Project 9 The Calkin Algebra

Johannes Becker, Mehmet-Emim Erbay, Annika Meyer, Sudeep Kumar Rayamajhi, Jonas Tibke, Ryo Toyota, Riko Ukena, project coordinator Hendrik Vogt

 24^{th} ISEM Workshop, Wuppertal

June 11, 2021

Outline

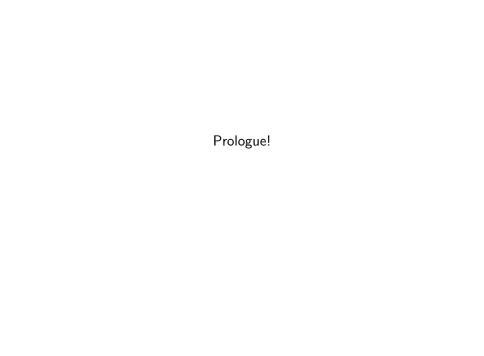
Prologue: Weyl-von Neumann Theorem as an invariant

Act 1: The Calkin Algebra and Fredholm Operators

Act 2: Essential normality: A first look

Main Act: The BDF-Theorem and Extensions

Special Case – essential Spectrum T



In all following: ${\cal H}$ separable, infinite dimensional Hilbert Space.

Theorem (Spectral Theorem for compact s.a. Operators)

Let $K \in \mathcal{K}(\mathcal{H})$ be self-adjoint. Then $0 \in \sigma(K)$ and $\sigma(K) \setminus \{0\}$ consists only of isolated eigenvalues of finite multiplicity.

In all following: ${\cal H}$ separable, infinite dimensional Hilbert Space.

Theorem (Spectral Theorem for compact s.a. Operators)

Let $K \in \mathcal{K}(\mathcal{H})$ be self-adjoint. Then $0 \in \sigma(K)$ and $\sigma(K) \setminus \{0\}$ consists only of isolated eigenvalues of finite multiplicity.

Barbaric reformulation:

$$\sigma(0+K)\setminus\{\text{isolated e.v. of finite multiplicity}\}=\sigma(0).$$

In all following: ${\cal H}$ separable, infinite dimensional Hilbert Space.

Theorem (Spectral Theorem for compact s.a. Operators)

Let $K \in \mathcal{K}(\mathcal{H})$ be self-adjoint. Then $0 \in \sigma(K)$ and $\sigma(K) \setminus \{0\}$ consists only of isolated eigenvalues of finite multiplicity.

Barbaric reformulation:

$$\underbrace{\sigma(0+K)\setminus \{\text{isolated e.v. of finite multiplicity}\}}_{=:\tilde{\sigma}(0+K)} = \sigma(0).$$

In all following: ${\cal H}$ separable, infinite dimensional Hilbert Space.

Theorem (Spectral Theorem for compact s.a. Operators)

Let $K \in \mathcal{K}(\mathcal{H})$ be self-adjoint. Then $0 \in \sigma(K)$ and $\sigma(K) \setminus \{0\}$ consists only of isolated eigenvalues of finite multiplicity.

Barbaric reformulation:

$$\underbrace{\sigma(0+K)\setminus\{\text{isolated e.v. of finite multiplicity}\}}_{=:\tilde{\sigma}(0+K)}=\sigma(0).$$

Question: Is this true for compact perturbations of general self-adjoint operators (instead of 0)?

Prologue: Weyl's Theorem

Theorem (Weyl, 1909)

Let $T \in \mathcal{B}(\mathcal{H})$ self-adjoint and $K \in \mathcal{K}(\mathcal{H})$ self-adjoint. Then

$$\tilde{\sigma}(T) = \tilde{\sigma}(T + K).$$

Prologue: Weyl's Theorem

Theorem (Weyl, 1909)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ self-adjoint. Then

$$T_1 = T_2 + K$$
 for a $K \in \mathcal{K}(\mathcal{H}) \implies \tilde{\sigma}(T_1) = \tilde{\sigma}(T_2)$.

Theorem (Weyl, von Neumann, 1935)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ self-adjoint. Then

$$T_1 = T_2 + K$$
 for a $K \in \mathcal{K}(\mathcal{H}) \iff \tilde{\sigma}(T_1) = \tilde{\sigma}(T_2)$.

Theorem (Weyl, von Neumann, 1935)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ self-adjoint. Then

$$T_1 = T_2 + K$$
 for a $K \in \mathcal{K}(\mathcal{H}) \iff \tilde{\sigma}(T_1) = \tilde{\sigma}(T_2)$.

▶ Does not hold without allowing change of basis, since $\tilde{\sigma}(U^*T_1U) = \tilde{\sigma}(T_1)$ for every unitary U.

Definition (Unitary Equivalence up to Compacts)

For $T_1,T_2\in\mathcal{B}(\mathcal{H})$, we write $T_1\sim_{\mathcal{K}}T_2$ if there is unitary $U\in\mathcal{B}(\mathcal{H})$ and $K\in\mathcal{K}(\mathcal{H})$ s.t.

$$U^*T_1U = T_2 + K.$$

We then call T_1 and T_2 unitarily equivalent up to a compact or essentially equivalent.

Definition (Unitary Equivalence up to Compacts)

For $T_1,T_2\in\mathcal{B}(\mathcal{H})$, we write $T_1\sim_{\mathcal{K}}T_2$ if there is unitary $U\in\mathcal{B}(\mathcal{H})$ and $K\in\mathcal{K}(\mathcal{H})$ s.t.

$$U^*T_1U=T_2+K.$$

We then call T_1 and T_2 unitarily equivalent up to a compact or essentially equivalent.

Theorem (Weyl, von Neumann, 1935)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ self-adjoint. Then

$$T_1 \sim_{\mathcal{K}} T_2 \iff \tilde{\sigma}(T_1) = \tilde{\sigma}(T_2).$$

Definition (Unitary Equivalence up to Compacts)

For $T_1,T_2\in\mathcal{B}(\mathcal{H})$, we write $T_1\sim_{\mathcal{K}}T_2$ if there is unitary $U\in\mathcal{B}(\mathcal{H})$ and $K\in\mathcal{K}(\mathcal{H})$ s.t.

$$U^*T_1U = T_2 + K.$$

We then call T_1 and T_2 unitarily equivalent up to a compact or essentially equivalent.

Theorem (Weyl, von Neumann, 1935)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ self-adjoint. Then

$$T_1 \sim_{\mathcal{K}} T_2 \iff \tilde{\sigma}(T_1) = \tilde{\sigma}(T_2).$$

▶ Such a theorem describes a "complete invariant" for self-adjoint operators up to $\sim_{\mathcal{K}}$.

Prologue: Berg's Generalisation

Definition (Unitary Equivalence up to Compacts)

For $T_1,T_2\in\mathcal{B}(\mathcal{H})$, we write $T_1\sim_{\mathcal{K}}T_2$ if there is unitary $U\in\mathcal{B}(\mathcal{H})$ and $K\in\mathcal{K}(\mathcal{H})$ s.t.

$$U^*T_1U = T_2 + K.$$

We then call T_1 and T_2 unitarily equivalent up to a compact or essentially equivalent.

Theorem (Weyl, von Neumann, Berg, 1971)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ normal. Then

$$T_1 \sim_{\mathcal{K}} T_2 \iff \tilde{\sigma}(T_1) = \tilde{\sigma}(T_2).$$

▶ Such a theorem describes a "complete invariant" for normal operators up to $\sim_{\mathcal{K}}$.

Outline

Prologue: Weyl-von Neumann Theorem as an invariant

Act 1: The Calkin Algebra and Fredholm Operators

Act 2: Essential normality: A first look

Main Act: The BDF-Theorem and Extensions

Special Case – essential Spectrum T

We have considered

- unitary equivalence up to compact perturbations and
- ▶ the **spectrum** up to isolated eigenvalues of finite multiplicity.

We have considered

- unitary equivalence up to compact perturbations and
- ▶ the **spectrum** up to isolated eigenvalues of finite multiplicity.

So it looks natural to consider the quotient by compact operators!

We have considered

- unitary equivalence up to compact perturbations and
- the spectrum up to isolated eigenvalues of finite multiplicity.

So it looks natural to consider the quotient by compact operators!

Definition (Calkin Algebra)

$$\mathcal{A}(\mathcal{H}) := \mathcal{B}(\mathcal{H}) / \mathcal{K}(\mathcal{H})$$

is called the Calkin algebra of \mathcal{H} ,

We have considered

- unitary equivalence up to compact perturbations and
- the spectrum up to isolated eigenvalues of finite multiplicity.

So it looks natural to consider the quotient by compact operators!

Definition (Calkin Algebra)

$$\mathcal{A}(\mathcal{H}) := \mathcal{B}(\mathcal{H}) / \mathcal{K}(\mathcal{H})$$

is called the Calkin algebra of \mathcal{H} , and let us denote

$$\pi \colon \mathcal{B}(\mathcal{H}) \to \mathcal{A}(\mathcal{H})$$

be the quotient map.

We have considered

- unitary equivalence up to compact perturbations and
- the spectrum up to isolated eigenvalues of finite multiplicity.

So it looks natural to consider the quotient by compact operators!

Definition (Calkin Algebra)

$$\mathcal{A}(\mathcal{H}) := \mathcal{B}(\mathcal{H}) / \mathcal{K}(\mathcal{H})$$

is called the Calkin algebra of \mathcal{H} , and let us denote

$$\pi \colon \mathcal{B}(\mathcal{H}) \to \mathcal{A}(\mathcal{H})$$

be the quotient map.

 $ightharpoonup \mathcal{A}(\mathcal{H})$ is a unital C^* -algebra.

We have considered

- unitary equivalence up to compact perturbations and
- the spectrum up to isolated eigenvalues of finite multiplicity.

So it looks natural to consider the quotient by compact operators!

Definition (Calkin Algebra)

$$\mathcal{A}(\mathcal{H}) := \mathcal{B}(\mathcal{H}) / \mathcal{K}(\mathcal{H})$$

is called the Calkin algebra of \mathcal{H} , and let us denote

$$\pi \colon \mathcal{B}(\mathcal{H}) \to \mathcal{A}(\mathcal{H})$$

be the quotient map.

- $ightharpoonup \mathcal{A}(\mathcal{H})$ is a unital C*-algebra.
- $ightharpoonup \mathcal{K}(\mathcal{H})$ is the only nontrivial closed ideal in $\mathcal{B}(\mathcal{H})$.

We have considered

- unitary equivalence up to compact perturbations and
- ▶ the **spectrum** up to isolated eigenvalues of finite multiplicity.

We have considered

- unitary equivalence up to compact perturbations and
- ▶ the **spectrum** up to isolated eigenvalues of finite multiplicity.

We consider the spectrum in $\mathcal{A}(\mathcal{H})$.

We have considered

- unitary equivalence up to compact perturbations and
- ▶ the **spectrum** up to isolated eigenvalues of finite multiplicity.

We consider the spectrum in $\mathcal{A}(\mathcal{H})$.

$$\sigma(\pi(T))$$

We have considered

- unitary equivalence up to compact perturbations and
- ▶ the **spectrum** up to isolated eigenvalues of finite multiplicity.

We consider the spectrum in $\mathcal{A}(\mathcal{H})$.

$$\sigma(\pi(T))=\sigma(T)\setminus \{\text{isolated e.v. of finite multiplicity}\}$$
 for normal operator $T\in\mathcal{B}(\mathcal{H}),$

We have considered

- unitary equivalence up to compact perturbations and
- the spectrum up to isolated eigenvalues of finite multiplicity.

We consider the spectrum in $\mathcal{A}(\mathcal{H})$.

$$\sigma(\pi(T)) = \sigma(T) \setminus \{ \text{isolated e.v. of finite multiplicity} \}$$
 for normal operator $T \in \mathcal{B}(\mathcal{H}),$

Definition

For
$$T \in \mathcal{B}(\mathcal{H})$$

$$\sigma_{\mathrm{e}}(T) \coloneqq \sigma(\pi(T))$$

is called the essential spectrum of T.

