Compact matrix quantum groups and their representation theory

Moritz Weber

Saarland University, Saarbrücken, Germany
VNAWS, 29 July 2020

CMQG: HOW TO FIND THEM ON AN IMPRECISE MAP

CMQG: IN THE CONTEXT OF "QUANTUM MATHEMATICS"

Classical	Quantum
Topology	C*-Algebras [Gelfand-Naimark 1940s]
Measure Theory	Von Neumann Algebras [Murray-von Neumann 1940s]
Probability Theory	Free Probability Theory [Voiculesul 1980s]
	\& Quantum Probability [Accardi, Hudson-Parthasarathy 1970s]
Differential Geometry	Noncommutative Geometry [Coonnes 1980s]
(Loc. Comp.) Groups	(Loc. Comp.) Quantum Groups [Weronowicz 1980s]
Information Theory	Quantum Information Theory [Feynmann, Deutsch 1980s]
Complex Analysis	Free Analysis [J.LTaylor 1970s]

Philosophy behind Quantum Mathematics:

$$
\begin{aligned}
\text { commutative algebras } & \Longleftrightarrow \text { classical situation } \\
\text { noncommutative algebras } & \Longleftrightarrow \text { quantum situation }
\end{aligned}
$$

CMQG: BY DEFINITION

Definition [Woronowicz 1980s]

Let $N \in \mathbb{N}$. $G=(A, u)$ is a compact matrix quantum group (CMQG) : \Longleftrightarrow

- A is a unital C^{*}-algebra with $A=C^{*}\left(u_{i j}, 1 \mid i, j \in\{1, \ldots, N\}\right)$
- $u=\left(u_{i j}\right)$ and $\bar{u}=\left(u_{i j}^{*}\right)$ invertible $N \times N$-matrices in $M_{N}(A)$
- $\Delta: A \rightarrow A \otimes A, u_{i j} \mapsto \sum_{k=1}^{N} u_{i k} \otimes u_{k j}{ }^{*}$-homomorphism

Let $G \subseteq G L_{N}(\mathbb{C})$ be a compact group.
Put $A:=C(G):=\{f: G \rightarrow \mathbb{C} \mid f$ cont. $\}$ and $u_{i j}: C(G) \rightarrow \mathbb{C}, u_{i j}(g):=g_{i j}$. Then (A, u) is a compact matrix quantum group:

- $A=C^{*}\left(u_{i j}, 1 \mid i, j \in\{1, \ldots, N\}\right)$
- $u=\left(u_{i j}\right), \bar{u}=\left(u_{i j}^{*}\right) \in M_{N}(C(G))$ invertible
[Stone-Weierstrass]
- $\Delta: C(G) \rightarrow C(G) \otimes C(G), u_{i j} \mapsto \sum_{k=1}^{N} u_{i k} \otimes u_{k j}$
$[u(g)=g]$
- $\Delta: C(G) \rightarrow C(G) \otimes C(G), u_{i j} \mapsto \sum_{k=1}^{N} u_{i k} \otimes u_{k j} \quad$ [matrix multipl.]

Hence, compact matrix quantum groups generalize $G \subseteq G L_{N}(\mathbb{C})$

CMQG: Fundamental Thm.s

```
Theorem (Gelfand-Naimark type) [Woronowicz 1980s]
G = (A,u) CMQG with N\in\mathbb{N}\mathrm{ . Then:}
    A commutative \Longleftrightarrow \existsG\congGL
```

Proof.
$" \Longrightarrow "$ Gelfand-Naimark. " " $A:=C(G), u_{i j}: C(G) \rightarrow \mathbb{C}, g \mapsto g_{i j}$.

