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eigenvalues of finite multiplicity.
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Prologue: Spectral Theorem

In all following: H separable, infinite dimensional Hilbert Space.

Theorem (Spectral Theorem for compact s.a. Operators)

Let K € K(H) be self-adjoint.
Then 0 € 0(K) and o(K) \ {0} consists only of isolated
eigenvalues of finite multiplicity.

Barbaric reformulation:

0(0+ K) \ {isolated e.v. of finite multiplicity} = ¢(0).

=:5(0+K)

Question: Is this true for compact perturbations of general
self-adjoint operators (instead of 0)7



Prologue: Weyl's Theorem

Theorem (Weyl, 1909)
Let T € B(H) self-adjoint and K € KC(H) self-adjoint. Then

5(T) = 6(T + K).
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Theorem (Weyl, 1909)
Let T1,T5 € B(H) self-adjoint. Then

=T+ K foraKGlC(H) — 5(T1):5'(T2).
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Prologue: Von Neumann's complete Invariant

Theorem (Weyl, von Neumann, 1935)
Let T1,T5 € B(H) self-adjoint. Then

Ti=T,+K fora K e K(H) <= 6(T1) = &6(Tb).

» Does not hold without allowing change of basis, since
a(U*ThU) = &(T1) for every unitary U.
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We then call 77 and 75 unitarily equivalent up to a compact or
essentially equivalent.
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Prologue: Von Neumann's complete Invariant

Definition (Unitary Equivalence up to Compacts)

For Th,T5 € B(H), we write T} ~x T4 if there is unitary
UeB(H)and K € K(H) s.t.

U'TWU =T, + K.

We then call 77 and 75 unitarily equivalent up to a compact or
essentially equivalent.

Theorem (Weyl, von Neumann, 1935)
Let Ty, Ty € B(H) self-adjoint. Then

T1 ~IC T2 < 5(T1) = 5(T2)

» Such a theorem describes a “complete invariant” for
self-adjoint operators up to ~i.



Prologue: Berg's Generalisation

Definition (Unitary Equivalence up to Compacts)

For Th,T5 € B(H), we write T} ~x T4 if there is unitary
UeB(H)and K € K(H) s.t.

U'TWU =T, + K.

We then call 77 and 75 unitarily equivalent up to a compact or
essentially equivalent.

Theorem (Weyl, von Neumann, Berg, 1971)
Let Ty, T, € B(#H) normal. Then

T1 ~IC T2 < 5(T1) = 5(T2)

» Such a theorem describes a “complete invariant” for normal
operators up to ~g.



Act 1: The Calkin Algebra and Fredholm Operators
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The Calkin Algebra

We have considered

P unitary equivalence up to compact perturbations and

P> the spectrum up to isolated eigenvalues of finite multiplicity.
So it looks natural to consider the quotient by compact operators!

Definition (Calkin Algebra)

AH) = B(H)/;C(H)
is called the Calkin algebra of #, and let us denote
w: B(H) — A(H)
be the quotient map.

» A(H) is a unital C*-algebra.
» KC(H) is the only nontrivial closed ideal in B(H).
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Essential Spectrum

We have considered

P unitary equivalence up to compact perturbations and
P> the spectrum up to isolated eigenvalues of finite multiplicity.

We consider the spectrum in A(H).

o(m(T)) = o(T) \ {isolated e.v. of finite multiplicity}
for normal operator T' € B(H),
Definition
For T € B(H)
oe(T) == o(m(T))

is called the essential spectrum of 7.
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Weyl-von Neumann-Berg - revisit

For normal operator T' € B(H),

o(m(T)) = o(T) \ {isolated e.v. of finite multiplicity}

Theorem (Weyl, von Neumann, Berg, 1971 (revisit))
Let S, T € B(H) normal. Then

S~ T <= 6(5)=a(T).



Weyl-von Neumann-Berg - revisit

For normal operator T' € B(H),

o(m(T)) = o(T) \ {isolated e.v. of finite multiplicity}

Theorem (Weyl, von Neumann, Berg, 1971 (revisit))
Let S, T € B(H) normal. Then

S~ T <= 0.(S) =0.(T).
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Theorem (Atkinson, 1951)
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Definition of Fredholm index

Theorem (Atkinson, 1951)
For T € B(H),

TeF(H) < dimN(T), dimN(T") < oo.
Definition
For T € F(H), we define its Fredholm index by
ind(7") = dim N(T') — dim N(T™).
Let S € B(¢?) be the right shift,
St (ag, a1, a2, ) — (0,a0,a1,- )

S*: (a07a17a27"') — (a17a27a37"')
Therefore ind(S) = —1.
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Properties of the Fredholm index (1)

Theorem
If S,T € F(H), then we have

T* € F(H), ind(T*) = — ind(T),
ST € F(H), ind(ST) = ind(S) + ind(T).

