‖x ′j ‖2.

< ·, · > is an inner product.



Remark
If H and K are as in the previous Theorem, we shall always regard H ⊗ K
as a pre-Hilbert space with the above inner product. The Hilbert space
completion of H ⊗ K is denoted by H⊗̂K , and called the Hilbert space
tensor product of H and K . Note that

‖x ⊗ y‖ = ‖x‖‖y‖.



Tensor Product of Operators

Theorem
Let H,K be Hilbert spaces, u ∈ B(H) and v ∈ B(K ). Then there is a
unique operator u⊗̂v ∈ B(H⊗̂K ) with

(u⊗̂v)(x ⊗ y) = u(x)⊗ v(y) and ‖u⊗̂v‖ = ‖u‖‖v‖.

Proof.
z ∈ H ⊗ K , z =

∑n
j=1 xj ⊗ yj with pairwise orthogonal y1, ..., yn

‖(u ⊗ v)(z)‖2 = ‖
∑n

j=1 u(xj)⊗ v(yj)‖2 =
∑n

j=1 ‖u(xj)⊗ v(yj)‖2

=
∑n

j=1 ‖u(xj)‖2‖v(yj)‖2 =
∑n

j=1 ‖xj‖2‖yj‖2 = ‖z‖2

‖u ⊗ v‖ = 1
u⊗̂v extension of u ⊗ v
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Tensor Product of Operators
to show:
‖u⊗̂v‖ = ‖u‖‖v‖

Proof.
”≤”:

B(H)→ B(H⊗̂K ), u 7→ u⊗̂idK and B(K )→ B(H⊗̂K ), v 7→ idH⊗̂v
injective *-homomorphisms =⇒ isometric
‖u⊗̂v‖ = ‖(u⊗̂idK )(idH⊗̂v)‖ ≤ ‖u⊗̂idK‖‖idH⊗̂v‖ = ‖u‖‖v‖

”≥”:
u, v 6= 0 and 0 < ε < min(‖u‖, ‖v‖)
unit vectors x , y with ‖u(x)‖ > ‖u‖ − ε > 0 and
‖v(y)‖ > ‖v‖ − ε > 0
‖(u⊗̂v)(x⊗y)‖ = ‖u(x)⊗v(y)‖ = ‖u(x)‖‖v(y)‖ > (‖u‖−ε)(‖v‖−ε)



Involution and Multiplication on Tensor Products

Remark
For u, u′ ∈ B(H) and v , v ′ ∈ B(K ) we have

(u⊗̂v)(u′⊗̂v ′) = uu′⊗̂vv ′

and
(u⊗̂v)∗ = u∗⊗̂v∗.



Involution and Multiplication on Tensor Products

Theorem
If A and B are algebras, there is a unique multiplication on A⊗B such that

(a ⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′

for all a, a′ ∈ A and b, b′ ∈ B. We call A⊗ B endowed with this
multiplication the algebra tensor product of the algebras A and B.

Proof.
La(x) := ax for a, x ∈ A, analogously Lb for b ∈ B
bilinear map A× B → X , (a, b) 7→ La ⊗ Lb,

unique linear map M : A⊗ B → X , a ⊗ b 7→ La ⊗ Lb

(A⊗ B)2 → A⊗ B, (c, d) 7→ cd := M(c)(d)
unique multiplication on A⊗ B
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Involution and Multiplication on Tensor Products

Theorem
If A and B are *-algebras, then there is a unique involution on A⊗ B such
that (a ⊗ b)∗ = a∗ ⊗ b∗ for all a ∈ A and b ∈ B. We call A⊗ B with this
involution the *-algebra tensor product of A and B.