CMQG: Fundamental Thm.s

Theorem (Gelfand-Naimark type) Woronowicz 1980s]
$G=(A, u) C M Q G$ with $N \in \mathbb{N}$. Then:
A commutative $\Longleftrightarrow \exists G \subseteq G L_{N}(\mathbb{C})$ compact group : $A \cong C(G)$

Theorem (Existence of Haar state) [Woronowicz 1980s]
Every CMQG (A, u) possesses a Haar state $h: A \rightarrow \mathbb{C}$, i.e. h with:

$$
\left(\mathrm{id}_{A} \otimes h\right) \Delta(a)=\left(h \otimes \mathrm{id}_{A}\right) \Delta(a)=1_{A} h(a)
$$

Proof.
Convolve any state $\frac{1}{n} \sum_{k=1}^{n} \varphi^{* k} \rightarrow h, n \rightarrow \infty$, where $\varphi * \varphi:=(\varphi \otimes \varphi) \circ \Delta$

CMQG: Fundamental Thm.s

Theorem (Gelfand-Naimark type) [Woronowicz 1980s]

$G=(A, u) C M Q G$ with $N \in \mathbb{N}$. Then:
A commutative $\Longleftrightarrow \exists G \subseteq G L_{N}(\mathbb{C})$ compact group $: A \cong C(G)$

Theorem (Existence of Haar state)

[Woronowicz 1980s]
Every CMQG (A, u) possesses a Haar state $h: A \rightarrow \mathbb{C}$, i.e. h with:

$$
\left(\mathrm{id}_{A} \otimes h\right) \Delta(a)=\left(h \otimes \mathrm{id}_{A}\right) \Delta(a)=1_{A} h(a)
$$

Theorem (Link with Hopf algebras) [Woronowicz 1980s]

There is a dense Hopf*-algebra $A_{0} \subseteq A$ with

$$
\Delta_{\mid A_{0}}: A_{0} \rightarrow A_{0} \otimes A_{0}, \quad \varepsilon\left(u_{i j}^{\alpha}\right)=\delta_{i j}, \quad S\left(u_{i j}^{\alpha}\right)=\left(u_{j i}^{\alpha}\right)^{*} .
$$

Proof.
Put $A_{0}:=\left\{\right.$ matrix elements $u_{i j}^{\alpha}$ of fin.-dim. rep. $\}$ and use h for density.

CMQG: Fundamental Thm.s

Theorem (Gelfand-Naimark type) [Woronowicz 1980s]
$G=(A, u) C M Q G$ with $N \in \mathbb{N}$. Then:
A commutative $\Longleftrightarrow \exists G \subseteq G L_{N}(\mathbb{C})$ compact group : $A \cong C(G)$

Theorem (Existence of Haar state) [Woronowicz 1980s]

Every CMQG (A, u) possesses a Haar state $h: A \rightarrow \mathbb{C}$, i.e. h with:

$$
\left(\mathrm{id}_{A} \otimes h\right) \Delta(a)=\left(h \otimes \mathrm{id}_{A}\right) \Delta(a)=1_{A} h(a)
$$

Theorem (Link with Hopf algebras)
There is a dense Hopf*-algebra $A_{0} \subseteq A$ with

$$
\Delta_{\mid A_{0}}: A_{0} \rightarrow A_{0} \otimes A_{0}, \quad \varepsilon\left(u_{i j}^{\alpha}\right)=\delta_{i j}, \quad S\left(u_{i j}^{\alpha}\right)=\left(u_{j i}^{\alpha}\right)^{*} .
$$

CMQG
$\longleftrightarrow \quad$ Hopf *-algebra with Haar integration

CMQG: BY EXAMPLES

Example (Symmetric quantum group)

$S_{N}^{+}:=\left(A_{S}(N), u\right)$ CMQG with

$$
A_{S}(N):=C^{*}\left(u_{i j}, 1 \mid u_{i j}=u_{i j}^{2}=u_{i j}^{*}, \sum_{k} u_{i k}=\sum_{k} u_{k j}=1\right) \quad \rightarrow \quad C\left(S_{N}\right)
$$

$$
S_{N} \subseteq \quad S_{N}^{+} \quad \text { quantum permutations }
$$

CMQG: BY EXAMPLES

Example (Symmetric/free orthogonal/free unitary QGs) [Wang 1990s]

$$
\begin{aligned}
& S_{N} \subseteq S_{N}^{+}:=\left(A_{S}(N), u\right), O_{N} \subseteq O_{N}^{+}:=\left(A_{O}(N), u\right) \text { and } \\
& U_{N} \subseteq U_{N}^{+}:=\left(A_{U}(N), u\right) \text { CMQGs with: }
\end{aligned}
$$