Weyl-von Neumann-Berg - revisit

For normal operator $T \in \mathcal{B}(\mathcal{H})$,

$$\sigma(\pi(T)) = \sigma(T) \setminus \{ \text{isolated e.v. of finite multiplicity} \}$$

Weyl-von Neumann-Berg - revisit

For normal operator $T \in \mathcal{B}(\mathcal{H})$,

$$\sigma(\pi(T)) = \sigma(T) \setminus \{ \text{isolated e.v. of finite multiplicity} \}$$

Theorem (Weyl, von Neumann, Berg, 1971 (revisit))

Let $S,T \in \mathcal{B}(\mathcal{H})$ normal. Then

$$S \sim_{\mathcal{K}} T \iff \tilde{\sigma}(S) = \tilde{\sigma}(T).$$

Weyl-von Neumann-Berg - revisit

For normal operator $T \in \mathcal{B}(\mathcal{H})$,

$$\sigma(\pi(T)) = \sigma(T) \setminus \{ \text{isolated e.v. of finite multiplicity} \}$$

Theorem (Weyl, von Neumann, Berg, 1971 (revisit))

Let $S,T\in\mathcal{B}(\mathcal{H})$ normal. Then

$$S \sim_{\mathcal{K}} T \iff \sigma_{e}(S) = \sigma_{e}(T).$$

The Definition of Fredholm Operators

Definition

 $T \in \mathcal{B}(\mathcal{H})$ is Fredholm if $\pi(T)$ is invertible in $\mathcal{A}(\mathcal{H})$. The set of all Fredholm operators on \mathcal{H} is denoted by $\mathcal{F}(\mathcal{H})$.

The Definition of Fredholm Operators

Definition

 $T \in \mathcal{B}(\mathcal{H})$ is Fredholm if $\pi(T)$ is invertible in $\mathcal{A}(\mathcal{H})$. The set of all Fredholm operators on \mathcal{H} is denoted by $\mathcal{F}(\mathcal{H})$.

Theorem (Atkinson, 1951)

For $T \in \mathcal{B}(\mathcal{H})$, $\pi(T)$ is invertible in $\mathcal{A}(\mathcal{H}) \iff \dim \mathsf{N}(T)$, $\dim \mathsf{N}(T^*) < \infty$.

Theorem (Atkinson, 1951)

For $T \in \mathcal{B}(\mathcal{H})$,

$$T \in \mathcal{F}(\mathcal{H}) \iff \dim \mathsf{N}(T), \ \dim \mathsf{N}(T^*) < \infty.$$

Theorem (Atkinson, 1951)

For $T \in \mathcal{B}(\mathcal{H})$,

$$T\in \mathcal{F}(\mathcal{H}) \iff \dim \mathsf{N}(T), \ \dim \mathsf{N}(T^*) < \infty.$$

Definition

For $T \in \mathcal{F}(\mathcal{H})$, we define its Fredholm index by

$$\operatorname{ind}(T) = \dim \mathsf{N}(T) - \dim \mathsf{N}(T^*).$$

Theorem (Atkinson, 1951)

For $T \in \mathcal{B}(\mathcal{H})$,

$$T\in \mathcal{F}(\mathcal{H})\iff \dim \mathsf{N}(T),\ \dim \mathsf{N}(T^*)<\infty.$$

Definition

For $T \in \mathcal{F}(\mathcal{H})$, we define its Fredholm index by

$$\operatorname{ind}(T) = \dim \mathsf{N}(T) - \dim \mathsf{N}(T^*).$$

Let $S \in \mathcal{B}(\ell^2)$ be the right shift,

Theorem (Atkinson, 1951)

For $T \in \mathcal{B}(\mathcal{H})$,

$$T\in \mathcal{F}(\mathcal{H}) \iff \dim \mathsf{N}(T), \ \dim \mathsf{N}(T^*) < \infty.$$

Definition

For $T \in \mathcal{F}(\mathcal{H})$, we define its Fredholm index by

$$\operatorname{ind}(T) = \dim \operatorname{N}(T) - \dim \operatorname{N}(T^*).$$

Let $S \in \mathcal{B}(\ell^2)$ be the right shift, $S: (a_0, a_1, a_2, \cdots)$

Theorem (Atkinson, 1951)

For $T \in \mathcal{B}(\mathcal{H})$,

$$T\in \mathcal{F}(\mathcal{H}) \iff \dim \mathsf{N}(T), \ \dim \mathsf{N}(T^*) < \infty.$$

Definition

For $T \in \mathcal{F}(\mathcal{H})$, we define its Fredholm index by

$$\operatorname{ind}(T) = \dim \mathsf{N}(T) - \dim \mathsf{N}(T^*).$$

Let $S \in \mathcal{B}(\ell^2)$ be the right shift, $S: (a_0, a_1, a_2, \cdots) \longmapsto (0, a_0, a_1, \cdots)$

Theorem (Atkinson, 1951)

For $T \in \mathcal{B}(\mathcal{H})$,

$$T\in \mathcal{F}(\mathcal{H}) \iff \dim \mathsf{N}(T), \ \dim \mathsf{N}(T^*) < \infty.$$

Definition

For $T \in \mathcal{F}(\mathcal{H})$, we define its Fredholm index by

$$\operatorname{ind}(T) = \dim \mathsf{N}(T) - \dim \mathsf{N}(T^*).$$

Let $S \in \mathcal{B}(\ell^2)$ be the right shift, $S: (a_0, a_1, a_2, \cdots) \longmapsto (0, a_0, a_1, \cdots)$ $S^*: (a_0, a_1, a_2, \cdots)$

Theorem (Atkinson, 1951)

For $T \in \mathcal{B}(\mathcal{H})$,

$$T\in \mathcal{F}(\mathcal{H}) \iff \dim \mathsf{N}(T), \ \dim \mathsf{N}(T^*) < \infty.$$

Definition

For $T \in \mathcal{F}(\mathcal{H})$, we define its Fredholm index by

$$\operatorname{ind}(T) = \dim \mathsf{N}(T) - \dim \mathsf{N}(T^*).$$

Let $S \in \mathcal{B}(\ell^2)$ be the right shift,

$$S: (a_0, a_1, a_2, \cdots) \longmapsto (0, a_0, a_1, \cdots)$$

$$S^*: (a_0, a_1, a_2, \cdots) \longmapsto (a_1, a_2, a_3, \cdots)$$

Theorem (Atkinson, 1951)

For $T \in \mathcal{B}(\mathcal{H})$.

$$T\in \mathcal{F}(\mathcal{H}) \iff \dim \mathsf{N}(T), \ \dim \mathsf{N}(T^*) < \infty.$$

Definition

For $T \in \mathcal{F}(\mathcal{H})$, we define its Fredholm index by

$$\operatorname{ind}(T) = \dim \mathsf{N}(T) - \dim \mathsf{N}(T^*).$$

Let $S \in \mathcal{B}(\ell^2)$ be the right shift, $S: (a_0, a_1, a_2, \cdots) \longmapsto (0, a_0, a_1, \cdots)$

 $S^*: (a_0, a_1, a_2, \cdots) \longmapsto (a_1, a_2, a_3, \cdots)$

Therefore ind(S) = -1.

Theorem

If $S,T\in\mathcal{F}(\mathcal{H})$, then we have

$$T^* \in \mathcal{F}(\mathcal{H}), \text{ ind}(T^*) = -\text{ind}(T),$$

Theorem

If $S, T \in \mathcal{F}(\mathcal{H})$, then we have

$$T^* \in \mathcal{F}(\mathcal{H}), \ \operatorname{ind}(T^*) = -\operatorname{ind}(T),$$

$$ST \in \mathcal{F}(\mathcal{H}), \ \operatorname{ind}(ST) = \operatorname{ind}(S) + \operatorname{ind}(T).$$

Theorem

If $S, T \in \mathcal{F}(\mathcal{H})$, then we have

$$T^*\in \mathcal{F}(\mathcal{H}), \ \operatorname{ind}(T^*)=-\operatorname{ind}(T),$$

$$ST \in \mathcal{F}(\mathcal{H}), \text{ ind}(ST) = \text{ind}(S) + \text{ind}(T).$$

$$\operatorname{ind}(S) = -1, \ \operatorname{ind}(S^*) = 1, \ \operatorname{ind}(S^*S) = \operatorname{ind}(SS^*) = 0.$$

Theorem

If $S, T \in \mathcal{F}(\mathcal{H})$, then we have

$$T^*\in \mathcal{F}(\mathcal{H}), \ \operatorname{ind}(T^*)=-\operatorname{ind}(T),$$

$$ST \in \mathcal{F}(\mathcal{H}), \text{ ind}(ST) = \text{ind}(S) + \text{ind}(T).$$

$$\operatorname{ind}(S) = -1, \ \operatorname{ind}(S^*) = 1, \ \operatorname{ind}(S^*S) = \operatorname{ind}(SS^*) = 0.$$

$$S^*S: (a_0, a_1, a_2, \cdots) \longmapsto$$

Theorem

If $S, T \in \mathcal{F}(\mathcal{H})$, then we have

$$T^*\in \mathcal{F}(\mathcal{H}), \ \operatorname{ind}(T^*)=-\operatorname{ind}(T),$$

$$ST \in \mathcal{F}(\mathcal{H}), \text{ ind}(ST) = \text{ind}(S) + \text{ind}(T).$$

$${\rm ind}(S) = -1, \ {\rm ind}(S^*) = 1, \ {\rm ind}(S^*S) = {\rm ind}(SS^*) = 0.$$

$$S^*S: (a_0, a_1, a_2, \cdots) \longmapsto (0, a_0, a_1, \cdots) \longmapsto$$

Theorem

If $S, T \in \mathcal{F}(\mathcal{H})$, then we have

$$T^*\in \mathcal{F}(\mathcal{H}), \ \operatorname{ind}(T^*)=-\operatorname{ind}(T),$$

$$ST \in \mathcal{F}(\mathcal{H}), \ \operatorname{ind}(ST) = \operatorname{ind}(S) + \operatorname{ind}(T).$$

$$\operatorname{ind}(S) = -1, \ \operatorname{ind}(S^*) = 1, \ \operatorname{ind}(S^*S) = \operatorname{ind}(SS^*) = 0.$$

$$S^*S: (a_0, a_1, a_2, \cdots) \longmapsto (0, a_0, a_1, \cdots) \longmapsto (a_0, a_1, a_2, \cdots)$$

Theorem

If $S, T \in \mathcal{F}(\mathcal{H})$, then we have

$$T^*\in \mathcal{F}(\mathcal{H}), \ \operatorname{ind}(T^*)=-\operatorname{ind}(T),$$

$$ST \in \mathcal{F}(\mathcal{H}), \text{ ind}(ST) = \text{ind}(S) + \text{ind}(T).$$

$$\operatorname{ind}(S) = -1, \ \operatorname{ind}(S^*) = 1, \ \operatorname{ind}(S^*S) = \operatorname{ind}(SS^*) = 0.$$

$$S^*S: (a_0, a_1, a_2, \cdots) \longmapsto (0, a_0, a_1, \cdots) \longmapsto (a_0, a_1, a_2, \cdots)$$

 $SS^*: (a_0, a_1, a_2, \cdots)$

Theorem

If $S, T \in \mathcal{F}(\mathcal{H})$, then we have

$$T^*\in \mathcal{F}(\mathcal{H}), \ \operatorname{ind}(T^*)=-\operatorname{ind}(T),$$

$$ST \in \mathcal{F}(\mathcal{H}), \text{ ind}(ST) = \text{ind}(S) + \text{ind}(T).$$

$$\operatorname{ind}(S) = -1, \ \operatorname{ind}(S^*) = 1, \ \operatorname{ind}(S^*S) = \operatorname{ind}(SS^*) = 0.$$

$$S^*S: (a_0, a_1, a_2, \cdots) \longmapsto (0, a_0, a_1, \cdots) \longmapsto (a_0, a_1, a_2, \cdots)$$

 $SS^*: (a_0, a_1, a_2, \cdots) \longmapsto (a_1, a_2, a_3, \cdots)$

Theorem

If $S, T \in \mathcal{F}(\mathcal{H})$, then we have

$$T^*\in \mathcal{F}(\mathcal{H}), \ \operatorname{ind}(T^*)=-\operatorname{ind}(T),$$

$$ST \in \mathcal{F}(\mathcal{H}), \text{ ind}(ST) = \text{ind}(S) + \text{ind}(T).$$

$$\operatorname{ind}(S) = -1, \ \operatorname{ind}(S^*) = 1, \ \operatorname{ind}(S^*S) = \operatorname{ind}(SS^*) = 0.$$

$$S^*S: (a_0, a_1, a_2, \cdots) \longmapsto (0, a_0, a_1, \cdots) \longmapsto (a_0, a_1, a_2, \cdots)$$

 $SS^*: (a_0, a_1, a_2, \cdots) \longmapsto (a_1, a_2, a_3, \cdots) \longmapsto (0, a_1, a_2, \cdots)$

Theorem

 $\mathcal{F}(\mathcal{H})$ is open in $\mathcal{B}(\mathcal{H})$ and ind: $\mathcal{F}(\mathcal{H}) \mapsto \mathbb{Z}$ is continuous.

