# Noncommutative geometry, operator systems and state spaces.

# Walter van Suijlekom (joint with Alain Connes)





A spectral approach to geometry

"Can one hear the shape of a drum?" (Kac, 1966)



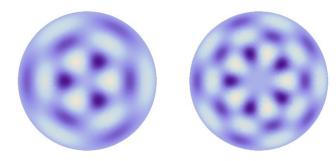
Or, more precisely, given a Riemannian manifold M, does the spectrum of wave numbers k in the Helmholtz equation

$$\Delta_M u = k^2 u$$

determine the geometry of M?

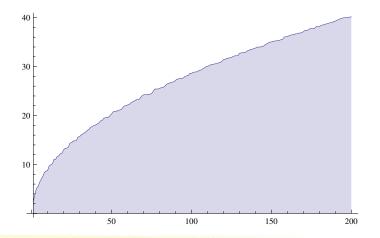


# The disc



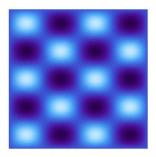


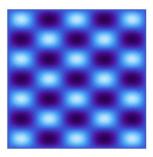
### Wave numbers on the disc





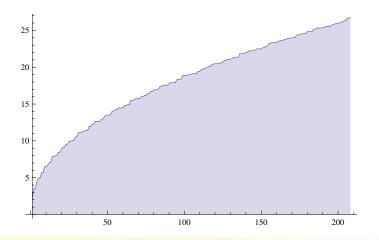
# The square





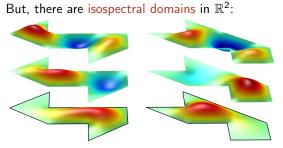


### Wave numbers on the square





### **Isospectral domains**



(Gordon, Webb, Wolpert, 1992)

so the answer to Kac's question is no

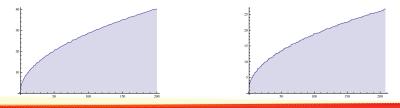


### Weyl's estimate

Nevertheless, certain information can be extracted from spectrum, such as dimension d of M:

$$egin{aligned} \mathcal{N}(\Lambda) &= \# ext{wave numbers} &\leq \Lambda \ &\sim rac{\Omega_d ext{Vol}(M)}{d(2\pi)^d} \Lambda^d \end{aligned}$$

For the disc and square this is confirmed by the parabolic shapes  $(\sqrt{\Lambda})$ :





### Analysis: Dirac operator

Recall that  $k^2$  is an eigenvalue of the Laplacian in the Helmholtz equation.

- The Dirac operator is a 'square-root' of the Laplacian, so that its spectrum give the wave numbers *k*.
- First found by Paul Dirac in flat space, but exists on any Riemannian spin manifold *M*.
- Let us give some examples.





# The circle

• The Laplacian on the circle  $\mathbb{S}^1$  is given by

$$\Delta_{\mathbb{S}^1} = -rac{d^2}{dt^2}; \qquad (t\in [0,2\pi))$$

• The Dirac operator on the circle is

$$D_{\mathbb{S}^1} = -i \frac{d}{dt}$$

with square  $\Delta_{\mathbb{S}^1}$ .



### The 2-dimensional torus

- Consider the two-dimensional torus  $\mathbb{T}^2$  parametrized by two angles  $t_1, t_2 \in [0, 2\pi)$ .
- The Laplacian reads

$$\Delta_{\mathbb{T}^2} = -\frac{\partial^2}{\partial t_1^2} - \frac{\partial^2}{\partial t_2^2}.$$

• At first sight it seems difficult to construct a differential operator that squares to  $\Delta_{\mathbb{T}^2}$ :

$$\left(a\frac{\partial}{\partial t_1} + b\frac{\partial}{\partial t_2}\right)^2 = a^2\frac{\partial^2}{\partial t_1^2} + 2ab\frac{\partial^2}{\partial t_1\partial t_2} + b^2\frac{\partial^2}{\partial t_2^2}$$



• This puzzle was solved by Dirac who considered the possibility that *a* and *b* be complex *matrices*:

$$a = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; \qquad b = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

then  $a^2 = b^2 = -1$  and ab + ba = 0

• The Dirac operator on the torus is

$$D_{\mathbb{T}^2} = \begin{pmatrix} 0 & \frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} \\ -\frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} & 0 \end{pmatrix},$$

which satisfies 
$$(D_{\mathbb{T}^2})^2 = -\frac{\partial^2}{\partial t_1^2} - \frac{\partial^2}{\partial t_2^2}$$