$$
\begin{array}{ll}
A_{S}(N):=C^{*}\left(u_{i j}, 1 \mid u_{i j}=u_{i j}^{2}=u_{i j}^{*}, \sum_{k} u_{i k}=\sum_{k} u_{k j}=1\right) & \rightarrow C\left(S_{N}\right) \\
A_{O}(N):=C^{*}\left(u_{i j}, 1 \mid u_{i j}=u_{i j}^{*}, \sum_{k} u_{i k} u_{j k}=\sum_{k} u_{k i} u_{k j}=\delta_{i j}\right) & \rightarrow C\left(O_{N}\right) \\
A_{U}(N):=C^{*}\left(u_{i j}, 1 \mid u, \bar{u} \text { unitary }\right) & \rightarrow C\left(U_{N}\right)
\end{array}
$$

algebraic relations

- Have quantum versions $S_{N} \subseteq S_{N}^{+}, O_{N} \subseteq O_{N}^{+}, U_{N} \subseteq U_{N}^{+}, \ldots$
- Associated "reduced" C^{*}-algebras $C_{\text {red }}(G)$ and von Neumann algebras $L(G)$ are interesting OPEN: $L\left(O_{N}^{+}\right) \cong L\left(O_{M}^{+}\right)$?
[Banica, Vaes, Vergnioux, Brannan, Freslon,...]
- $S_{N}^{+}, O_{N}^{+}, U_{N}^{+}$yield quantum symmetries for free probability or Connes's noncommutative geometry
[Köstler, Speicher, Curran, Banica, Goswami,...]
- S_{N}^{+}is a Calabi-Yau algebra of dimension 3
- (Hochschild) cohomological dimensions of $S_{N}^{+}, O_{N}^{+}, U_{N}^{+}$are 3 [Thom, Bichon, Franz, Gerhold, Das, Kula, Skalski,...]
- L ${ }^{2}$-Betti numbers of S_{N}^{+}, O_{N}^{+}and U_{N}^{+}known:

$$
\beta_{p}^{(2)}=0 \text { except } \beta_{1}^{(2)}\left(U_{N}^{+}\right)=1 \quad \begin{aligned}
& \text { [Vergnioux, Collins, Härt, Thom, Bichon, Raum, Kyed, } \\
& \text { Vaes, Valvekens,...] }
\end{aligned}
$$

Rep. Theory of CMQG: Schur-Weyl ...

(quantum) group	representation category	diagrams
U_{N}	permutations (Schur-Weyl) pair partitions (Brauer diagrams)	all partitions of sets S_{N}
S_{N}^{+}	noncrossing	
O_{N}^{+}	partitions	noncrossing

Rep. Theory of CMQG: ... Tannaka-Krein

Theorem (Tannaka-Krein duality) Woronowicz 1980s]
Let \mathcal{R} be a tensor category.

$$
\exists G C M Q G: \operatorname{Rep}(G)=\mathcal{R} \quad \Longleftrightarrow \quad \mathcal{R} \text { with good structure }
$$

What is this "good structure"? What is $\operatorname{Rep}(G)$?
Let $G=(A, u)$ be a CMQG (of Kac type), where $u=\left(u_{i j}\right) \in M_{N}(A)$.

- Objects $\operatorname{Rep}(G):=\{$ fin. dim. unitary rep. $\}$
$\operatorname{Rep}(G) \ni u^{r}=\sum_{i j} e_{i j} \otimes u_{i j}^{r} \in M_{n_{r}}(\mathbb{C}) \otimes A$ unitary, $\sum_{k} u_{i k}^{r} \otimes u_{k j}^{r}=\Delta\left(u_{i j}^{r}\right)$
- $\operatorname{Rep}(G)$ equiped with $\otimes:$ define $u^{r} \otimes u^{s} \in M_{n_{r}}(\mathbb{C}) \otimes M_{n_{s}}(\mathbb{C}) \otimes A$
- $\operatorname{Mor}(r, s):=\left\{T: \mathbb{C}^{n_{r}} \rightarrow \mathbb{C}^{n_{s}} \operatorname{lin} . \mid T u^{r}=u^{s} T\right\}$ intertwiners
- Mor closed under \otimes, composition, involution, ...