Let S € B(¢?) be the right shift operator, then we have

ind(S) = —1, ind(S*) = 1, ind(S*S) = ind(SS*) = 0.

S*S: (a‘ovalva‘?a"') — (0,@0,&1,"') — (a07a17a27'
SS*: (CLO,CLl,CLQ,"') — ((11,(12,(13,"') — (07a17a27'
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Properties of the Fredholm index (2)

Theorem
F(H) is open in B(H) and ind: F(H) + Z is continuous.

The main idea: the set of invertible elements in a Banach algebra
is open.
(Neumann Series; ISEM lecture notes Lemma 2.6.)

Corollary

Let (F%)se(o,1) @ continuous path in the set of Fredholm operators,
then we have ind(Fpy) = ind(F7).

Especially, for T' € F(H) and K € K(#) we have

ind(T) = ind(T + K).

» [0,1] — Z, t — ind(F}) is continuous.
» (T'+tK)ic0,1) is a continuous path in F(H).



Act 2: Essential normality: A first look



Weyl-von-Neumann-Berg Theorem as an Invariant

Theorem (Weyl, von Neumann, Berg, 1971)
Let Ty, Ty € B(H) normal. Then

T1 ~iC T2 1 O'e(Tl) = Je(TQ).
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Theorem (Weyl, von Neumann, Berg, 1971)
Let Ty, Ty € B(H) normal and K, K' € IC(H). Then

Ty + K~ T+ K = 0e(T1) = 0e(Th).



Weyl-von-Neumann-Berg Theorem as an Invariant

Recall: Ty ~x Ty iff U*ThYU = Ty + K for unitary U and
compact K.

0e(T) = o(n(T)), 7+ BH) = AH) = BH) 4 )

Theorem (Weyl, von Neumann, Berg, 1971)
Let Ty, Ty € B(H) normal and K, K' € IC(H). Then
T e 7 g Ty == 750 = rol(T) = 0l

» Such a theorem describes a “complete invariant” for compact
perturbations of normal operators up to ~x.



Weyl-von-Neumann-Berg Theorem as an Invariant

Recall: Ty ~x Ty iff U*ThYU = Ty + K for unitary U and
compact K.

0elT) = o(x(T)), 7: B(H) — A(H) = BH) e 5
Theorem (Weyl, von Neumann, Berg, 1971)
Let Ty, Ty € B(H) normal and K, K' € IC(H). Then
T+ K e To+ K = 0o(T}) = 0o(Th).
» Such a theorem describes a “complete invariant” for compact

perturbations of normal operators up to ~x.
» 7(T'+ K) € A(H) is normal.
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Let's give it a Name: Definition

Definition
T € B(H) is essentially normal if 7(T") € A(H) is normal, i.e.
T*T —T7T* is compact.

In particular: N € B(H) normal and K € K(H), then N + K
essentially normal.
Two questions:

» |s this something new? Or just N + K7

» Does the invariant work for this class?



Is every essentially normal Operator essentially a normal

Operator?

Let S € B(H) be the unilateral right shift.



Is every essentially normal Operator essentially a normal

Operator?

Let S € B(H) be the unilateral right shift.

S§*S: (ag,a1,-++) = (0 ,a9,a1,---) — (ao, a1, az, )
SS*: (a07a17"')'—>(a17a27a37"')'—>(0 aa17a27"')



Is every essentially normal Operator essentially a normal

Operator?

Let S € B(H) be the unilateral right shift.

S§*S: (ag,a1,-++) = (0 ,a9,a1,---) — (ao, a1, az, )
SS*: (a07a17"')'—>(a17a27a37"')'—>(0 aa17a27"')

> (S*S —55%): (ag,a1,---) —> (ap,0,---), so S essentially
normal.



Is every essentially normal Operator essentially a normal

Operator?

Let S € B(H) be the unilateral right shift.