### The 4-dimensional torus

• Consider the 4-torus  $\mathbb{T}^4$  parametrized by  $t_1, t_2, t_3, t_4$  and the Laplacian is

$$\Delta_{\mathbb{T}^4} = -\frac{\partial^2}{\partial t_1^2} - \frac{\partial^2}{\partial t_2^2} - \frac{\partial^2}{\partial t_3^2} - \frac{\partial^2}{\partial t_4^2}.$$

• The search for a differential operator that squares to  $\Delta_{\mathbb{T}^4}$  again involves matrices, but we also need quaternions:

$$i^2 = j^2 = k^2 = ijk = -1.$$

• The Dirac operator on  $\mathbb{T}^4$  is

$$D_{\mathbb{T}^4} = \begin{pmatrix} 0 & \frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} + j \frac{\partial}{\partial t_3} + k \frac{\partial}{\partial t_4} \\ - \frac{\partial}{\partial t_1} + i \frac{\partial}{\partial t_2} + j \frac{\partial}{\partial t_3} + k \frac{\partial}{\partial t_4} & 0 \end{pmatrix}$$

• The relations ij = -ji, ik = -ki, *et cetera* imply that its square coincides with  $\Delta_{14}$ .



### Noncommutative geometry



If combined with the  $C^*$ -algebra C(M), then the answer to Kac' question is affirmative.

Connes' reconstruction theorem [2008]:

 $(C(M),D_M)\longleftrightarrow (M,g)$ 



# Spectral data

- This mathematical reformulation of geometry in terms of spectral data requires the knowledge of all eigenvalues of the Dirac operator.
- From a physical standpoint this is not very realistic: detectors have limited energy ranges and resolution.

We develop the mathematical formalism for (noncommutative) geometry with only part of the spectrum.

This is in line with earlier work of [D'Andrea–Lizzi–Martinetti 2014], [Glaser–Stern 2019], [Berendschot 2019] and based on [arXiv:2004.14115]



# The "usual" story

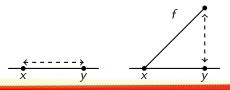
Given cpt Riemannian spin manifold (M, g) with spinor bundle S on M.

- the  $C^*$ -algebra C(M)
- the self-adjoint Dirac operator  $D_M$
- both acting on Hilbert space  $L^2(M, S)$

 $\rightsquigarrow$  spectral triple: (C(M), L<sup>2</sup>(M, S), D<sub>M</sub>)

Reconstruction of distance function [Connes 1994]:

$$d(x,y) = \sup_{f \in C(M)} \{ |f(x) - f(y)| : ||[D_M, f]|| \le 1 \}$$





# Spectral triples

More generally, we consider a triple  $(A, \mathcal{H}, D)$ 

- a C\*-algebra A
- a self-adjoint operator D with compact resolvent and bounded commutators [D, a] for a ∈ A ⊂ A
- both acting (boundedly, resp. unboundedly) on Hilbert space  ${\mathcal H}$

Generalized distance function:

- States are positive linear functionals  $\phi: A \to \mathbb{C}$  of norm 1
- Pure states are extreme points of state space
- Distance function on state space of A:

$$d(\phi,\psi) = \sup_{\boldsymbol{a}\in\mathcal{A}} \left\{ |\phi(\boldsymbol{a}) - \psi(\boldsymbol{a})| : \|[D,\boldsymbol{a}]\| \le 1 \right\}$$



# Spectral truncations

Given  $(A, \mathcal{H}, D)$  we project onto part of the spectrum of D:

- $\mathcal{H} \mapsto \mathcal{PH}$ , projection onto closed Hilbert subspace
- $D \mapsto PDP$ , still a self-adjoint operator
- $A \mapsto PAP$ , this is not an algebra any more (unless  $P \in A$ )

Instead, *PAP* is an operator system:  $(PaP)^* = Pa^*P$ .

So, we turn to study (PAP, PH, PDP).

We expect:

- state and pure states on PAP
- a distance formula on states of PAP.
- a rich symmetry: isometries of (A, H, D) remain isometries of (PAP, PH, PDP)



### **Operator systems**

### Definition (Choi-Effros 1977)

An operator system is a \*-closed vector space E of bounded operators.

For convenience we take E to be finite-dimensional and to contain the identity operator.

• *E* is ordered: cone  $E_+ \subseteq E$  of positive operators, in the sense that  $T \in E_+$  iff

$$\langle \psi, T\psi \rangle \ge 0;$$
  $(\psi \in \mathcal{H}).$ 

in fact, E is completely ordered: cones M<sub>n</sub>(E)<sub>+</sub> ⊆ M<sub>n</sub>(E) of positive operators on H<sup>n</sup> for any n.