Theorem

 $\mathcal{F}(\mathcal{H})$ is open in $\mathcal{B}(\mathcal{H})$ and ind: $\mathcal{F}(\mathcal{H})\mapsto \mathbb{Z}$ is continuous.

The main idea: the set of invertible elements in a Banach algebra is open.

(Neumann Series; ISEM lecture notes Lemma 2.6.)

Theorem

 $\mathcal{F}(\mathcal{H})$ is open in $\mathcal{B}(\mathcal{H})$ and ind: $\mathcal{F}(\mathcal{H}) \mapsto \mathbb{Z}$ is continuous.

The main idea: the set of invertible elements in a Banach algebra is open.

(Neumann Series; ISEM lecture notes Lemma 2.6.)

Corollary

Let $(F_t)_{t\in[0,1]}$ a continuous path in the set of Fredholm operators, then we have $\operatorname{ind}(F_0)=\operatorname{ind}(F_1).$

Especially, for $T\in \mathcal{F}(\mathcal{H})$ and $K\in \mathcal{K}(\mathcal{H})$ we have $\mathrm{ind}(T)=\mathrm{ind}(T+K).$

Theorem

 $\mathcal{F}(\mathcal{H})$ is open in $\mathcal{B}(\mathcal{H})$ and ind: $\mathcal{F}(\mathcal{H}) \mapsto \mathbb{Z}$ is continuous.

The main idea: the set of invertible elements in a Banach algebra is open.

(Neumann Series; ISEM lecture notes Lemma 2.6.)

Corollary

Let $(F_t)_{t\in[0,1]}$ a continuous path in the set of Fredholm operators, then we have $\operatorname{ind}(F_0)=\operatorname{ind}(F_1).$

Especially, for $T \in \mathcal{F}(\mathcal{H})$ and $K \in \mathcal{K}(\mathcal{H})$ we have $\operatorname{ind}(T) = \operatorname{ind}(T+K)$.

▶ $[0,1] \longrightarrow \mathbb{Z}, \ t \longmapsto \operatorname{ind}(F_t)$ is continuous.

Theorem

 $\mathcal{F}(\mathcal{H})$ is open in $\mathcal{B}(\mathcal{H})$ and ind: $\mathcal{F}(\mathcal{H}) \mapsto \mathbb{Z}$ is continuous.

The main idea: the set of invertible elements in a Banach algebra is open.

(Neumann Series; ISEM lecture notes Lemma 2.6.)

Corollary

Let $(F_t)_{t\in[0,1]}$ a continuous path in the set of Fredholm operators, then we have $\operatorname{ind}(F_0)=\operatorname{ind}(F_1).$

Especially, for $T \in \mathcal{F}(\mathcal{H})$ and $K \in \mathcal{K}(\mathcal{H})$ we have $\operatorname{ind}(T) = \operatorname{ind}(T+K)$.

- ▶ $[0,1] \longrightarrow \mathbb{Z}, t \longmapsto \operatorname{ind}(F_t)$ is continuous.
- $ightharpoonup (T+tK)_{t\in[0,1]}$ is a continuous path in $\mathcal{F}(\mathcal{H})$.

Outline

Prologue: Weyl—von Neumann Theorem as an invariant

Act 1: The Calkin Algebra and Fredholm Operators

Act 2: Essential normality: A first look

Main Act: The BDF-Theorem and Extensions

Special Case – essential Spectrum T

Theorem (Weyl, von Neumann, Berg, 1971)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ normal. Then

$$T_1 \sim_{\mathcal{K}} T_2 \iff \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2).$$

Recall: $T_1 \sim_{\mathcal{K}} T_2$ iff $U^*T_1U = T_2 + K$ for unitary U and compact K.

Theorem (Weyl, von Neumann, Berg, 1971)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ normal. Then

$$T_1 \sim_{\mathcal{K}} T_2 \iff \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2).$$

Recall: $T_1 \sim_{\mathcal{K}} T_2$ iff $U^*T_1U = T_2 + K$ for unitary U and compact K.

$$\sigma_{e}(T) = \sigma(\pi(T)), \ \pi : \mathcal{B}(\mathcal{H}) \to \mathcal{A}(\mathcal{H}) = \mathcal{B}(\mathcal{H}) / \mathcal{K}(\mathcal{H})$$

Theorem (Weyl, von Neumann, Berg, 1971)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ normal. Then

$$T_1 \sim_{\mathcal{K}} T_2 \iff \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2).$$

Recall: $T_1 \sim_{\mathcal{K}} T_2$ iff $U^*T_1U = T_2 + K$ for unitary U and compact K.

$$\sigma_{e}(T) = \sigma(\pi(T)), \ \pi : \mathcal{B}(\mathcal{H}) \to \mathcal{A}(\mathcal{H}) = \mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$$

Theorem (Weyl, von Neumann, Berg, 1971)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ normal. Then

$$T_1 \sim_{\mathcal{K}} T_2 \iff \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2).$$

▶ Such a theorem describes a "complete invariant" for normal operators up to $\sim_{\mathcal{K}}$.

Recall: $T_1 \sim_{\mathcal{K}} T_2$ iff $U^*T_1U = T_2 + K$ for unitary U and compact K.

$$\sigma_{e}(T) = \sigma(\pi(T)), \ \pi : \mathcal{B}(\mathcal{H}) \to \mathcal{A}(\mathcal{H}) = \mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$$

Theorem (Weyl, von Neumann, Berg, 1971)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ normal and $K, K' \in \mathcal{K}(\mathcal{H})$. Then

$$T_1 + K \sim_{\mathcal{K}} T_2 + K' \iff \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2).$$

Recall: $T_1 \sim_{\mathcal{K}} T_2$ iff $U^*T_1U = T_2 + K$ for unitary U and compact K.

$$\sigma_{\mathsf{e}}(T) = \sigma(\pi(T)), \ \pi : \mathcal{B}(\mathcal{H}) \to \mathcal{A}(\mathcal{H}) = \mathcal{B}(\mathcal{H}) / \mathcal{K}(\mathcal{H})$$

Theorem (Weyl, von Neumann, Berg, 1971)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ normal and $K, K' \in \mathcal{K}(\mathcal{H})$. Then

$$T_1 + K \sim_{\mathcal{K}} T_2 + K' \iff \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2).$$

▶ Such a theorem describes a "complete invariant" for compact perturbations of normal operators up to $\sim_{\mathcal{K}}$.

Recall: $T_1 \sim_{\mathcal{K}} T_2$ iff $U^*T_1U = T_2 + K$ for unitary U and compact K.

$$\sigma_{e}(T) = \sigma(\pi(T)), \ \pi : \mathcal{B}(\mathcal{H}) \to \mathcal{A}(\mathcal{H}) = \mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$$

Theorem (Weyl, von Neumann, Berg, 1971)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ normal and $K, K' \in \mathcal{K}(\mathcal{H})$. Then

$$T_1 + K \sim_{\mathcal{K}} T_2 + K' \iff \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2).$$

- ▶ Such a theorem describes a "complete invariant" for compact perturbations of normal operators up to $\sim_{\mathcal{K}}$.
- \blacktriangleright $\pi(T+K) \in \mathcal{A}(\mathcal{H})$ is normal.

Definition

 $T\in\mathcal{B}(\mathcal{H})$ is essentially normal if $\pi(T)\in\mathcal{A}(\mathcal{H})$ is normal, i.e. T^*T-TT^* is compact.

Definition

 $T\in\mathcal{B}(\mathcal{H})$ is essentially normal if $\pi(T)\in\mathcal{A}(\mathcal{H})$ is normal, i.e. T^*T-TT^* is compact.

In particular: $N \in \mathcal{B}(\mathcal{H})$ normal and $K \in \mathcal{K}(\mathcal{H})$, then N+K essentially normal.

Definition

 $T\in\mathcal{B}(\mathcal{H})$ is essentially normal if $\pi(T)\in\mathcal{A}(\mathcal{H})$ is normal, i.e. T^*T-TT^* is compact.

In particular: $N \in \mathcal{B}(\mathcal{H})$ normal and $K \in \mathcal{K}(\mathcal{H})$, then N+K essentially normal.

Two questions:

Definition

 $T\in\mathcal{B}(\mathcal{H})$ is essentially normal if $\pi(T)\in\mathcal{A}(\mathcal{H})$ is normal, i.e. T^*T-TT^* is compact.

In particular: $N \in \mathcal{B}(\mathcal{H})$ normal and $K \in \mathcal{K}(\mathcal{H})$, then N+K essentially normal.

Two questions:

▶ Is this something new? Or just N + K?

Definition

 $T\in\mathcal{B}(\mathcal{H})$ is essentially normal if $\pi(T)\in\mathcal{A}(\mathcal{H})$ is normal, i.e. T^*T-TT^* is compact.

In particular: $N \in \mathcal{B}(\mathcal{H})$ normal and $K \in \mathcal{K}(\mathcal{H})$, then N+K essentially normal.

Two questions:

- ▶ Is this something new? Or just N + K?
- ▶ Does the invariant work for this class?

Let $S \in \mathcal{B}(\mathcal{H})$ be the unilateral right shift.

Let $S \in \mathcal{B}(\mathcal{H})$ be the unilateral right shift.

$$S^*S: (a_0, a_1, \cdots) \longmapsto (0, a_0, a_1, \cdots) \longmapsto (a_0, a_1, a_2, \cdots)$$

 $SS^*: (a_0, a_1, \cdots) \longmapsto (a_1, a_2, a_3, \cdots) \longmapsto (0, a_1, a_2, \cdots)$

Let $S \in \mathcal{B}(\mathcal{H})$ be the unilateral right shift.

$$S^*S: (a_0, a_1, \cdots) \longmapsto (0, a_0, a_1, \cdots) \longmapsto (a_0, a_1, a_2, \cdots)$$

$$SS^*: (a_0, a_1, \cdots) \longmapsto (a_1, a_2, a_3, \cdots) \longmapsto (0, a_1, a_2, \cdots)$$

 \blacktriangleright (S^*S-SS^*) : $(a_0,a_1,\cdots)\longmapsto (a_0,0,\cdots)$, so S essentially normal.

Let $S \in \mathcal{B}(\mathcal{H})$ be the unilateral right shift.

$$S^*S: (a_0, a_1, \cdots) \longmapsto (0, a_0, a_1, \cdots) \longmapsto (a_0, a_1, a_2, \cdots)$$

$$SS^*: (a_0, a_1, \cdots) \longmapsto (a_1, a_2, a_3, \cdots) \longmapsto (0, a_1, a_2, \cdots)$$

- \blacktriangleright $(S^*S-SS^*)\colon (a_0,a_1,\cdots)\longmapsto (a_0,0,\cdots)$, so S essentially normal.
- ▶ Is S of the form S = N + K ?