If $u_{i j}=u_{i j}^{*}$, only need $\operatorname{Mor}(k, l):=\left\{T:\left(\mathbb{C}^{N}\right)^{k} \rightarrow\left(\mathbb{C}^{N}\right)^{\prime} \operatorname{lin} . \mid T u^{\otimes k}=u^{\otimes /} T\right\}$.
CMQGs $\longleftrightarrow \quad$ "Woronowicz" tensor categories

```
THE KEY SLIDE: REP TH BY Combinatorics
```

Theorem (Tannaka-Krein duality) [Woronowicz 1980s]
Let \mathcal{R} be a tensor category.
$\exists G C M Q G: \operatorname{Rep}(G)=\mathcal{R} \Longleftrightarrow \mathcal{R}$ "Woronowicz" tensor category

CMQGs $\longleftrightarrow \quad$ "Woronowicz" tensor categories

"Combinatorial" descriptions

Meta Conjecture
Every CMQG G possesses a combinatorial description of its rep. theory:

$$
\operatorname{Rep}(G)=\text { combinatorial category }+ \text { fiber functor }
$$

ExAmples of combinatorial descriptions:
(1) "EASY"
QGs:
$P(k, I):=$ \{partitions of sets on k upper and $/$ lower points $\}$

Definition [Banca-Speicher 200e9]

A category of partitions is a set $\mathcal{C} \subseteq \cup_{k, l \in \mathbb{N}_{0}} P(k, l)$ which is closed under tensor products composition
 involution

and containing ! and 5 .

Example

(a) all partitions, (b) pair partitions, (c) noncrossing partitions (NC) (d) noncrossing pair partitions, \quad (e) $\{p \in N C \mid$ blocks of size 1 or 2$\}$

Examples of combinatorial descriptions:
(1) "EASY" QGs: . . . AND A FIBER FUNCTOR

Definition of $T_{p}:\left(\mathbb{C}^{N}\right)^{\otimes k} \rightarrow\left(\mathbb{C}^{N}\right)^{\otimes /}$ as follows.

$$
T_{p}\left(e_{i_{1}} \otimes \ldots \otimes e_{i_{k}}\right):=\sum_{j_{1}, \ldots, j_{l}} \delta_{p}\left(i_{1}, \ldots, i_{k} ; j_{1}, \ldots, j_{l}\right) e_{j_{1}} \otimes \ldots \otimes e_{j_{l}}
$$

Then: $T_{p} u^{\otimes k}=u^{\otimes /} T_{p} \quad \longrightarrow \quad$ relations on the $u_{i j}$

ExAmples of combinatorial descriptions:

(1) "EASY" QGs: Definition

Definition [Banica-Speicher 2009]

$G C M Q G$ with $S_{N} \subseteq G \subseteq O_{N}^{+} . G$ "easy": \Longleftrightarrow $\exists \mathcal{C}$ category of partitions: $\operatorname{Mor}\left(u^{\otimes k}, u^{\otimes l}\right)=\operatorname{span}\left\{T_{p} \mid p \in \mathcal{C} \cap P(k, I)\right\}$

"easy" QG $\quad \longleftrightarrow \quad$ categories of partitions

Extensions to $u_{i j} \neq u_{i j}^{*}$: Need $u^{w}=u^{\otimes(\circ \bullet \bullet 0)}:=u \otimes u \otimes \bar{u} \otimes u$ etc. Consider categories of two-colored partitions.

Definition [Tarago-w. 2016]
$G C M Q G$ with $S_{N} \subseteq G \subseteq U_{N}^{+}$. G "easy": \Longleftrightarrow $\exists \mathcal{C}$ categ. of two-col. part.: $\operatorname{Mor}\left(u^{\otimes w}, u^{\otimes v}\right)=\operatorname{span}\left\{T_{p} \mid p \in \mathcal{C} \cap P^{0 \bullet}(w, v)\right\}$

Examples of combinatorial descriptions:

(1) "EASY" QGs: SOME ASPECTS

- Classification program shows: class is very rich (in particular the unitary case) OPEN: Full classification?

- Read irreducible rep. and fusion rules from partitions
- New product constructions for CMQG designed first for partitions and then generalized
- Deligne interpolation categories: Replace loop parameter $t \in \mathbb{N}$ by $t \in \mathbb{C}$ and obtain $\operatorname{Rep}\left(S_{t}, t \in \mathbb{C}\right)$. "Easy" QG: Many further examples OPEN: investigation of many examples?
- Extremal traces on limit algebras

OPEN: investigation of many examples?