Maps between operator systems E, F are complete positive maps in the sense that their extensions  $M_n(E) \rightarrow M_n(F)$  are positive for all n.

Isomorphisms are complete order isomorphisms



### States spaces of operator systems

- The existence of a cone  $E_+ \subseteq E$  of positive elements allows to speak of states on E as positive linear functionals of norm 1.
- Also, the dual  $E^d$  of an operator system is an operator system, with

$$E^d_+ = \left\{ \phi \in E^d : \phi(T) \ge 0, \forall T \in E_+ \right\}$$

and similarly for the complete order.

- We have  $(E^d)^d_+ \cong E_+$  as cones in  $(E^d)^d \cong E$ .
- It follows that we have the following useful correspondence: pure states on  $E \longleftrightarrow$  extreme rays in  $(E^d)_+$

and the other way around.



### $C^*$ -envelope of a unital operator system

Arveson introduced the notion of  $C^*$ -envelope for operator systems in 1969, Hamana established existence and uniqueness in 1979.

A *C*\*-extension  $\kappa : E \to A$  of an operator system *E* is given by a complete order isomorphism onto  $\kappa(E) \subseteq A$  such that  $C^*(\kappa(E)) = A$ . A *C*\*-envelope of an operator systems is a *C*\*-extension  $\kappa : E \to A$  with the following universal property:







# Shilov boundaries

There is a useful description of  $C^*$ -envelopes using Shilov ideals. **Definition** 

Let  $\kappa : E \to A$  be a C<sup>\*</sup>-extension of an operator system. A boundary ideal is given by a closed 2-sided ideal  $I \subseteq A$  such that the quotient map  $q : A \to A/I$  is completely isometric on  $\kappa(E) \subseteq A$ .

The Shilov ideal is the largest of such boundary ideals.

#### Proposition

Let  $\kappa : E \to A$  be a C<sup>\*</sup>-extension. Then there exists a Shilov boundary ideal J and  $C^*_{env}(E) \cong A/J$ .

As an example consider the operator system of continuous harmonic functions  $C_{harm}(\overline{\mathbb{D}})$  on the closed disc. Then by the maximum modulus principle the Shilov boundary is  $S^1$ . Accordingly, its  $C^*$ -envelope is  $C(S^1)$ .



# Propagation number of an operator system

One lets  $E^{\circ n}$  be the norm closure of the linear span of products of  $\leq n$  elements of E.

#### Definition

The propagation number prop(E) of E is defined as the smallest integer n such that  $\kappa(E)^{\circ n} \subseteq C^*_{env}(E)$  is a  $C^*$ -algebra.

Returning to harmonic functions in the disk we have  $prop(C_{harm}(\mathbb{D})) = 1$ .

### Proposition

The propagation number is invariant under complete order isomorphisms, as well as under stable equivalence:

 $prop(E) = prop(E \otimes_{min} \mathcal{K})$ 

More generally [Koot, 2021], we have

 $prop(E \otimes_{\min} F) = \max\{prop(E), prop(F)\}$ 



# Spectral truncation of the circle

Consider the circle  $(C(S^1), L^2(S^1), D = -id/dt)$ 

- Eigenvectors of *D* are Fourier modes  $e_k(t) = e^{ikt}$  for  $k \in \mathbb{Z}$
- Orthogonal projection  $P = P_n$  onto  $\text{span}_{\mathbb{C}}\{e_1, e_2, \dots, e_n\}$
- The space  $C(S^1)^{(n)} := PC(S^1)P$  is an operator system
- Any T = PfP in  $C(S^1)^{(n)}$  can be written as a Toeplitz matrix

$$PfP \sim (t_{k-l})_{kl} = \begin{pmatrix} t_0 & t_{-1} & \cdots & t_{-n+2} & t_{-n+1} \\ t_1 & t_0 & t_{-1} & & t_{-n+2} \end{pmatrix} \\ \vdots & t_1 & t_0 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ t_{n-2} & \vdots & \ddots & \vdots & \vdots \\ t_{n-1} & t_{n-2} & \cdots & t_1 & t_0 \end{pmatrix}$$

We have:  $C^*_{\text{env}}(C(S^1)^{(n)}) \cong M_n(\mathbb{C})$  and  $\text{prop}(C(S^1)^{(n)}) = 2$  (for any n).