Let $S \in \mathcal{B}(\mathcal{H})$ be the unilateral right shift.

$$S^*S: (a_0, a_1, \cdots) \longmapsto (0, a_0, a_1, \cdots) \longmapsto (a_0, a_1, a_2, \cdots)$$

 $SS^*: (a_0, a_1, \cdots) \longmapsto (a_1, a_2, a_3, \cdots) \longmapsto (0, a_1, a_2, \cdots)$

- \blacktriangleright (S^*S-SS^*) : $(a_0,a_1,\cdots)\longmapsto (a_0,0,\cdots)$, so S essentially normal.
- ▶ Is S of the form S = N + K ?

$$\operatorname{ind}(S) = -1$$

Is every essentially normal Operator essentially a normal Operator?

Let $S \in \mathcal{B}(\mathcal{H})$ be the unilateral right shift.

$$S^*S: (a_0, a_1, \cdots) \longmapsto (0, a_0, a_1, \cdots) \longmapsto (a_0, a_1, a_2, \cdots)$$

$$SS^*: (a_0, a_1, \cdots) \longmapsto (a_1, a_2, a_3, \cdots) \longmapsto (0, a_1, a_2, \cdots)$$

- \blacktriangleright (S^*S-SS^*) : $(a_0,a_1,\cdots)\longmapsto (a_0,0,\cdots)$, so S essentially normal.
- ▶ Is S of the form S = N + K ? $\operatorname{ind}(S) = -1$ $\operatorname{ind}(N + K) = \operatorname{ind}(N)$

Is every essentially normal Operator essentially a normal Operator?

Let $S \in \mathcal{B}(\mathcal{H})$ be the unilateral right shift.

$$S^*S: (a_0, a_1, \cdots) \longmapsto (0, a_0, a_1, \cdots) \longmapsto (a_0, a_1, a_2, \cdots)$$

$$SS^*: (a_0, a_1, \cdots) \longmapsto (a_1, a_2, a_3, \cdots) \longmapsto (0, a_1, a_2, \cdots)$$

- \blacktriangleright $(S^*S-SS^*)\colon (a_0,a_1,\cdots)\longmapsto (a_0,0,\cdots)$, so S essentially normal.
- ▶ Is S of the form S = N + K ?

$$\inf(S) = -1$$

$$\operatorname{ind}(N+K) = \operatorname{ind}(N) = 0$$

Is every essentially normal Operator essentially a normal Operator?

Let $S \in \mathcal{B}(\mathcal{H})$ be the unilateral right shift.

$$S^*S: (a_0, a_1, \cdots) \longmapsto (0, a_0, a_1, \cdots) \longmapsto (a_0, a_1, a_2, \cdots)$$

 $SS^*: (a_0, a_1, \cdots) \longmapsto (a_1, a_2, a_3, \cdots) \longmapsto (0, a_1, a_2, \cdots)$

- \blacktriangleright (S^*S-SS^*) : $(a_0,a_1,\cdots)\longmapsto (a_0,0,\cdots)$, so S essentially normal.
- ▶ Is S of the form S=N+K ? $\operatorname{ind}(S)=-1$ $\operatorname{ind}(N+K)=\operatorname{ind}(N)=0$

So class of essentially normal operators is more than just compact perturbations of normal operators!

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Do we have

$$T_1 \sim_{\mathcal{K}} T_2 \stackrel{?}{\iff} \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2)$$

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Do we have

$$T_1 \sim_{\mathcal{K}} T_2 \iff \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2)$$

Let $S\in\mathcal{B}(\mathcal{H})$ unilateral (isometric) right shift, $B\in\mathcal{B}(\mathcal{H})$ the bilateral (unitary) shift.

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Do we have

$$T_1 \sim_{\mathcal{K}} T_2 \stackrel{?}{\Longleftrightarrow} \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2)$$

Let $S \in \mathcal{B}(\mathcal{H})$ unilateral (isometric) right shift, $B \in \mathcal{B}(\mathcal{H})$ the bilateral (unitary) shift.

► S and B are essentially normal,

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Do we have

$$T_1 \sim_{\mathcal{K}} T_2 \stackrel{?}{\Longleftrightarrow} \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2)$$

Let $S \in \mathcal{B}(\mathcal{H})$ unilateral (isometric) right shift, $B \in \mathcal{B}(\mathcal{H})$ the bilateral (unitary) shift.

- ► S and B are essentially normal,
- $ightharpoonup \sigma_{\mathsf{e}}(S) = \mathbb{T}$,

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Do we have

$$T_1 \sim_{\mathcal{K}} T_2 \stackrel{?}{\Longleftrightarrow} \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2)$$

Let $S \in \mathcal{B}(\mathcal{H})$ unilateral (isometric) right shift, $B \in \mathcal{B}(\mathcal{H})$ the bilateral (unitary) shift.

- ightharpoonup S and B are essentially normal,

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Do we have

$$T_1 \sim_{\mathcal{K}} T_2 \stackrel{?}{\Longleftrightarrow} \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2)$$

Let $S \in \mathcal{B}(\mathcal{H})$ unilateral (isometric) right shift, $B \in \mathcal{B}(\mathcal{H})$ the bilateral (unitary) shift.

- ightharpoonup S and B are essentially normal,
- $ightharpoonup \sigma_{\mathsf{e}}(S) = \mathbb{T}$,
- ▶ If $S \sim_{\mathcal{K}} B$ holds, then $\pi(S)$ and $\pi(B)$ (unitarily) equivalent in $\mathcal{A}(\mathcal{H})$. . .

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Do we have

$$T_1 \sim_{\mathcal{K}} T_2 \stackrel{?}{\Longleftrightarrow} \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2)$$

Let $S \in \mathcal{B}(\mathcal{H})$ unilateral (isometric) right shift, $B \in \mathcal{B}(\mathcal{H})$ the bilateral (unitary) shift.

- ightharpoonup S and B are essentially normal,
- $ightharpoonup \sigma_{\mathsf{e}}(S) = \mathbb{T}$,
- ▶ If $S \sim_{\mathcal{K}} B$ holds, then $\pi(S)$ and $\pi(B)$ (unitarily) equivalent in $\mathcal{A}(\mathcal{H})$. . .

... but even this weaker property fails to hold.

Suppose $\pi(T)\pi(S)=\pi(B)\pi(T)$ for $\pi(T)\in\mathcal{A}(\mathcal{H})$ invertible.

Suppose $\pi(T)\pi(S) = \pi(B)\pi(T)$ for $\pi(T) \in \mathcal{A}(\mathcal{H})$ invertible.

▶ By our definition: *T* is Fredholm.

Suppose $\pi(T)\pi(S)=\pi(B)\pi(T)$ for $\pi(T)\in\mathcal{A}(\mathcal{H})$ invertible.

- ▶ By our definition: *T* is Fredholm.
- ▶ Expressed in $\mathcal{B}(\mathcal{H})$: TS = BT + K for some $K \in \mathcal{K}(\mathcal{H})$.

$\overline{\pi(S)}$ and $\overline{\pi(B)}$ not equivalent

Suppose $\pi(T)\pi(S) = \pi(B)\pi(T)$ for $\pi(T) \in \mathcal{A}(\mathcal{H})$ invertible.

- ▶ By our definition: *T* is Fredholm.
- ▶ Expressed in $\mathcal{B}(\mathcal{H})$: TS = BT + K for some $K \in \mathcal{K}(\mathcal{H})$.

$$\mathsf{ind}(TS) = \mathsf{ind}(BT)$$

Suppose $\pi(T)\pi(S) = \pi(B)\pi(T)$ for $\pi(T) \in \mathcal{A}(\mathcal{H})$ invertible.

- ▶ By our definition: *T* is Fredholm.
- ▶ Expressed in $\mathcal{B}(\mathcal{H})$: TS = BT + K for some $K \in \mathcal{K}(\mathcal{H})$.

$$\operatorname{ind}(TS) = \operatorname{ind}(BT) = \operatorname{ind}(B) + \operatorname{ind}(T)$$

Suppose $\pi(T)\pi(S) = \pi(B)\pi(T)$ for $\pi(T) \in \mathcal{A}(\mathcal{H})$ invertible.

- By our definition: T is Fredholm.
- ▶ Expressed in $\mathcal{B}(\mathcal{H})$: TS = BT + K for some $K \in \mathcal{K}(\mathcal{H})$.

$$\operatorname{ind}(TS) = \operatorname{ind}(BT) = \operatorname{ind}(B) + \operatorname{ind}(T) = \operatorname{ind}(T).$$

Suppose $\pi(T)\pi(S) = \pi(B)\pi(T)$ for $\pi(T) \in \mathcal{A}(\mathcal{H})$ invertible.

- ▶ By our definition: *T* is Fredholm.
- ▶ Expressed in $\mathcal{B}(\mathcal{H})$: TS = BT + K for some $K \in \mathcal{K}(\mathcal{H})$.

$$\operatorname{ind}(T) - 1 = \operatorname{ind}(TS) = \operatorname{ind}(BT) = \operatorname{ind}(B) + \operatorname{ind}(T) = \operatorname{ind}(T).$$

Outline

Prologue: Weyl—von Neumann Theorem as an invariant

Act 1: The Calkin Algebra and Fredholm Operators

Act 2: Essential normality: A first look

Main Act: The BDF-Theorem and Extensions

Special Case – essential Spectrum T

Theorem (Brown-Douglas-Fillmore, 1973)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal.

Theorem (Brown-Douglas-Fillmore, 1973)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Then $T_1 \sim_{\mathcal{K}} T_2$ iff

Theorem (Brown-Douglas-Fillmore, 1973)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Then $T_1 \sim_{\mathcal{K}} T_2$ iff

 $lackbox{}\Lambda\coloneqq\sigma_{\mathsf{e}}(T_1)=\sigma_{\mathsf{e}}(T_2)$ and

Theorem (Brown-Douglas-Fillmore, 1973)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Then $T_1 \sim_{\mathcal{K}} T_2$ iff

- $lackbox{}\Lambda\coloneqq\sigma_{\mathsf{e}}(T_1)=\sigma_{\mathsf{e}}(T_2)$ and
- $\blacktriangleright \ \forall \lambda \in \Lambda^{\complement} \colon \operatorname{ind}(T_1 \lambda) = \operatorname{ind}(T_2 \lambda)$

Theorem (Brown-Douglas-Fillmore, 1973)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Then $T_1 \sim_{\mathcal{K}} T_2$ iff

- $lackbox{} \Lambda \coloneqq \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2)$ and
- $\blacktriangleright \ \forall \lambda \in \Lambda^{\complement} \colon \operatorname{ind}(T_1 \lambda) = \operatorname{ind}(T_2 \lambda)$

Proof: only for Λ simple arc and $\mathbb T$

Theorem (Brown-Douglas-Fillmore, 1973)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Then $T_1 \sim_{\mathcal{K}} T_2$ iff

$$lack \Lambda \coloneqq \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2)$$
 and

$$\blacktriangleright \ \forall \lambda \in \Lambda^{\complement} \colon \operatorname{ind}(T_1 - \lambda) = \operatorname{ind}(T_2 - \lambda)$$

Proof: only for Λ simple arc and $\mathbb T$

Corollary

Let $T \in \mathcal{B}(\mathcal{H})$ essentially normal.

Theorem (Brown-Douglas-Fillmore, 1973)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Then $T_1 \sim_{\mathcal{K}} T_2$ iff

- $lack \Lambda \coloneqq \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2)$ and
- $\blacktriangleright \ \forall \lambda \in \Lambda^{\complement} \colon \operatorname{ind}(T_1 \lambda) = \operatorname{ind}(T_2 \lambda)$

Proof: only for Λ simple arc and $\mathbb T$

Corollary

Let $T \in \mathcal{B}(\mathcal{H})$ essentially normal. Then T is compact perturbation of normal operator if

Theorem (Brown-Douglas-Fillmore, 1973)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Then $T_1 \sim_{\mathcal{K}} T_2$ iff

- $lack \Lambda \coloneqq \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2)$ and
- $\blacktriangleright \ \forall \lambda \in \Lambda^{\complement} \colon \operatorname{ind}(T_1 \lambda) = \operatorname{ind}(T_2 \lambda)$

Proof: only for Λ simple arc and $\mathbb T$

Corollary

Let $T \in \mathcal{B}(\mathcal{H})$ essentially normal. Then T is compact perturbation of normal operator if

$$\forall \lambda \in \Lambda^{\complement} : \operatorname{ind}(T - \lambda) = 0.$$

Let T essentially normal and $\Delta = \sigma_{\mathsf{e}}(T) \subset \mathbb{R}$.