- OPEN: investigation of many associated operator algebras?

Examples of combinatorial descriptions:

(2) Variants and generalizations of "EASY" QGs

(a) Freslon's partition QGs: [Freslon 2017, 2019]

Use color set \mathcal{O} with involution $x \mapsto \bar{x}$; then \mathcal{O}-colored partitions/categ.
For $\mathcal{O}=\{\circ, \bullet\}$ and $\circ \mapsto \bullet: G \subseteq U_{N}^{+}$. All $S_{N}^{+} \subseteq G \subseteq U_{N}^{+}$in
For $\mathcal{O}=\{\circ, \bullet\}$ and $\circ \mapsto \circ: G \subseteq O_{N_{0}}^{+} * O_{N_{\bullet}}^{+}$. All $S_{N}^{+} \subseteq G \subseteq O_{N}^{+} * O_{N}^{+}$in For general $\mathcal{O}: G \subseteq U_{N_{1}}^{+} * \cdots * U_{N_{k}}^{+}$
OPEN: All $S_{N_{0}}^{+} \times S_{N_{0}}^{+} \subseteq G \subseteq O_{N_{0}}^{+} * O_{N_{0}}^{+}$or for general \mathcal{O} ?
(b) "easy" QGs with 3D partitions: [Cébron-W. 2016]
Given $N=N_{1} \cdot N_{2} \cdot \ldots \cdot N_{m}$ and $p \in P(k, l)$ we have:
$T_{p}:\left(\mathbb{C}^{N_{1} \cdot N_{2} \cdot \ldots \cdot N_{m}}\right)^{\otimes k} \rightarrow\left(\mathbb{C}^{N_{1} \cdot N_{2} \cdot \ldots \cdot N_{m}}\right)^{\otimes l}$
Viewing $p \in P(k m, l m)$ as a 3D-partition, we have:
$T_{p}:\left(\mathbb{C}^{N_{1}} \otimes \ldots \otimes \mathbb{C}^{N_{m}}\right)^{\otimes k} \rightarrow\left(\mathbb{C}^{N_{1}} \otimes \ldots \otimes \mathbb{C}^{N_{m}}\right)^{\otimes l}$
For $N:=N_{1}=\ldots=N_{m}: S_{N} \subseteq G \subseteq O_{N^{m}}^{+}$.
OPEN: Unitary case; links with other CMQGs etc?

Examples of combinatorial descriptions:
(2) Variants and generalizations of "EASY" QGs
(C) "quizzy" QGs: [Banica]

Insert weights $\varepsilon: P_{\text {even }} \rightarrow\{-1,+1\}$ in the assignment $p \mapsto T_{p}$:

$$
T_{p}\left(e_{i_{1}} \otimes \ldots \otimes e_{i_{k}}\right):=\sum_{q \geq p} \varepsilon(q) \sum_{j_{1}, \ldots, j_{l}} \delta_{=p}\left(i_{1}, \ldots, i_{k} ; j_{1}, \ldots, j_{l}\right) e_{j_{1}} \otimes \ldots \otimes e_{j_{l}}
$$

Use categories of partitions with this twisted fiber functor. Obtain twists of O_{N}, U_{N} and others.
(d) "super-easy" QGs and 2-parameter deformations:
[Banica-Skalski 2011,
Study $u=J \bar{u} J^{-1}$ with J diagonal: r blocks of $\left(\begin{array}{cc}0 & 1 \\ \pm 1 & 0\end{array}\right)$ and s times 1.
2-parameters: partitions with two colors on r-part and one color on s-part. Fiber functor similar to $p \mapsto T_{p}$ or $\{-1,0,+1\}$-twists as for "quizzy" QGs . Obtain versions of O_{N}^{+}, S_{N}^{+}etc. such as $O^{+}(r, s), S^{+}(r, s)$ etc.
OPEN: Which values are allowed for twists of $p \mapsto T_{p}$?