S*S: (ag,a1,---) — (0 ,ap,a1,---) — (ag, a1, a2, )

SS*: (a07a17"')'—>(a17a27a37"')'—>(0 aa17a27"')

> (S*S —55%): (ag,a1,---) —> (ap,0,---), so S essentially
normal.

» Is .S of the form S=N+ K ?



Is every essentially normal Operator essentially a normal

Operator?

Let S € B(H) be the unilateral right shift.

S*S: (ag,a1,---) — (0 ,ap,a1,---) — (ag, a1, a2, )

SS*: (a07a17"')'—>(a17a27a37"')'—>(0 aa17a27"')

> (S*S —55%): (ag,a1,---) —> (ap,0,---), so S essentially
normal.

» Is .S of the form S=N+ K ?
ind(S) =—1



Is every essentially normal Operator essentially a normal

Operator?

Let S € B(H) be the unilateral right shift.

S*S: (ag,a1,---) — (0 ,ap,a1,---) — (ag, a1, a2, )

SS*: (a07a17"')'—>(a17a27a37"')'—>(0 aa17a27"')

> (S*S —55%): (ag,a1,---) —> (ap,0,---), so S essentially
normal.

» Is .S of the form S=N+ K ?
ind(S) =—1
ind(N + K) = ind(N)



Is every essentially normal Operator essentially a normal

Operator?

Let S € B(H) be the unilateral right shift.
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Is every essentially normal Operator essentially a normal

Operator?

Let S € B(H) be the unilateral right shift.

S§*S: (ag,a1,-++) = (0 ,a9,a1,---) — (ao, a1, az, )
SS*: (a07a17"')'—>(a17a27a37"')'—>(0 aa17a27"')

> (S*S —55%): (ag,a1,---) —> (ap,0,---), so S essentially
normal.
» Is .S of the form S=N+ K ?

ind(S) =—1
ind(N +K)=ind(N) =0

So class of essentially normal operators is more than just compact
perturbations of normal operators!
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What about the Invariant?
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What about the Invariant?

Let 71,15 € B(#H) essentially normal. Do we have
?
T ~KC T <— O’e(Tl) = O’e(Tg)

Let S € B(#) unilateral (isometric) right shift, B € B(#) the
bilateral (unitary) shift.

» S and B are essentially normal,

» o0.(5) =T,

» o(B) =0.(B)=T.

» If S ~x B holds, then 7(S) and 7(B) (unitarily) equivalent
in A(H) ...

... but even this weaker property fails to hold.
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7(S) and 7(B) not equivalent

Suppose 7(T)mw(S) = n(B)w(T) for m(T) € A(H) invertible.
» By our definition: T is Fredholm.
» Expressed in B(H): T'S = BT + K for some K € K(H).

Using what we know about the Index:

ind(T) — 1 = ind(T'S) = ind(BT) = ind(B) + ind(T) = ind(T).
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The Brown-Douglas-Fillmore Theorem

Theorem (Brown-Douglas-Fillmore, 1973)

Let T1,T» € B(H) essentially normal. Then T} ~x Ty iff
» A:=0e(T1) = 0e(T2) and
> VA e Al: ind(Ty — ) = ind(T — \)
Proof: only for A simple arc and T
Corollary
Let 7' € B(H) essentially normal. Then 71" is compact perturbation

of normal operator if

VA€ Al ind(T—)) =0.
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Example — real essential Spectrum

Let T" essentially normal and A = 0¢(7T") C R.
» 7(T') is self-adjoint
(T —T*) =0
T=1E 4 IS0 = I8 4 K for K € K(H)

T is a compact perturbation of a self-adjoint operator

| 4
>
>
» Weyl-von Neumann: All ess. normal operators with ess.
spectrum A are essentially equivalent to 7T'.
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Extensions

Let T' € B(H) essentially normal with o¢(T") = A.
» C*(n(T),1) is commutative

U: C*(n(T),1) — C(A) isomorphism

W(r(T)) = ida

Set B =7~ 1(C*(n(T),1)), K(H) C E

Write ® =V onm

vvyyy

0 KH) »ESCM) 0.

Write Ext(T) = (E, ®).
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Extensions in general

Let X a compact Hausdorff space.

Definition

An extension of IC(H) by C(X) is a pair (E, ®)
» Eis a C*-subalgebra of B(H)
» &: E — C(X) is a *-homomorphism
> & surjective

> N(®) = K(H).