Proof.
to show:

∑n
j=1 aj ⊗ bj = 0 =⇒

∑n
j=1 a∗j ⊗ b∗j = 0

bj =
∑m

i=1 λijci for linearly independent c1, ..., cm∑
i ,j λijaj ⊗ ci = 0 =⇒

∑n
j=1 λijaj = 0 (i = 1, ...,m)∑n

j=1 a∗j ⊗ b∗j =
∑

i ,j a∗j ⊗ λijc∗i =
∑m

i=1(
∑n

j=1 λija∗j )⊗ c∗i
=
∑m

i=1 0⊗ c∗i = 0
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Involution and Multiplication on Tensor Products

Remark
Let

A,B,C *-algebras
ϕ : A→ C , ψ : B → C *-homomorphisms.

Then
A× B → C , (a, b) 7→ ϕ(a)ψ(b)

is bilinear and so induces a unique linear map

π : A⊗ B → C with π(a ⊗ b) = ϕ(a)ψ(b).

If the elements of ϕ(A) and ψ(B) commute this map is also a
*-homomorphism.



C ∗-Tensor Products



Construction of C ∗-Tensor Products

Idea:
Consider two C∗-algebras A and B.
Find a C∗-norm γ on the ∗-algebra A⊗ B.
Complete A⊗ B with respect to γ to obtain a C∗-algebra A⊗γ B.

Note:
There can be multiple γ with different completions A⊗γ B.
Most important are the spatial C∗-norm ‖·‖∗ and the maximal
C∗-norm ‖·‖max.



Comparison - Crossed Products

Recall:
Let (A,G , α) be a C∗-dynamical system. Then the convolution
algebra Cc(G ,A, α) is a ∗-algebra.
Cc(G ,A, α) can be equipped with the reduced and full crossed
product norms.
Completions with respect to these norms result in the reduced and
full crossed product A oa,r G and A oa,f G .

=⇒ Tensor products of C∗-algebras are constructed similarly.



Spatial C ∗-Norm Construction

We begin with the spatial C∗-norm ‖·‖∗.

Idea:
Find a faithful representation π : A⊗ B → B(H) for some Hilbert
space H.
Define ‖c‖∗ := ‖π(c)‖ for c ∈ A⊗ B.
Then ‖·‖∗ is a C∗-norm on A⊗ B, since the representation is faithful.



Representations of A⊗ B

To obtain a faithful representation of A⊗B we need the following theorem.

Theorem
Suppose that (H, ϕ) and (K , ψ) are representations of the C∗-algebras A
and B, respectively. Then there exists a unique ∗-homomorphism
π : A⊗ B → B(H ⊗̂K ) such that

π(a ⊗ b) = ϕ(a) ⊗̂ψ(b) (a ∈ A, b ∈ B).

Moreover, if ϕ and ψ are injective, so is π.

The ∗-homomorphism π is also denoted by ϕ ⊗̂ψ.



Representations of A⊗ B - Proof

Proof:

Define the maps

ϕ′ : A→ B(H ⊗̂K ), a 7→ ϕ(a) ⊗̂ idK ,

ψ′ : B → B(H ⊗̂K ), b 7→ idH ⊗̂ψ(b).

Then

ϕ′ and ψ′ are ∗-homomorphisms.
ϕ′(a) and ψ′(b) commute for all a ∈ A, b ∈ B.

By a previous result there exists a unique ∗-homomorphism π with

π(a ⊗ b) = ϕ′(a)ψ′(b) = ϕ(a) ⊗̂ψ(b) (a ∈ A, b ∈ B).



Representations of A⊗ B - Proof

Assume ϕ and ψ are injective and let

c =
n∑

j=1
aj ⊗ bj ∈ ker π,

where b1, . . . , bn are linearly independent.

Then ψ(b1), . . . , ψ(bn) are linearly independent and

π(c) =
n∑

j=1
ϕ(aj)⊗ ψ(bj) = 0.

By a previous result we obtain ϕ(a1) = · · · = ϕ(an) = 0 such that
a1 = · · · = an = 0 and c = 0. �



Spatial Tensor Product

Definition (Spatial C ∗-Norm)
Let A and B be C∗-algebras with universal representations (H, ϕ) and
(K , ψ). Then

‖·‖∗ : A⊗ B → R+, c 7→
∥∥(ϕ ⊗̂ψ)(c)

∥∥
is a C∗-norm on A⊗ B, called the spatial C∗-norm.