### Dual operator system: Fejér-Riesz

We introduce the Fejér–Riesz operator system  $C^*(\mathbb{Z})_{(n)}$ :

• functions on  $S^1$  with a finite number of non-zero Fourier coefficients:

$$a = (\dots, 0, a_{-n+1}, a_{-n+2}, \dots, a_{-1}, a_0, a_1, \dots, a_{n-2}, a_{n-1}, 0, \dots)$$

• an element *a* is positive iff  $\sum_{k} a_{k}e^{ikx}$  is a positive function on  $S^{1}$ .

#### Proposition

- 1. The Shilov boundary of the operator system  $C^*(\mathbb{Z})_{(n)}$  is  $S^1$ .
- 2. The C<sup>\*</sup>-envelope of  $C^*(\mathbb{Z})_{(n)}$  is given by  $C^*(\mathbb{Z})$ .
- 3. The propagation number is infinite.



**Lemma (Fejér, Riesz)** Let  $I \subseteq [-m, m]$  be an interval of length m + 1. Suppose that  $p(z) = \sum_{k=-m}^{m} p_k z^k$  is a Laurent polynomial such that  $p(\zeta) \ge 0$  for all  $\zeta \in \mathbb{C}$  for which  $|\zeta| = 1$ . Then there exists a Laurent polynomial  $q(z) = \sum_{k \in I} q_k z^k$  so that  $p(\zeta) = |q(\zeta)|^2$  for all  $\zeta \in S^1 \subset \mathbb{C}$ .

### Proposition

- The extreme rays in (C\*(Z)<sub>(n)</sub>)<sub>+</sub> are given by the elements a = (a<sub>k</sub>) for which the Laurent series ∑<sub>k</sub> a<sub>k</sub>z<sup>k</sup> has all its zeroes on S<sup>1</sup>.
- 2. The pure states of  $C^*(\mathbb{Z})_{(n)}$  are given by  $a \mapsto \sum_k a_k \lambda^k \ (\lambda \in S^1)$ .







### Pure states on the Toeplitz matrices

The duality between 
$$C(S^1)^{(n)}$$
 and  $C^*(\mathbb{Z})_{(n)}$  is given by  
 $C(S^1)^{(n)} \times C^*(\mathbb{Z})_{(n)} \to \mathbb{C}$   
 $(T = (t_{k-l})_{k,l}, a = (a_k)) \mapsto \sum_k a_k t_{-k}$ 

This duality was studied in [CS 2020] and more recently by Farenick. *Proposition* 

- 1. The extreme rays in  $C(S^1)^{(n)}_+$  are  $\gamma(\lambda) = |f_{\lambda}\rangle \langle f_{\lambda}|$  for any  $\lambda \in S^1$ .
- 2. The pure states of  $C(S^1)^{(n+1)}$  are given by functionals  $T \mapsto \langle \xi, T\xi \rangle$ where the vector  $\xi = (\xi_0, \dots, \xi_n) \in \mathbb{C}^{n+1}$  is such that the polynomial  $z \mapsto \sum_k \xi_k z^{n-k}$  has all its zeroes on  $S^1$ .
- 3. The pure state space  $\mathcal{P}(C(S^1)^{(n+1)}) \cong \mathbb{T}^n/S_n$  is the quotient of the *n*-torus by the symmetric group on *n* objects.

Let us illustrate this!

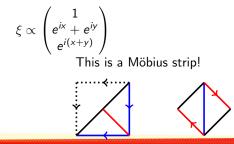


# Spectral truncations of the circle (n = 3)

We consider n = 3 for which the Toeplitz matrices are of the form

$$T = egin{pmatrix} t_0 & t_{-1} & t_{-2} \ t_1 & t_0 & t_{-1} \ t_2 & t_1 & t_0 \end{pmatrix}$$

The pure state space is  $\mathbb{T}^2/S_2$ , given by vector states  $|\xi\rangle\langle\xi|$  with





### An old factorization result of Carathéodory

#### Theorem

Let T be an  $n \times n$  Toeplitz matrix. Then  $T \ge 0$  if and only if T is of the following form:

$$T=V\Delta V^*,$$

where  $\Delta$  is a positive diagonal matrix and V is a Vandermonde matrix,

$$\Delta = \begin{pmatrix} d_1 & & \\ & d_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & d_n \end{pmatrix}; \qquad V = \frac{1}{\sqrt{n}} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \vdots & & & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{pmatrix},$$

for some  $d_1, \ldots, d_n \geq 0$  and  $\lambda_1, \ldots, \lambda_n \in S^1$ .



# Other curious results on Toeplitz matrices

Farenick continues to exploit the duality by showing:

- every positive linear map of the n × n complex matrices is completely positive when restricted to the operator subsystem of Toeplitz matrices
- every linear unital isometry of the n × n Toeplitz matrices into the algebra of all n × n complex matrices is a unitary similarity transformation.