 $ightharpoonup \pi(T)$ is self-adjoint

- $ightharpoonup \pi(T)$ is self-adjoint
- $T(T T^*) = 0$

- $\blacktriangleright \pi(T)$ is self-adjoint
- $\pi(T T^*) = 0$
- $T = \frac{T + T^*}{2} + \frac{T T^*}{2}$

- $\blacktriangleright \pi(T)$ is self-adjoint
- $\pi(T T^*) = 0$
- ► $T = \frac{T+T^*}{2} + \frac{T-T^*}{2} = \frac{T+T^*}{2} + K$ for $K \in \mathcal{K}(\mathcal{H})$

- $ightharpoonup \pi(T)$ is self-adjoint
- $\pi(T T^*) = 0$
- ► $T = \frac{T+T^*}{2} + \frac{T-T^*}{2} = \frac{T+T^*}{2} + K$ for $K \in \mathcal{K}(\mathcal{H})$
- lacktriangledown T is a compact perturbation of a self-adjoint operator

- $\blacktriangleright \pi(T)$ is self-adjoint
- $\pi(T T^*) = 0$
- lacktriangledown T is a compact perturbation of a self-adjoint operator
- Weyl-von Neumann: All ess. normal operators with ess. spectrum Δ are essentially equivalent to T.

Extensions

Let $T \in \mathcal{B}(\mathcal{H})$ essentially normal with $\sigma_{\mathrm{e}}(T) = \Lambda$.

Extensions

Let $T \in \mathcal{B}(\mathcal{H})$ essentially normal with $\sigma_{e}(T) = \Lambda$.

 $ightharpoonup \mathrm{C}^*(\pi(T),1)$ is commutative

Extensions

Let $T \in \mathcal{B}(\mathcal{H})$ essentially normal with $\sigma_{e}(T) = \Lambda$.

- $ightharpoonup C^*(\pi(T),1)$ is commutative
- $lackbox{\Psi}\colon \mathrm{C}^*(\pi(T),1) \to C(\Lambda)$ isomorphism

Let $T \in \mathcal{B}(\mathcal{H})$ essentially normal with $\sigma_{\mathbf{e}}(T) = \Lambda$.

- $ightharpoonup C^*(\pi(T),1)$ is commutative
- $\blacktriangleright \ \Psi \colon \operatorname{C}^*(\pi(T),1) \to C(\Lambda) \text{ isomorphism}$
- $\blacktriangleright \ \Psi(\pi(T)) = \mathrm{id}_{\Lambda}$

Let $T \in \mathcal{B}(\mathcal{H})$ essentially normal with $\sigma_{\mathsf{e}}(T) = \Lambda$.

- $ightharpoonup \mathrm{C}^*(\pi(T),1)$ is commutative
- $\Psi \colon \mathrm{C}^*(\pi(T),1) \to C(\Lambda)$ isomorphism
- $\Psi(\pi(T)) = \mathsf{id}_{\Lambda}$
- ► Set $E := \pi^{-1}(\mathrm{C}^*(\pi(T), 1))$, $\mathcal{K}(\mathcal{H}) \subset E$

Let $T \in \mathcal{B}(\mathcal{H})$ essentially normal with $\sigma_{\mathsf{e}}(T) = \Lambda$.

- $ightharpoonup C^*(\pi(T),1)$ is commutative
- $\Psi \colon \mathrm{C}^*(\pi(T),1) \to C(\Lambda)$ isomorphism
- $\blacktriangleright \ \Psi(\pi(T)) = \mathsf{id}_{\Lambda}$
- ► Set $E := \pi^{-1}(C^*(\pi(T), 1))$, $\mathcal{K}(\mathcal{H}) \subset E$
- $\blacktriangleright \ \, \mathsf{Write} \,\, \Phi \coloneqq \Psi \circ \pi$

Let $T \in \mathcal{B}(\mathcal{H})$ essentially normal with $\sigma_{\mathsf{e}}(T) = \Lambda$.

- $ightharpoonup C^*(\pi(T),1)$ is commutative
- $\Psi \colon \mathrm{C}^*(\pi(T),1) \to C(\Lambda)$ isomorphism
- $\Psi(\pi(T)) = \mathsf{id}_{\Lambda}$
- ► Set $E := \pi^{-1}(\mathrm{C}^*(\pi(T), 1))$, $\mathcal{K}(\mathcal{H}) \subset E$
- $\blacktriangleright \ \, \mathsf{Write} \,\, \Phi \coloneqq \Psi \circ \pi$

$$0 \to \mathcal{K}(\mathcal{H}) \to E \stackrel{\Phi}{\to} C(\Lambda) \to 0$$
.

Let $T \in \mathcal{B}(\mathcal{H})$ essentially normal with $\sigma_{e}(T) = \Lambda$.

- $ightharpoonup C^*(\pi(T),1)$ is commutative
- $\Psi \colon \mathrm{C}^*(\pi(T),1) \to C(\Lambda)$ isomorphism
- $\Psi(\pi(T)) = \mathsf{id}_{\Lambda}$
- ► Set $E := \pi^{-1}(C^*(\pi(T), 1))$, $\mathcal{K}(\mathcal{H}) \subset E$
- Write $\Phi := \Psi \circ \pi$

$$0 \to \mathcal{K}(\mathcal{H}) \to E \stackrel{\Phi}{\to} C(\Lambda) \to 0$$
.

Write $\operatorname{Ext}(T) := (E, \Phi)$.

Let \boldsymbol{X} a compact Hausdorff space.

Definition

Let \boldsymbol{X} a compact Hausdorff space.

Definition

An extension of $\mathcal{K}(\mathcal{H})$ by C(X) is a pair (E,Φ)

Let \boldsymbol{X} a compact Hausdorff space.

Definition

An extension of $\mathcal{K}(\mathcal{H})$ by C(X) is a pair (E,Φ)

ightharpoonup E is a C^* -subalgebra of $\mathcal{B}(\mathcal{H})$

Let X a compact Hausdorff space.

Definition

An extension of $\mathcal{K}(\mathcal{H})$ by C(X) is a pair (E,Φ)

- ightharpoonup E is a C^* -subalgebra of $\mathcal{B}(\mathcal{H})$
- $lackbox{\Phi}\colon E o C(X)$ is a *-homomorphism

$$E \stackrel{\Phi}{\to} C(X)$$

Let \boldsymbol{X} a compact Hausdorff space.

Definition

An extension of $\mathcal{K}(\mathcal{H})$ by C(X) is a pair (E,Φ)

- ▶ E is a C^* -subalgebra of $\mathcal{B}(\mathcal{H})$
- $lackbox{\Phi}\colon E o C(X)$ is a *-homomorphism
- $ightharpoonup \Phi$ surjective

$$E \stackrel{\Phi}{\to} C(X) \to 0$$
.

Let X a compact Hausdorff space.

Definition

An extension of $\mathcal{K}(\mathcal{H})$ by C(X) is a pair (E, Φ)

- ightharpoonup E is a C^* -subalgebra of $\mathcal{B}(\mathcal{H})$
- $lackbox{\Phi}\colon E o C(X)$ is a *-homomorphism
- ▶ Φ surjective
- $ightharpoonup N(\Phi) = \mathcal{K}(\mathcal{H}).$

$$0 \to \mathcal{K}(\mathcal{H}) \to E \stackrel{\Phi}{\to} C(X) \to 0$$
.

Let $(E_1, \Phi_1), (E_2, \Phi_2)$ be extensions of $\mathcal{K}(\mathcal{H})$ by C(X).

Definition

$$(E_1,\Phi_1)\equiv (E_2,\Phi_2)$$
 if

Let $(E_1, \Phi_1), (E_2, \Phi_2)$ be extensions of $\mathcal{K}(\mathcal{H})$ by C(X).

Definition

$$(E_1, \Phi_1) \equiv (E_2, \Phi_2)$$
 if

▶ $U \in \mathcal{B}(\mathcal{H})$ unitary such that $E_1 = U^*E_2U$

Let $(E_1, \Phi_1), (E_2, \Phi_2)$ be extensions of $\mathcal{K}(\mathcal{H})$ by C(X).

Definition

$$(E_1, \Phi_1) \equiv (E_2, \Phi_2)$$
 if

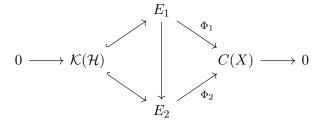
- ▶ $U \in \mathcal{B}(\mathcal{H})$ unitary such that $E_1 = U^*E_2U$

Let $(E_1, \Phi_1), (E_2, \Phi_2)$ be extensions of $\mathcal{K}(\mathcal{H})$ by C(X).

Definition

$$(E_1, \Phi_1) \equiv (E_2, \Phi_2)$$
 if

- ▶ $U \in \mathcal{B}(\mathcal{H})$ unitary such that $E_1 = U^*E_2U$

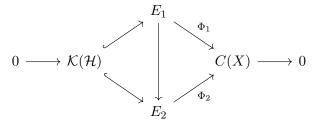


Let $(E_1, \Phi_1), (E_2, \Phi_2)$ be extensions of $\mathcal{K}(\mathcal{H})$ by C(X).

Definition

$$(E_1, \Phi_1) \equiv (E_2, \Phi_2)$$
 if

- ▶ $U \in \mathcal{B}(\mathcal{H})$ unitary such that $E_1 = U^*E_2U$



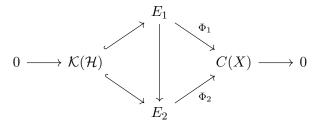
 $ightharpoonup X \subset \mathbb{R}$:

Let $(E_1, \Phi_1), (E_2, \Phi_2)$ be extensions of $\mathcal{K}(\mathcal{H})$ by C(X).

Definition

$$(E_1, \Phi_1) \equiv (E_2, \Phi_2)$$
 if

- ▶ $U \in \mathcal{B}(\mathcal{H})$ unitary such that $E_1 = U^*E_2U$



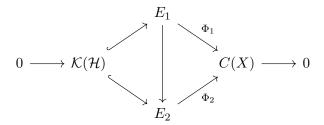
 $X \subset \mathbb{R}: (E_1, \Phi_1) \equiv (E_2, \Phi_2).$

Let $(E_1, \Phi_1), (E_2, \Phi_2)$ be extensions of $\mathcal{K}(\mathcal{H})$ by C(X).

Definition

$$(E_1, \Phi_1) \equiv (E_2, \Phi_2)$$
 if

- ▶ $U \in \mathcal{B}(\mathcal{H})$ unitary such that $E_1 = U^*E_2U$



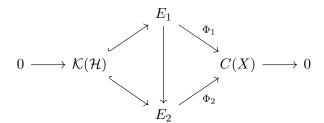
- $ightharpoonup X \subset \mathbb{R}: (E_1, \Phi_1) \equiv (E_2, \Phi_2).$
- ▶ Let T_1, T_2 be essentially normal with $\sigma_e(T_1) = \sigma_e(T_2)$.

Let $(E_1, \Phi_1), (E_2, \Phi_2)$ be extensions of $\mathcal{K}(\mathcal{H})$ by C(X).

Definition

$$(E_1, \Phi_1) \equiv (E_2, \Phi_2)$$
 if

- ▶ $U \in \mathcal{B}(\mathcal{H})$ unitary such that $E_1 = U^*E_2U$



- $ightharpoonup X \subset \mathbb{R}: (E_1, \Phi_1) \equiv (E_2, \Phi_2).$
- Let T_1, T_2 be essentially normal with $\sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2)$. Then $\mathsf{Ext}(T_1) \equiv \mathsf{Ext}(T_2) \iff T_1 \sim_{\mathcal{K}} T_2$.

Let T be essentially normal and $\Lambda=\sigma_{\rm e}(T)$ be contained in a simple arc.

Let T be essentially normal and $\Lambda=\sigma_{\rm e}(T)$ be contained in a simple arc.