Definition (Spatial Tensor Product)
The completion of A⊗ B with respect to ‖·‖∗ is called the spatial tensor
product of A and B and is denoted by A⊗∗ B.



Spatial Tensor Product - Remarks

One can check directly that

‖a ⊗ b‖∗ = ‖a‖ · ‖b‖ for all a ∈ A, b ∈ B.

With more work one can show:

The spatial C∗-norm is independent of the faithful representation.
The spatial C∗-norm is the minimal C∗-norm on A⊗ B:
For every C∗-norm γ on A⊗ B holds

‖c‖∗ ≤ γ(c) (c ∈ A⊗ B).



Tensor Product Continuity

To construct another C∗-norm on A⊗ B we need some preparations and
consider general C∗-norms on A⊗ B.

Lemma
Let A,B be C∗-algebras and let γ be a C∗-norm on A⊗ B. Then for
a′ ∈ A and b′ ∈ B the maps

ϕ : A→ A⊗γ B, a 7→ a ⊗ b′,
ψ : B → A⊗γ B, b 7→ a′ ⊗ b

are continuous.



Tensor Product Continuity - Proof

Proof:

Consider ϕ : A→ A⊗γ B. Since A and A⊗γ B are Banach spaces we can
use the closed graph theorem to show that ϕ is continuous.

It remains to show: If a sequence (an) converges to 0 in A and (an ⊗ b′)
converges to c in A⊗γ B then c = 0.

Further, we can assume an and b′ are positive. Replace an by a∗nan and b′
by b′∗b′ and observe

(an)→ 0 ⇔ (a∗nan)→ 0
(an ⊗ b′)→ 0 ⇔ ((an ⊗ b′)∗(an ⊗ b′))→ 0

where
(an ⊗ b′)∗(an ⊗ b′) = (a∗nan)⊗ (b′∗b′).



Tensor Product Continuity - Proof

Let τ be a positive linear functional on A⊗γ B then

ρ : A→ C, a 7→ τ(a ⊗ b′)

is also a positive linear functional. It follows τ , ρ are continuous and

τ(c) = lim
n→∞

τ(an ⊗ b′) = lim
n→∞

ρ(an) = 0.

Since τ was arbitrary, we obtain c = 0.

Therefore, ϕ is continuous. A similar proof works for ψ. �



Decomposition of Representation of Tensor Product

Theorem
Let A,B be non-zero C*-algebras and suppose γ is the C*-norm on A⊗ B.
Let (H, π) be a non-degenerate representation on A⊗γ B. Then there
exists unique *-homomorphism ϕ : A→ B(H) and ψ : B → B(H) such
that

π(a ⊗ b) = ϕ(a)ψ(b) = ψ(b)ϕ(a).

Moreover, (H, ϕ) and (H, ψ) are non-degenerate.



Proof

Proof: Let H0 = π(A⊗ B)H. For z ∈ H0,it can be written as

z =
∑n

i=1 π(ai ⊗ bi )xi .

If (vµ)µ∈M is an approximate unit in B, then

π(a ⊗ vµ)z =
∑n

i=1 π(aai ⊗ vµbi )xi .

Using above lemma, the limit becomes

limµ π(a ⊗ vµ)z =
∑n

i=1 π(aai ⊗ bi )xi .

Therefore we can construct a well-defined map ϕ : H0 → H0 by
ϕ(a)z =

∑n
i=1 π(aai ⊗ bi )xi .

ϕ is linear, by the previous lemma, ||π(a ⊗ b)|| ≤ M||b||
Since H0 is dense, we can extend ϕ(a) uniquely to a bounded linear
map on H, denote it as ϕ(a).



Proof (cont’d)

Let (uλ)λ∈Λ be approximate unit of A,using the similar argument, we have
limλ π(uλ ⊗ b)z =

∑n
i π(ai ⊗ bbi )xi . We can construct a well-defined

linear map ψ(b) : H0 → H0, which is bounded by previous lemma, and we
can extend to H, denote it as ψ(b).