O—>IC(’H)—>EE>C(X)—>O.
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Let (E1, @), (E2, ®2) be extensions of K(H) by C(X).
Definition
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Equivalence of extensions

Let (E1, @), (E2, ®2) be extensions of K(H) by C(X).
Definition
(Ey,®1) = (Fo, ®9) if

» U € B(H) unitary such that By = U*EyU

> Oy(T) = @ (U*TU) for all T € Es.

PR

0 —— K(H) C(X) ——0

Eo

» X CR: (Elaq)l) = (EQ,(I)Q).
» Let 71,75 be essentially normal with o¢(71) = 0e(T3).
Then EXt(Tl) = EXt(TQ) < T ~x T5.
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Example — essential spectrum in a simple arc

Let T be essentially normal and A = 0¢(T") be contained in a
simple arc.

> (El, (I)l) = EXt(T)
» Let N be normal with go(N) = A, (Eq, ®2) := Ext(N).
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Example — essential spectrum in a simple arc

Let 77 be essentially normal and A = 0¢(77) be contained in a
simple arc.

» 77 compact perturbation of a normal operator

» Weyl-von Neumann-Berg: two normal operators with same
ess. spectrum are ess. equivalent

» If Ty € B(H) ess. normal with o¢(T5) = A then T} ~x T5.



Special Case — essential Spectrum T
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Any bounded operator T' € B(H) can be written as
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Theorem (Polar decomposition)

Any bounded operator T' € B(H) can be written as
T = W(T*T)?
for a partial isometry W .

Theorem (Wold's decomposition)

Any isometry V' € B(H) can be written as
V=(Eol)aeU

where S ® 1 is an amplification of the unilateral shift and U unitary.
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Lemma
Let
» T essentially normal
» N normal
> 0e(N) S oe(T)
Then T O N ~x T.

Application to the right shift
» S essentially normal

» U unitary
= SeU~S



Proof Sketch

» Idea: decompose S = (D @& R) + K for D diagonal with
0e(D) =T and K compact



Proof Sketch

» Idea: decompose S = (D @& R) + K for D diagonal with
0e(D) =T and K compact

> 1, = \/%()\,/\2,...,)\"*1,)\”,0,0,...) for \eT, n €N



Proof Sketch

» Idea: decompose S = (D @& R) + K for D diagonal with
0e(D) =T and K compact
> 1, = \/%()\,/\2,...,)\"*1,)\”,0,0,...) for A€ T, neN

» 1z, ) unit vector



Proof Sketch

» Idea: decompose S = (D @& R) + K for D diagonal with
0e(D) =T and K compact

> 2, = \/%()\,/\2,...,)\"*1,)\”,0,0,...) for \eT, neN
» 1z, ) unit vector
Ty,» almost eigenvector of S and §*



Proof Sketch

>

>
>

Idea: decompose S = (D & R) + K for D diagonal with
0e(D) =T and K compact

o = \/%()\,/\2,...,)\"*1,)\”,0,0,...) for \eT, n €N
Tp,\ UNit vector

Ty,» almost eigenvector of S and §*

ZTn\ and xp, ,, almost orthogonal



Proof Sketch

>

>
>

Idea: decompose S = (D & R) + K for D diagonal with
0e(D) =T and K compact

o = \/%()\,/\2,...,)\"*1,)\”,0,0,...) for \eT, n €N
Tp,\ UNit vector

Ty,» almost eigenvector of S and §*

ZTn\ and xp, ,, almost orthogonal

Fix (Ag)ren dense in T and (ny)ken fast growing



Proof Sketch

>

>
>

Idea: decompose S = (D @ R) + K for D diagonal with
0e(D) =T and K compact

Fan = /NN 0,0, ) for A€ T, n €N
Tp,\ UNit vector

Ty,» almost eigenvector of S and §*

ZTn\ and xp, ,, almost orthogonal

Fix (Ag)ren dense in T and (ny)ken fast growing

On the span of (wp, z,)pen, S and S* almost diagonal



Proof Sketch

>

>
>

Idea: decompose S = (D @ R) + K for D diagonal with
0e(D) =T and K compact

Fan = /NN 0,0, ) for A€ T, n €N
Tp,\ UNit vector

Ty,» almost eigenvector of S and §*

ZTn\ and xp, ,, almost orthogonal

Fix (Ag)ren dense in T and (ny)ken fast growing

On the span of (wp, z,)pen, S and S* almost diagonal

S, S* almost of the form < 10) : )