 $ightharpoonup (E_1, \Phi_1) := \mathsf{Ext}(T).$

Let T be essentially normal and $\Lambda=\sigma_{\rm e}(T)$ be contained in a simple arc.

- $ightharpoonup (E_1, \Phi_1) \coloneqq \mathsf{Ext}(T).$
- ▶ Let N be normal with $\sigma_{\mathsf{e}}(N) = \Lambda$, $(E_2, \Phi_2) := \mathsf{Ext}(N)$.

We have seen $(E_1, \eta^* \circ \Phi_1) \equiv (E_2, \eta^* \circ \Phi_2)$.

$$0 \longrightarrow \mathcal{K}(\mathcal{H}) \longrightarrow E_i \xrightarrow{\Phi_i} C(\Lambda) \longrightarrow 0$$

$$\uparrow^{\eta^*} \qquad \qquad \downarrow^{\eta^*}$$

$$C(\Delta) \longrightarrow 0$$

Let T_1 be essentially normal and $\Lambda = \sigma_{\rm e}(T_1)$ be contained in a simple arc.

Let T_1 be essentially normal and $\Lambda = \sigma_{\rm e}(T_1)$ be contained in a simple arc.

 $ightharpoonup T_1$ compact perturbation of a normal operator

Let T_1 be essentially normal and $\Lambda = \sigma_{\rm e}(T_1)$ be contained in a simple arc.

- $ightharpoonup T_1$ compact perturbation of a normal operator
- ► Weyl-von Neumann-Berg: two normal operators with same ess. spectrum are ess. equivalent

Let T_1 be essentially normal and $\Lambda = \sigma_{\rm e}(T_1)$ be contained in a simple arc.

- $ightharpoonup T_1$ compact perturbation of a normal operator
- Weyl-von Neumann-Berg: two normal operators with same ess. spectrum are ess. equivalent
- ▶ If $T_2 \in \mathcal{B}(\mathcal{H})$ ess. normal with $\sigma_{\mathbf{e}}(T_2) = \Lambda$ then $T_1 \sim_{\mathcal{K}} T_2$.

Outline

Prologue: Weyl—von Neumann Theorem as an invariant

Act 1: The Calkin Algebra and Fredholm Operators

Act 2: Essential normality: A first look

Main Act: The BDF-Theorem and Extensions

Special Case – essential Spectrum $\ensuremath{\mathbb{T}}$

Preparations

Preparations

Theorem (Polar decomposition)

Any bounded operator $T \in \mathcal{B}(\mathcal{H})$ can be written as

$$T = W(T^*T)^{\frac{1}{2}}$$

for a partial isometry ${\cal W}.$

Preparations

Theorem (Polar decomposition)

Any bounded operator $T \in \mathcal{B}(\mathcal{H})$ can be written as

$$T = W(T^*T)^{\frac{1}{2}}$$

for a partial isometry W.

Theorem (Wold's decomposition)

Any isometry $V \in \mathcal{B}(\mathcal{H})$ can be written as

$$V = (S \otimes 1) \oplus U$$

where $S\otimes 1$ is an amplification of the unilateral shift and U unitary.

Lemma

Let

ightharpoonup T essentially normal

Lemma

Let

- ► T essentially normal
- ightharpoonup N normal

Lemma

Let

- ► T essentially normal
- ightharpoonup N normal
- $ightharpoonup \sigma_{\mathsf{e}}(N) \subseteq \sigma_{\mathsf{e}}(T)$

Lemma

Let

- ► T essentially normal
- ightharpoonup N normal
- $\blacktriangleright \ \sigma_{\mathsf{e}}(N) \subseteq \sigma_{\mathsf{e}}(T)$

Then $T \oplus N \sim_{\mathcal{K}} T$.

Lemma

Let

- ► T essentially normal
- ightharpoonup N normal
- $ightharpoonup \sigma_{\mathsf{e}}(N) \subseteq \sigma_{\mathsf{e}}(T)$

Then $T \oplus N \sim_{\mathcal{K}} T$.

Application to the right shift

A surprising Lemma

Lemma

Let

- ► T essentially normal
- ightharpoonup N normal
- $ightharpoonup \sigma_{\mathsf{e}}(N) \subseteq \sigma_{\mathsf{e}}(T)$

Then $T \oplus N \sim_{\mathcal{K}} T$.

Application to the right shift

ightharpoonup S essentially normal

A surprising Lemma

Lemma

Let

- ightharpoonup T essentially normal
- ightharpoonup N normal
- $ightharpoonup \sigma_{\mathsf{e}}(N) \subseteq \sigma_{\mathsf{e}}(T)$

Then $T \oplus N \sim_{\mathcal{K}} T$.

Application to the right shift

- ightharpoonup S essentially normal
- ► *U* unitary

A surprising Lemma

Lemma

Let

- ► T essentially normal
- ightharpoonup N normal
- $ightharpoonup \sigma_{\mathsf{e}}(N) \subseteq \sigma_{\mathsf{e}}(T)$

Then $T \oplus N \sim_{\mathcal{K}} T$.

Application to the right shift

- ightharpoonup S essentially normal
- ightharpoonup U unitary

$$\implies S \oplus U \sim_{\mathcal{K}} S$$

▶ Idea: decompose $S = (D \oplus R) + K$ for D diagonal with $\sigma_{\rm e}(D) = \mathbb{T}$ and K compact

- ▶ Idea: decompose $S = (D \oplus R) + K$ for D diagonal with $\sigma_{\rm e}(D) = \mathbb{T}$ and K compact
- lacksquare $x_{n,\lambda} \coloneqq \sqrt{\frac{1}{n}}(\lambda,\lambda^2,\ldots,\lambda^{n-1},\lambda^n,0,0,\ldots)$ for $\lambda \in \mathbb{T}$, $n \in \mathbb{N}$

- ▶ Idea: decompose $S = (D \oplus R) + K$ for D diagonal with $\sigma_{\rm e}(D) = \mathbb{T}$ and K compact
- $ightharpoonup x_{n,\lambda} \coloneqq \sqrt{\frac{1}{n}}(\lambda,\lambda^2,\ldots,\lambda^{n-1},\lambda^n,0,0,\ldots) \text{ for } \lambda \in \mathbb{T}, \ n \in \mathbb{N}$
- $ightharpoonup x_{n,\lambda}$ unit vector

- ▶ Idea: decompose $S = (D \oplus R) + K$ for D diagonal with $\sigma_{\rm e}(D) = \mathbb{T}$ and K compact
- lacksquare $x_{n,\lambda} \coloneqq \sqrt{\frac{1}{n}}(\lambda,\lambda^2,\ldots,\lambda^{n-1},\lambda^n,0,0,\ldots)$ for $\lambda \in \mathbb{T}$, $n \in \mathbb{N}$
- $ightharpoonup x_{n,\lambda}$ unit vector $x_{n,\lambda}$ almost eigenvector of S and S^*

- ▶ Idea: decompose $S = (D \oplus R) + K$ for D diagonal with $\sigma_{\mathbf{e}}(D) = \mathbb{T}$ and K compact
- $\blacktriangleright x_{n,\lambda} := \sqrt{\frac{1}{n}}(\lambda, \lambda^2, \dots, \lambda^{n-1}, \lambda^n, 0, 0, \dots) \text{ for } \lambda \in \mathbb{T}, n \in \mathbb{N}$
- $ightharpoonup x_{n,\lambda}$ unit vector $x_{n,\lambda}$ almost eigenvector of S and S^* $x_{n,\lambda}$ and $x_{m,\mu}$ almost orthogonal

- ▶ Idea: decompose $S = (D \oplus R) + K$ for D diagonal with $\sigma_{\mathsf{e}}(D) = \mathbb{T}$ and K compact
- $\blacktriangleright x_{n,\lambda} := \sqrt{\frac{1}{n}}(\lambda, \lambda^2, \dots, \lambda^{n-1}, \lambda^n, 0, 0, \dots)$ for $\lambda \in \mathbb{T}$, $n \in \mathbb{N}$
- $ightharpoonup x_{n,\lambda}$ unit vector $x_{n,\lambda}$ almost eigenvector of S and S^* $x_{n,\lambda}$ and $x_{m,\mu}$ almost orthogonal
- ► Fix $(\lambda_k)_{k\in\mathbb{N}}$ dense in \mathbb{T} and $(n_k)_{k\in\mathbb{N}}$ fast growing

- ▶ Idea: decompose $S = (D \oplus R) + K$ for D diagonal with $\sigma_{\mathsf{e}}(D) = \mathbb{T}$ and K compact
- $\blacktriangleright x_{n,\lambda} := \sqrt{\frac{1}{n}}(\lambda, \lambda^2, \dots, \lambda^{n-1}, \lambda^n, 0, 0, \dots) \text{ for } \lambda \in \mathbb{T}, n \in \mathbb{N}$
- $ightharpoonup x_{n,\lambda}$ unit vector $x_{n,\lambda}$ almost eigenvector of S and S^* $x_{n,\lambda}$ and $x_{m,\mu}$ almost orthogonal
- Fix $(\lambda_k)_{k\in\mathbb{N}}$ dense in \mathbb{T} and $(n_k)_{k\in\mathbb{N}}$ fast growing
- ▶ On the span of $(x_{n_k,\lambda_k})_{k\in\mathbb{N}}$, S and S^* almost diagonal

- ▶ Idea: decompose $S = (D \oplus R) + K$ for D diagonal with $\sigma_{\rm e}(D) = \mathbb{T}$ and K compact
- lacksquare $x_{n,\lambda} \coloneqq \sqrt{\frac{1}{n}}(\lambda,\lambda^2,\ldots,\lambda^{n-1},\lambda^n,0,0,\ldots)$ for $\lambda \in \mathbb{T}$, $n \in \mathbb{N}$
- $ightharpoonup x_{n,\lambda}$ unit vector $x_{n,\lambda}$ almost eigenvector of S and S^* $x_{n,\lambda}$ and $x_{m,\mu}$ almost orthogonal
- lacktriangle Fix $(\lambda_k)_{k\in\mathbb{N}}$ dense in \mathbb{T} and $(n_k)_{k\in\mathbb{N}}$ fast growing
- ▶ On the span of $(x_{n_k,\lambda_k})_{k\in\mathbb{N}}$, S and S^* almost diagonal
- ▶ S, S^* almost of the form $\left(\begin{array}{c|c} D & * \\ \hline 0 & * \end{array}\right)$

- ▶ Idea: decompose $S = (D \oplus R) + K$ for D diagonal with $\sigma_{\mathsf{e}}(D) = \mathbb{T}$ and K compact
- $\blacktriangleright x_{n,\lambda} \coloneqq \sqrt{\frac{1}{n}}(\lambda,\lambda^2,\ldots,\lambda^{n-1},\lambda^n,0,0,\ldots) \text{ for } \lambda \in \mathbb{T}, n \in \mathbb{N}$
- $ightharpoonup x_{n,\lambda}$ unit vector $x_{n,\lambda}$ almost eigenvector of S and S^* $x_{n,\lambda}$ and $x_{m,\mu}$ almost orthogonal
- lacktriangle Fix $(\lambda_k)_{k\in\mathbb{N}}$ dense in \mathbb{T} and $(n_k)_{k\in\mathbb{N}}$ fast growing
- ▶ On the span of $(x_{n_k,\lambda_k})_{k\in\mathbb{N}}$, S and S^* almost diagonal
- ► S, S^* almost of the form $\left(\begin{array}{c|c} D & * \\ \hline 0 & * \end{array}\right)$

$$\sigma_{\mathsf{e}}(U \oplus D) = \mathbb{T} = \sigma_{\mathsf{e}}(D)$$

- ▶ Idea: decompose $S = (D \oplus R) + K$ for D diagonal with $\sigma_{\rm e}(D) = \mathbb{T}$ and K compact
- $\blacktriangleright x_{n,\lambda} := \sqrt{\frac{1}{n}}(\lambda, \lambda^2, \dots, \lambda^{n-1}, \lambda^n, 0, 0, \dots)$ for $\lambda \in \mathbb{T}$, $n \in \mathbb{N}$
- $x_{n,\lambda}$ unit vector $x_{n,\lambda}$ almost eigenvector of S and S^* $x_{n,\lambda}$ and $x_{m,\mu}$ almost orthogonal
- ightharpoonup Fix $(\lambda_k)_{k\in\mathbb{N}}$ dense in \mathbb{T} and $(n_k)_{k\in\mathbb{N}}$ fast growing
- lackbox On the span of $(x_{n_k,\lambda_k})_{k\in\mathbb{N}}$, S and S^* almost diagonal
- ▶ S, S^* almost of the form $\left(\begin{array}{c|c} D & * \\ \hline 0 & * \end{array}\right)$

$$\sigma_{\mathsf{e}}(U \oplus D) = \mathbb{T} = \sigma_{\mathsf{e}}(D) \implies U \oplus D \sim_{\mathcal{K}} D$$