ϕ and ψ are *-homomorphism.
Now suppose there exists z ∈ H0 such that ϕ(a)z = 0, then
π(a ⊗ b)z = 0 for all a ∈ A, b ∈ B.
by the non-degeneracy of (H, π), z = 0. So ϕ is non-degenerate.
Similarly, ψ is non-degenerate.

For uniqueness, consider another pair of ϕ′ and ψ′ satisfy the equation.
Using the notation above, ϕ′(uλ) converge to idH strongly. Hence,
π(uλ ⊗ b) converge to ψ(b) and ψ′(b) strongly, so ψ′ = ψ. Similarly,
ϕ′ = ϕ.



Maximal C*-Norm

Corollary
Let A and B be C*-algebras and γ be C*-seminorm on A⊗ B, then

γ(a ⊗ b) ≤ ||a||||b|| for a ∈ A, b ∈ B

Proof: Let δ = max(γ, ||.||∗), if δ(c) = 0 for c ∈ A⊗ B, since ||.||∗ is a
norm, c = 0. So δ is a C*-norm. Let (H, π) be a faithful and
non-degenerate representation of A⊗δ B, using theorem above, there
exists πA and πB such that π(a ⊗ b) = πA(a)πB(b) for a ∈ A, b ∈ B.
Then δ(a ⊗ b) = ||π(a ⊗ b)|| ≤ ||πA(a)||||πB(b)|| ≤ ||a||||b||, so
γ(a ⊗ b) ≤ ||a||||b||.



Maximal C*-Norm

We can define the maximal C*-norm. Let A,B be C*-algebras and Γ be
the set of C*-norms on A⊗ B, we define the map ||.||max : A⊗ B → R+
by ||c||max = supγ∈Γγ(c). This is called the maximal C*-norm.

Remark
The map is well-defined. The supremum exists because by the above
corollary, γ(

∑n
i=1 ai ⊗ bi ) ≤

∑n
i=1 ||ai ||||bi || for γ ∈ Γ and ai ∈ A, bi ∈ B.

Remark
Γ is non-empty, because ||.||∗ ∈ Γ

It follow from definition that maximal C*-norm is a C*-norm.



Maximal C*-Norm

We denote A⊗max B be the completion of A⊗B under maximal C*-norm,
called maximal tensor product. It has a useful property.

Theorem
Let A,B and C be C*-algebras. Suppose ϕ : A→ C and ψ : B → C are
*-homomorphism such that ϕ(A) commute with ψ(B). Then there is a
unique *-homomorphism π : A⊗max B → C such that

π(a ⊗ b) = ϕ(a)ψ(b) (a ∈ A, b ∈ B).



Maximal C*-Norm

Proof: By the remark in previous slide, there is a *-homomorphism
π : A⊗ B → C satisfy the equation above. Since the function

γ : A⊗ B → R+, c → ||π(c)||

is a C*-seminorm, so γ ≤ ||.||max , so π is a norm-decreasing
*-homomorphism on A⊗ B, so it extend to a norm-decreasing
*-homomorphism on A⊗max B.
For uniqueness, two *-homomorphisms satisfy the equation must agree
everywhere, so they must be the same *-homomorphism.



Nuclearity



Nuclear C*-Algebras

Definition
A C*-algebra A is called nuclear if, for all C*-algebras B, there is only one
C*-norm on A⊗ B.

=⇒ maximal C*-norm and spacial C*-norm on A⊗ B coincide.

Remark
If a *-algebra C admits a complete C*-norm ‖‖, then this is already the
only C*-norm on C .

γ different C*-norm on C
i : (C , ‖‖) ↪→ (C̄ , γ) injective *-hom



Example Mn(C)

Example
Mn(C) is nuclear for each n ∈ N.