Proof Sketch

>

>
>

Idea: decompose S = (D @ R) + K for D diagonal with
0e(D) =T and K compact

Fan = /NN 0,0, ) for A€ T, n €N
Tp,\ UNit vector

Ty,» almost eigenvector of S and §*

ZTn\ and xp, ,, almost orthogonal

Fix (Ag)ren dense in T and (ny)ken fast growing

On the span of (wp, z,)pen, S and S* almost diagonal

S, S* almost of the form < 10) : )

0e(U® D) =T = 0.(D)



Proof Sketch

>

>
>

Idea: decompose S = (D @ R) + K for D diagonal with
0e(D) =T and K compact

Fan = /NN 0,0, ) for A€ T, n €N
Tp,\ UNit vector

Ty,» almost eigenvector of S and §*

ZTn\ and xp, ,, almost orthogonal

Fix (Ag)ren dense in T and (ny)ken fast growing

On the span of (wp, z,)pen, S and S* almost diagonal

S, S* almost of the form < 10) : )

o0e(UdD)=T =0¢(D) = U®D ~x D



Proof Sketch

>

>
>

Idea: decompose S = (D @ R) + K for D diagonal with
0e(D) =T and K compact

Fan = /NN 0,0, ) for A€ T, n €N
Tp,\ UNit vector

Ty,» almost eigenvector of S and §*

ZTn\ and xp, ,, almost orthogonal

Fix (Ag)ren dense in T and (ny)ken fast growing

On the span of (wp, z,)pen, S and S* almost diagonal

S, S* almost of the form < 10) : )

o0e(UdD)=T =0¢(D) = U®D ~x D

UsS=Us((D&R)+K)



Proof Sketch

>

>
>

Idea: decompose S = (D @ R) + K for D diagonal with
0e(D) =T and K compact

Fan = /NN 0,0, ) for A€ T, n €N
Tp,\ UNit vector

Ty,» almost eigenvector of S and §*

ZTn\ and xp, ,, almost orthogonal

Fix (Ag)ren dense in T and (ny)ken fast growing

On the span of (wp, z,)pen, S and S* almost diagonal

S, S* almost of the form < 10) : )

o0e(UdD)=T =0¢(D) = U®D ~x D

UepS=Us(DeR)+K)=UaDaR)+ (08 K)



Proof Sketch

>

>
>

Idea: decompose S = (D @ R) + K for D diagonal with
0e(D) =T and K compact

Fan = /NN 0,0, ) for A€ T, n €N
Tp,\ UNit vector

Ty,» almost eigenvector of S and §*

ZTn\ and xp, ,, almost orthogonal

Fix (Ag)ren dense in T and (ny)ken fast growing

On the span of (wp, z,)pen, S and S* almost diagonal

S, S* almost of the form < 10) : )

o0e(UdD)=T =0¢(D) = U®D ~x D

UsS=Ua(DeR)+K)=U®Do&R)+(0®K) ~¢ S
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Essentially unitary Operators

Theorem

Let T € B(H) essentially unitary. Then T is essentially equivalent
to. ..

... a unitary operator iff ind(T") = 0,
... the right shift of multiplicity n € N iff ind(T) = —n < 0,
.. . the left shift of multiplicity n € N iff ind(T) = n > 0.

Outline of the proof:
» T compact perturbation of an isometry or coisometry
» use Wold's decomposition
» classify T up to ~x via the index
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» T compact perturbation of isometry V
» Wold's decomposition: V = (S ® 1) @ U, with U unitary
ind(7T) =ind(V) =ind(S®1) +ind(U) = ind(S ® 1)
» If ind(T") = 0, the amplification is zero-dimensional
= T~ V=U

» If ind(T") < 0,
> S ®1 essentially normal
» U normal
> 0. (U)CT=0e(S®1)
= T V=(S®1)@U~S®1
» If ind(T") > 0,

= T~ Vi~ S*®1
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Back to the BDF Theorem

Theorem (Brown-Douglas-Fillmore, 1973)

Let Ty, Ty € B(H) essentially normal. Then T} ~x T iff
> A= O'e(Tl) = O‘e(Tz) and
> VA e Al: ind(Ty — ) = ind(Th — \)

Proof for A = T:
» if n == ind(71) = ind(T32) # 0, both are equivalent to S™"

» if n == ind(71) = ind(T2) = 0, both are ess. equivalent to
unitary operators
by Weyl-von Neumann-Berg: T} ~x 15
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