- ▶ Idea: decompose $S = (D \oplus R) + K$ for D diagonal with $\sigma_{\rm e}(D) = \mathbb{T}$ and K compact
- $\blacktriangleright x_{n,\lambda} := \sqrt{\frac{1}{n}}(\lambda, \lambda^2, \dots, \lambda^{n-1}, \lambda^n, 0, 0, \dots)$ for $\lambda \in \mathbb{T}$, $n \in \mathbb{N}$
- $x_{n,\lambda}$ unit vector $x_{n,\lambda}$ almost eigenvector of S and S^* $x_{n,\lambda}$ and $x_{m,\mu}$ almost orthogonal
- lacktriangle Fix $(\lambda_k)_{k\in\mathbb{N}}$ dense in \mathbb{T} and $(n_k)_{k\in\mathbb{N}}$ fast growing
- ▶ On the span of $(x_{n_k,\lambda_k})_{k\in\mathbb{N}}$, S and S^* almost diagonal
- ► S, S^* almost of the form $\left(\begin{array}{c|c} D & * \\ \hline 0 & * \end{array}\right)$ $\sigma_{\mathsf{e}}(U \oplus D) = \mathbb{T} = \sigma_{\mathsf{e}}(D) \implies U \oplus D \sim_{\mathcal{K}} D$

$$U \oplus S = U \oplus ((D \oplus R) + K)$$

- ▶ Idea: decompose $S = (D \oplus R) + K$ for D diagonal with $\sigma_{\mathsf{e}}(D) = \mathbb{T}$ and K compact
- $\blacktriangleright x_{n,\lambda} := \sqrt{\frac{1}{n}}(\lambda, \lambda^2, \dots, \lambda^{n-1}, \lambda^n, 0, 0, \dots)$ for $\lambda \in \mathbb{T}$, $n \in \mathbb{N}$
- $x_{n,\lambda}$ unit vector $x_{n,\lambda}$ almost eigenvector of S and S^* $x_{n,\lambda}$ and $x_{m,\mu}$ almost orthogonal
- ▶ Fix $(\lambda_k)_{k \in \mathbb{N}}$ dense in \mathbb{T} and $(n_k)_{k \in \mathbb{N}}$ fast growing
- lackbox On the span of $(x_{n_k,\lambda_k})_{k\in\mathbb{N}}$, S and S^* almost diagonal
- ► S, S^* almost of the form $\left(\begin{array}{c|c} D & * \\ \hline 0 & * \end{array}\right)$ $\sigma_{\mathbf{e}}(U \oplus D) = \mathbb{T} = \sigma_{\mathbf{e}}(D) \implies U \oplus D \sim_{\mathcal{K}} D$

$$U \oplus S = U \oplus ((D \oplus R) + K) = (U \oplus D \oplus R) + (0 \oplus K)$$

- ▶ Idea: decompose $S = (D \oplus R) + K$ for D diagonal with $\sigma_{\rm e}(D) = \mathbb{T}$ and K compact
- $\blacktriangleright x_{n,\lambda} := \sqrt{\frac{1}{n}}(\lambda, \lambda^2, \dots, \lambda^{n-1}, \lambda^n, 0, 0, \dots)$ for $\lambda \in \mathbb{T}$, $n \in \mathbb{N}$
- $x_{n,\lambda}$ unit vector $x_{n,\lambda}$ almost eigenvector of S and S^* $x_{n,\lambda}$ and $x_{m,\mu}$ almost orthogonal
- ▶ Fix $(\lambda_k)_{k \in \mathbb{N}}$ dense in \mathbb{T} and $(n_k)_{k \in \mathbb{N}}$ fast growing
- ▶ On the span of $(x_{n_k,\lambda_k})_{k\in\mathbb{N}}$, S and S^* almost diagonal
- ► S, S^* almost of the form $\left(\begin{array}{c|c} D & * \\ \hline 0 & * \end{array}\right)$ $\sigma_{\mathsf{e}}(U \oplus D) = \mathbb{T} = \sigma_{\mathsf{e}}(D) \implies U \oplus D \sim_{\mathcal{K}} D$

$$U \oplus S = U \oplus \big((D \oplus R) + K \big) = (U \oplus D \oplus R) + (0 \oplus K) \sim_{\mathcal{K}} S$$

Theorem

Let $T \in \mathcal{B}(\mathcal{H})$ essentially unitary.

Theorem

Let $T \in \mathcal{B}(\mathcal{H})$ essentially unitary. Then T is essentially equivalent to. . .

Theorem

Let $T \in \mathcal{B}(\mathcal{H})$ essentially unitary. Then T is essentially equivalent to. . .

 \ldots a unitary operator iff $\operatorname{ind}(T) = 0$,

Theorem

Let $T \in \mathcal{B}(\mathcal{H})$ essentially unitary. Then T is essentially equivalent to. . .

```
\dots \text{a unitary operator iff } \operatorname{ind}(T)=0, \dots \text{the right shift of multiplicity } n\in \mathbb{N} \text{ iff } \operatorname{ind}(T)=-n<0,
```

Theorem

Let $T \in \mathcal{B}(\mathcal{H})$ essentially unitary. Then T is essentially equivalent to. . .

```
\dots \text{ a unitary operator iff } \operatorname{ind}(T) = 0, \dots \text{ the right shift of multiplicity } n \in \mathbb{N} \text{ iff } \operatorname{ind}(T) = -n < 0, \dots \text{ the left shift of multiplicity } n \in \mathbb{N} \text{ iff } \operatorname{ind}(T) = -n > 0.
```

Theorem

Let $T \in \mathcal{B}(\mathcal{H})$ essentially unitary. Then T is essentially equivalent to. . .

```
\dots \text{ a unitary operator iff } \operatorname{ind}(T) = 0, \dots \text{ the right shift of multiplicity } n \in \mathbb{N} \text{ iff } \operatorname{ind}(T) = -n < 0, \dots \text{ the left shift of multiplicity } n \in \mathbb{N} \text{ iff } \operatorname{ind}(T) = -n > 0.
```

Outline of the proof:

lacktriangledown T compact perturbation of an isometry or coisometry

Theorem

Let $T \in \mathcal{B}(\mathcal{H})$ essentially unitary. Then T is essentially equivalent to. . .

```
\dots \text{ a unitary operator iff } \operatorname{ind}(T) = 0, \dots \text{ the right shift of multiplicity } n \in \mathbb{N} \text{ iff } \operatorname{ind}(T) = -n < 0, \dots \text{ the left shift of multiplicity } n \in \mathbb{N} \text{ iff } \operatorname{ind}(T) = -n > 0.
```

Outline of the proof:

- lacktriangledown T compact perturbation of an isometry or coisometry
- ▶ use Wold's decomposition

Theorem

Let $T \in \mathcal{B}(\mathcal{H})$ essentially unitary. Then T is essentially equivalent to. . .

```
\dots \text{ a unitary operator iff } \operatorname{ind}(T) = 0, \dots \text{ the right shift of multiplicity } n \in \mathbb{N} \text{ iff } \operatorname{ind}(T) = -n < 0, \dots \text{ the left shift of multiplicity } n \in \mathbb{N} \text{ iff } \operatorname{ind}(T) = -n > 0.
```

Outline of the proof:

- ► T compact perturbation of an isometry or coisometry
- ▶ use Wold's decomposition
- lacktriangle classify T up to $\sim_{\mathcal{K}}$ via the index

$$\blacktriangleright \pi(T^*T - I) = \pi(T)^*\pi(T) - I = 0$$

 $ightharpoonup T^*T - I$ compact

- $\begin{array}{ll} \blacktriangleright & T^*T-I \text{ compact} \\ \blacktriangleright & ((T^*T)^{\frac{1}{2}}-I)\cdot ((T^*T)^{\frac{1}{2}}+I)=T^*T-I \end{array}$

- ► $T^*T I$ compact ► $((T^*T)^{\frac{1}{2}} I) \cdot ((T^*T)^{\frac{1}{2}} + I) = T^*T I$

- $ightharpoonup T^*T I$ compact
- $((T^*T)^{\frac{1}{2}} I) \cdot ((T^*T)^{\frac{1}{2}} + I) = T^*T I$
- $ightharpoonup ilde{K}\coloneqq (T^*T)^{rac{1}{2}}-I ext{ compact}$

- $ightharpoonup T^*T I$ compact
- $((T^*T)^{\frac{1}{2}} I) \cdot ((T^*T)^{\frac{1}{2}} + I) = T^*T I$
- $ightharpoonup ilde{K} \coloneqq (T^*T)^{\frac{1}{2}} I \text{ compact}$
- Polar decomposition: $T=W(T^*T)^{\frac{1}{2}}$ for $W\in \mathcal{B}(\mathcal{H})$ partial isometry

- $ightharpoonup T^*T I$ compact
- $((T^*T)^{\frac{1}{2}} I) \cdot ((T^*T)^{\frac{1}{2}} + I) = T^*T I$
- $ightharpoonup ilde{K} \coloneqq (T^*T)^{\frac{1}{2}} I \text{ compact}$
- Polar decomposition: $T=W(T^*T)^{\frac{1}{2}}$ for $W\in \mathcal{B}(\mathcal{H})$ partial isometry
- $T = W(I + \tilde{K}) = W + W\tilde{K}$

- $ightharpoonup T^*T I$ compact
- $((T^*T)^{\frac{1}{2}} I) \cdot ((T^*T)^{\frac{1}{2}} + I) = T^*T I$
- $ightharpoonup ilde{K} \coloneqq (T^*T)^{\frac{1}{2}} I \text{ compact}$
- Polar decomposition: $T=W(T^*T)^{\frac{1}{2}}$ for $W\in \mathcal{B}(\mathcal{H})$ partial isometry
- $T = W(I + \tilde{K}) = W + W\tilde{K}$

- $ightharpoonup T^*T I$ compact
- $((T^*T)^{\frac{1}{2}} I) \cdot ((T^*T)^{\frac{1}{2}} + I) = T^*T I$
- $ightharpoonup ilde{K} \coloneqq (T^*T)^{\frac{1}{2}} I \text{ compact}$
- Polar decomposition: $T=W(T^*T)^{\frac{1}{2}}$ for $W\in \mathcal{B}(\mathcal{H})$ partial isometry
- $lackbox{T} = W(I + \tilde{K}) = W + W\tilde{K}$ compact perturbation of W

- $ightharpoonup T^*T I$ compact
- $((T^*T)^{\frac{1}{2}} I) \cdot ((T^*T)^{\frac{1}{2}} + I) = T^*T I$
- $ightharpoonup ilde{K} \coloneqq (T^*T)^{\frac{1}{2}} I \text{ compact}$
- ▶ Polar decomposition: $T = W(T^*T)^{\frac{1}{2}}$ for $W \in \mathcal{B}(\mathcal{H})$ partial isometry
- $lackbox{T} = W(I + \tilde{K}) = W + W\tilde{K}$ compact perturbation of W
- ▶ Assume $\operatorname{ind}(T) \le 0$ and respectively $\operatorname{ind}(W) \le 0$