Sketch of proof:
arbitrary C*-algebra A
Aim: Mn(C)⊗ A admits a complete C*-norm
π : Mn(C)⊗ A→ Mn(A), (λij)ij ⊗ a 7→ (λija)ij
is a *-isomorphism
Mn(A) admits a complete C*-norm



Characterisation of finite-dimensional C*-Algebras

Theorem
Every non-zero finite-dimensional C*-algebra is *-isomorphic to
Mn1(C)⊕ · · · ⊕Mnk (C) for some integers n1, . . . , nk ∈ N.

Sketch of proof: Let A be a non-zero finite-dimensional C*-algebra.
if A is simple, then A ∼= Mn(C)
induction on the dimension of A
suppose A is not simple
I 6= 0 proper closed ideal of minimal dimension
I simple =⇒ I ∼= Mn1(C)



Characterisation of finite-dimensional C*-Algebras

I has a unit p
I = Ap and p commutes with all elements of A
A(1− p) is a C*-subalgebra of A

f : A→ Ap ⊕ A(1− p), a 7→ (ap, a(1− p))

f is a *-isomorphism
Ap = I ∼= Mn1(C) and inductions hypothesis on A(1− p)
A ∼= Mn1(C)⊕ · · · ⊕Mnk (C)
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Nuclearity of finite-dimensional C*-Algebras

Theorem
Every finite-dimensional C*-algebra is nuclear.

Sketch of proof: Let A be a finite-dimensional C*-algebra.
A ∼= Mn1(C)⊕ · · · ⊕Mnk (C)
Aim: A⊗ B admits a complete C*-norm
π : A⊗ B → (Mn1(C)⊗ B)⊕ · · · ⊕ (Mnk (C)⊗ B),
(a1, . . . , ak)⊗ b 7→ (a1 ⊗ b, . . . , ak ⊗ b)
π is a *-isomorphism
Mn(C) nuclear =⇒ Mni (C)⊗ B admits a unique C*-norm



AF-Algebra

Definition
An AF-algebra A is a C∗-algebra that contains an increasing sequence
(An)∞n=1 of finite-dimensional C∗-subalgebras such that

∞⋃
n=1

An is dense in
A.

Theorem
An AF-algebra is nuclear.



Density and Nuclearity

Theorem
Let S be a non-empty set of C∗-subalgebras of a C∗-algebra A which is
upwards-directed (i.e, if B,C ∈ S, then there exists D ∈ S such that
B ⊂ D and C ⊂ D). In addition, We suppose that,

⋃
D∈S

D is dense in A

and all the algebras in S are nuclear, then A is nuclear too.

Sketch of proof:
Back to the definition, let B be an arbitrary C∗-algebra and let β, γ
be C∗-norms on A⊗ B.
C =

⋃
D∈S D ⊗ B is a C∗-subalgebra of A⊗ B and is dense in A⊗ B.

On D ⊗ B, β = γ. So on C too.
π : A⊗β B → A⊗γ B is a *-isomorphism and on C it is the identity.
With the density, we can conclude.



Example

Example
Let H a Hilbert space, The C∗-algebra of all compact operators of B(H)
(denoted K (H)) is nuclear.

Sketch of proof:
Let E be an orthogonal basis for H and let I be the set of all finite
non-empty subsets of E (upwards-directed).
For i ∈ I, let pi be the projection on the span of all elements in i .
We denote Ai = pi K (H)pi (finite-dimensional) and S = {Ai |i ∈ I}.
With density of finite-rank operators in K (H),

⋃
Ai∈S Ai is dense in

K (H).



AF-Algebra

Definition
An AF-algebra A is a C∗-algebra that contains an increasing sequence
(An)∞n=1 of finite-dimensional C∗-subalgebras such that

∞⋃
n=1

An is dense in
A.

Theorem
An AF-algebra is nuclear.

Idea:
A finite-dimensional C∗-algebra is nuclear.
The Previous theorem on the link between density and nuclearity.



Example

Example
Let H a Hilbert space, The C∗-algebra of all compact operators of B(H) is
an AF-algebra.
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Thank you for your attention !
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