### Finite Fourier transform and duality

- Fourier transform on the cyclic group maps I<sup>∞</sup>(ℤ/mℤ) to ℂ[ℤ/mℤ] and vice versa, exchanging pointwise and convolution product.
- This can be phrased in terms of a duality:

$$\mathbb{C}[\mathbb{Z}/m\mathbb{Z}] \times l^{\infty}(\mathbb{Z}/m\mathbb{Z}) \to \mathbb{C}$$
$$\langle c, g \rangle \mapsto \sum_{k,l} c_l g(k) e^{2\pi i k l/m}$$

compatibly with positivity.

- Thus we may consider the above duality for Toeplitz matrices as some sort of generalization of Fourier theory to operator systems.
- However, note that for finite Fourier theory the symmetries are reduced from S<sup>1</sup> to Z/mZ.



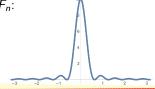
### Convergence to the circle

In a recent paper I analyze the Gromov–Hausdorff convergence of the state spaces  $S(C(S^1)^{(n)})$  with the distance function  $d_n$  to the circle.

- The map  $R_n : C(S^1) \to C(S^1)^{(n)}$  given by compression with  $P_n$  allows to pull-back states from  $C(S^1)^{(n)}$  to the circle
- There is an approximate inverse  $S_n : C(S^1)^{(n)} \to C(S^1)$ :

$$R_n(S_n(T)) = T_n \odot T; \qquad S_n(R_n(f)) = F_n * f$$

in terms of a Schur–Hadamrd product with a matrix  $T_n$  and the convolution with the Fejér kernel  $F_n$ :



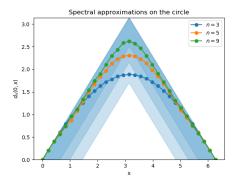


• The fact that  $S_n$  is an approximate inverse of  $R_n$  allows one to prove

$$d_{S^{1}}(\phi,\psi)-2\gamma_{n}\leq d_{n}(\phi\circ S_{n},\psi\circ S_{n})\leq d_{S^{1}}(\phi,\psi)$$

where  $\gamma_n \to 0$  as  $n \to \infty$ .

• Some (basic) Python simulations for point evaluation on S<sup>1</sup>:





# Gromov–Hausdorff convergence

Recall Gromov-Hausdorff distance between two metric spaces:

 $d_{\mathrm{GH}}(X,Y) = \inf\{d_H(f(X),g(Y)) \mid f: X \to Z, g: Y \to Z \text{ isometric}\}$ 

and

$$d_{H}(X, Y) = \inf\{\epsilon \ge 0; X \subseteq Y_{\epsilon}, Y \subseteq X_{\epsilon}\}$$

Using the maps R<sub>n</sub>, S<sub>n</sub> we can equip S(C(S<sup>1</sup>)) II S(C(S<sup>1</sup>)<sup>(n)</sup>) with a distance function that bridges (in the sense of Rieffel) the given distance functions on S(C(S<sup>1</sup>)) and S(C(S<sup>1</sup>)<sup>(n)</sup>) within ε for large n.

#### Proposition (S21, Hekkelman 2021)

The sequence of state spaces  $\{(\mathcal{S}(C(S^1)^{(n)}), d_n)\}$  converges to  $(\mathcal{S}(C(S^1)), d_{S^1})$  in Gromov–Hausdorff distance.



# Outlook: spaces at finite resolution (in progress)

Let (X, d) be a path metric space and consider the tolerance relation:

$$\mathcal{R}_{\epsilon} := \{ (x, y) \in X \times X : d(x, y) < \epsilon \}$$

If X comes equipped with a measure  $\mu$  of full support, then we define  $E(\mathcal{R}_{\epsilon})$  to be the operator system spanned by integral operators  $\pi(F)$  on  $L^{2}(X,\mu)$  with  $F \in L^{2}(\mathcal{R}_{\epsilon})$ .

#### Proposition

Lanks.

Let (X, d) be a complete, locally compact path metric measure space and  $\mu$  a measure on X with full support. Then  $C^*_{env}(E(\mathcal{R}_{\epsilon})) = \mathcal{K}(L^2(X))$  and

 $\operatorname{prop}(E(\mathcal{R}_{\epsilon})) = \lceil \operatorname{diam}(X)/\epsilon \rceil$ 

The pure states of  $E(\mathcal{R}_{\epsilon})$  are given by vector states  $|\psi\rangle\langle\psi|$  where the essential support of  $\psi \in L^2(X)$  is  $\epsilon$ -connected.