- $ightharpoonup T^*T I$ compact
- $((T^*T)^{\frac{1}{2}} I) \cdot ((T^*T)^{\frac{1}{2}} + I) = T^*T I$
- $ightharpoonup ilde{K} \coloneqq (T^*T)^{\frac{1}{2}} I \text{ compact}$
- ▶ Polar decomposition: $T = W(T^*T)^{\frac{1}{2}}$ for $W \in \mathcal{B}(\mathcal{H})$ partial isometry
- $lackbox{T} = W(I + \tilde{K}) = W + W\tilde{K}$ compact perturbation of W
- ▶ Assume $ind(T) \le 0$ and respectively $ind(W) \le 0$

- $ightharpoonup T^*T I$ compact
- $((T^*T)^{\frac{1}{2}} I) \cdot ((T^*T)^{\frac{1}{2}} + I) = T^*T I$
- $ightharpoonup ilde{K} \coloneqq (T^*T)^{\frac{1}{2}} I \text{ compact}$
- ▶ Polar decomposition: $T = W(T^*T)^{\frac{1}{2}}$ for $W \in \mathcal{B}(\mathcal{H})$ partial isometry
- $lackbox{T} = W(I + \tilde{K}) = W + W\tilde{K}$ compact perturbation of W
- ▶ Assume $ind(T) \le 0$ and respectively $ind(W) \le 0$
- $\operatorname{dim} \mathsf{N}(W) \leq \operatorname{dim} \mathsf{N}(W^*) = \operatorname{dim} \mathsf{R}(W)^{\perp} < \infty.$
- $lackbox{ Modify }W$ to isometry V

Proof – Part 1: T compact Perturbation of (Co)isometry

- $ightharpoonup T^*T I$ compact
- $((T^*T)^{\frac{1}{2}} I) \cdot ((T^*T)^{\frac{1}{2}} + I) = T^*T I$
- $ightharpoonup ilde{K} \coloneqq (T^*T)^{\frac{1}{2}} I \text{ compact}$
- ▶ Polar decomposition: $T = W(T^*T)^{\frac{1}{2}}$ for $W \in \mathcal{B}(\mathcal{H})$ partial isometry
- $lackbox{T} = W(I + \tilde{K}) = W + W\tilde{K}$ compact perturbation of W
- ▶ Assume $ind(T) \le 0$ and respectively $ind(W) \le 0$
- ▶ Modify W to isometry V
- ▶ V W compact

Proof – Part 1: T compact Perturbation of (Co)isometry

- $ightharpoonup T^*T I$ compact
- $((T^*T)^{\frac{1}{2}} I) \cdot ((T^*T)^{\frac{1}{2}} + I) = T^*T I$
- $ightharpoonup ilde{K} \coloneqq (T^*T)^{\frac{1}{2}} I \text{ compact}$
- ▶ Polar decomposition: $T = W(T^*T)^{\frac{1}{2}}$ for $W \in \mathcal{B}(\mathcal{H})$ partial isometry
- $ightharpoonup T = W(I + \tilde{K}) = W + W\tilde{K}$ compact perturbation of W
- ▶ Assume $ind(T) \le 0$ and respectively $ind(W) \le 0$
- ▶ Modify W to isometry V
- ightharpoonup V-W compact
- ightharpoonup T compact perturbation of V

lacktriangledown T compact perturbation of isometry V

- lacktriangledown T compact perturbation of isometry V
- $lackbox{ Wold's decomposition: } V = (S \otimes 1) \oplus U$, with U unitary

- lacktriangledown T compact perturbation of isometry V
- \blacktriangleright Wold's decomposition: $V=(S\otimes 1)\oplus U$, with U unitary $\operatorname{ind}(T)=\operatorname{ind}(V)$

- ▶ T compact perturbation of isometry V
- $lackbox{ Wold's decomposition: } V = (S \otimes 1) \oplus U$, with U unitary

$$\operatorname{ind}(T)=\operatorname{ind}(V)=\operatorname{ind}(S\otimes 1)+\operatorname{ind}(U)$$

- ▶ T compact perturbation of isometry V
- ▶ Wold's decomposition: $V = (S \otimes 1) \oplus U$, with U unitary

$$\operatorname{ind}(T)=\operatorname{ind}(V)=\operatorname{ind}(S\otimes 1)+\operatorname{ind}(U)=\operatorname{ind}(S\otimes 1)$$

- lacktriangleq T compact perturbation of isometry V
- \blacktriangleright Wold's decomposition: $V = (S \otimes 1) \oplus U$, with U unitary

$$\operatorname{ind}(T)=\operatorname{ind}(V)=\operatorname{ind}(S\otimes 1)+\operatorname{ind}(U)=\operatorname{ind}(S\otimes 1)$$

lacktriangleq If $\operatorname{ind}(T)=0$, the amplification is zero-dimensional

$$\implies T \sim_{\mathcal{K}} V = U$$

- lacktriangledown T compact perturbation of isometry V
- ▶ Wold's decomposition: $V = (S \otimes 1) \oplus U$, with U unitary $\operatorname{ind}(T) = \operatorname{ind}(V) = \operatorname{ind}(S \otimes 1) + \operatorname{ind}(U) = \operatorname{ind}(S \otimes 1)$
- lacktriangleq If $\operatorname{ind}(T)=0$, the amplification is zero-dimensional

$$\implies T \sim_{\mathcal{K}} V = U$$

- - $lackbox{ }S\otimes 1$ essentially normal

- lacktriangleright T compact perturbation of isometry V
- ▶ Wold's decomposition: $V = (S \otimes 1) \oplus U$, with U unitary $\operatorname{ind}(T) = \operatorname{ind}(V) = \operatorname{ind}(S \otimes 1) + \operatorname{ind}(U) = \operatorname{ind}(S \otimes 1)$
- lackbox If $\operatorname{ind}(T)=0$, the amplification is zero-dimensional

$$\implies T \sim_{\mathcal{K}} V = U$$

- $\blacktriangleright \ \mathsf{lf} \ \mathsf{ind}(T) < 0,$
 - ▶ $S \otimes 1$ essentially normal
 - ightharpoonup U normal

- lacktriangledown T compact perturbation of isometry V
- ▶ Wold's decomposition: $V = (S \otimes 1) \oplus U$, with U unitary

$$\operatorname{ind}(T)=\operatorname{ind}(V)=\operatorname{ind}(S\otimes 1)+\operatorname{ind}(U)=\operatorname{ind}(S\otimes 1)$$

lacktriangleq If $\operatorname{ind}(T)=0$, the amplification is zero-dimensional

$$\implies T \sim_{\mathcal{K}} V = U$$

- ▶ If ind(T) < 0,
 - ▶ $S \otimes 1$ essentially normal
 - ightharpoonup U normal
 - $ightharpoonup \sigma_{\mathsf{e}}(U) \subseteq \mathbb{T}$

- lacktriangledown T compact perturbation of isometry V
- ▶ Wold's decomposition: $V = (S \otimes 1) \oplus U$, with U unitary $\operatorname{ind}(T) = \operatorname{ind}(V) = \operatorname{ind}(S \otimes 1) + \operatorname{ind}(U) = \operatorname{ind}(S \otimes 1)$

• If
$$ind(T) = 0$$
, the amplification is zero-dimensional

$$\implies T \sim_{\mathcal{K}} V = U$$

- ▶ If ind(T) < 0,
 - ▶ $S \otimes 1$ essentially normal
 - ightharpoonup U normal

- ▶ T compact perturbation of isometry V
- ▶ Wold's decomposition: $V = (S \otimes 1) \oplus U$, with U unitary

$$\operatorname{ind}(T)=\operatorname{ind}(V)=\operatorname{ind}(S\otimes 1)+\operatorname{ind}(U)=\operatorname{ind}(S\otimes 1)$$

▶ If ind(T) = 0, the amplification is zero-dimensional

$$\implies T \sim_{\mathcal{K}} V = U$$

- ▶ If ind(T) < 0,
 - ▶ $S \otimes 1$ essentially normal
 - ightharpoonup U normal

$$\implies T \sim_{\mathcal{K}} V = (S \otimes 1) \oplus U \sim_{\mathcal{K}} S \otimes 1$$

- ightharpoonup T compact perturbation of isometry V
- ▶ Wold's decomposition: $V = (S \otimes 1) \oplus U$, with U unitary $\operatorname{ind}(T) = \operatorname{ind}(V) = \operatorname{ind}(S \otimes 1) + \operatorname{ind}(U) = \operatorname{ind}(S \otimes 1)$
- lacktriangledown If $\operatorname{ind}(T)=0$, the amplification is zero-dimensional

$$\implies T \sim_{\mathcal{K}} V = U$$

- ▶ If ind(T) < 0,
 - ▶ $S \otimes 1$ essentially normal
 - ightharpoonup U normal

$$\implies T \sim_{\mathcal{K}} V = (S \otimes 1) \oplus U \sim_{\mathcal{K}} S \otimes 1$$

 $\blacktriangleright \ \mathsf{lf} \ \mathsf{ind}(T) > 0,$

$$\implies T \sim_{\mathcal{K}} V^* \sim_{\mathcal{K}} S^* \otimes 1$$

Theorem (Brown-Douglas-Fillmore, 1973)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Then $T_1 \sim_{\mathcal{K}} T_2$ iff

- $lack \Lambda \coloneqq \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2)$ and
- $\blacktriangleright \ \forall \lambda \in \Lambda^{\complement} \colon \operatorname{ind}(T_1 \lambda) = \operatorname{ind}(T_2 \lambda)$

Theorem (Brown-Douglas-Fillmore, 1973)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Then $T_1 \sim_{\mathcal{K}} T_2$ iff

- $lackbox{} \Lambda \coloneqq \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2)$ and
- $\blacktriangleright \ \forall \lambda \in \Lambda^{\complement} \colon \operatorname{ind}(T_1 \lambda) = \operatorname{ind}(T_2 \lambda)$

Proof for $\Lambda = \mathbb{T}$:

Theorem (Brown-Douglas-Fillmore, 1973)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Then $T_1 \sim_{\mathcal{K}} T_2$ iff

- $lack \Lambda \coloneqq \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2)$ and
- $\blacktriangleright \ \forall \lambda \in \Lambda^{\complement} \colon \operatorname{ind}(T_1 \lambda) = \operatorname{ind}(T_2 \lambda)$

Proof for $\Lambda = \mathbb{T}$:

▶ if $n := \operatorname{ind}(T_1) = \operatorname{ind}(T_2) \neq 0$, both are equivalent to S^{-n}

Theorem (Brown-Douglas-Fillmore, 1973)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Then $T_1 \sim_{\mathcal{K}} T_2$ iff

- $lackbox{} \Lambda \coloneqq \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2)$ and

Proof for $\Lambda = T$:

- ▶ if $n := \operatorname{ind}(T_1) = \operatorname{ind}(T_2) \neq 0$, both are equivalent to S^{-n}
- ▶ if $n := \text{ind}(T_1) = \text{ind}(T_2) = 0$, both are ess. equivalent to unitary operators

Theorem (Brown-Douglas-Fillmore, 1973)

Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ essentially normal. Then $T_1 \sim_{\mathcal{K}} T_2$ iff

- $lackbox{} \Lambda \coloneqq \sigma_{\mathsf{e}}(T_1) = \sigma_{\mathsf{e}}(T_2)$ and

Proof for $\Lambda = \mathbb{T}$:

- ▶ if $n := \operatorname{ind}(T_1) = \operatorname{ind}(T_2) \neq 0$, both are equivalent to S^{-n}
- ▶ if $n := \operatorname{ind}(T_1) = \operatorname{ind}(T_2) = 0$, both are ess. equivalent to unitary operators by Weyl-von Neumann-Berg: $T_1 \sim_{\mathcal{K}} T_2$

References

- ► 24th ISEM lecture notes
- ▶ J. Conway: A Course in Functional Analysis, Springer 1990
- ➤ Y. Abramovich, C. Aliprantis: *An Invitation to Operator Theory*, American Mathematical Society 2002
- ► L. Brown, R. Douglas, P. Fillmore: *Unitary equivalence modulo the compact operators and extensions of* C*-algebras
- ▶ D. Berg: An extension of the Weyl-von Neumann theorem to normal operators, American Mathematical Society 1971