Examples of combinatorial descriptions:
(3) $O^{+}(Q)$ and $U^{+}(Q)$

Definition [Wang-VanDaele, Banica 1990s]
Let $Q \in \mathrm{GL}_{N}(\mathbb{C})$. Define $O^{+}(Q)$ and $U^{+}(Q)$ via:

$$
\begin{aligned}
& A_{U}(Q):=C^{*}\left(u_{i j}, 1 \mid u, Q \bar{u} Q^{-1} \text { unitary }\right) \\
& A_{O}(Q):=C^{*}\left(u_{i j}, 1 \mid u=Q \bar{u} Q^{-1} \text { unitary }\right) \quad Q \bar{Q}=c 1, c \in \mathbb{R}
\end{aligned}
$$

For $Q=\mathrm{id}: O_{N}^{+}=O^{+}(\mathrm{id})$ and $U_{N}^{+}=U^{+}(\mathrm{id})$.
For $Q=J$: "super-easy" /2-parameter deformation.
Take the categories of partitions of $O_{N}^{+}=O^{+}(i d)$ and $U_{N}^{+}=U^{+}(i d)$.
Deform $p \mapsto T_{p}$ to T^{Q} б. $(1)=\sum_{i} e_{i} \otimes Q e_{i}$.
This describes the representation theory of $O^{+}(Q)$ and $U^{+}(Q)$.
OPEN: How to deform $p \mapsto T_{p}$ for larger size blocks? $\exists S^{+}(Q)$?

Examples of combinatorial descriptions:
(4) $S U_{q}(2)$ AND $S U_{q}(N)$

Definition [Woronowicz 1980s]
Let $N \geq 2, q \in(0,1]$. Define $S U_{q}(N)$ via
$C\left(S U_{q}(N)\right):=C^{*}\left(u_{i j}, 1 \mid u\right.$ unitary,

$$
\left.\sum_{j_{1}, \ldots, j_{N}}(-q)^{l\left(j_{1}, \ldots, j_{N}\right)} u_{i_{1} j_{1}} \cdots u_{i_{N} j_{N}}=(-q)^{l\left(i_{1}, \ldots, i_{N}\right)} 1\right)
$$

Here, $I\left(j_{1}, \ldots, j_{N}\right):=$ minimal number of transpositions from $(1, \ldots, N)$.
For $N=2$ and $Q=\left(\begin{array}{cc}0 & 1 \\ -q^{-1} & 0\end{array}\right): S U_{q}(2)=O^{+}(Q)$. So, have full
combinatorial description for $S U_{q}(2)$.
OPEN: Full description for $S U_{q}(N)$ (only generators known)?

Examples of combinatorial descriptions:
(5) "non-EASY" QGs

Recall: $S_{N} \subseteq G \subseteq O_{N}^{+}$"easy", if Mor $=$category of partitions $+p \mapsto T_{p}$.

Definition

$S_{N} \subseteq G \subseteq O_{N}^{+}$"non-easy" $\quad \Longleftrightarrow \quad G$ not "easy"
Note: Whenever $S_{N} \subseteq G$, we have $\operatorname{Mor}_{G} \subseteq \operatorname{Mor}_{S_{N}}=\operatorname{span}\left\{T_{p} \mid p \in P\right\}$. Hence: "non-easy" \longleftrightarrow categories of linear combinations of partitions

Functor \mathcal{P} : Replace legs in $p \in P(k, l)$ by $\emptyset_{-}-\frac{1^{\prime}}{\mathrm{d}}$; kills singletons Take $\mathcal{P C}$ as combinatorics (or $\mathcal{V C}$) and $p \mapsto T_{p}$ as a fiber functor. Obtain many non-easy QGs, e.g. G isomorphic to the irred. part of S_{N}^{+}.
[Gromada-W. 2019]
Skew categories of partitions $+p \mapsto \hat{T}_{p}$ by subtracting smaller partitions
[Maaßen 2018]
OPEN: Classification of all $S_{N} \subseteq G \subseteq O_{N}^{+}$? Combinatorial description?

Examples of combinatorial descriptions:
6) Quantum autom. groups of fin. graphs

Now, consider $G \subseteq S_{N}^{+}$rather than $S_{N} \subseteq G \subseteq U_{N}^{+}$.
$\Gamma=(V, E)$ fin. graph, $|V|=N$, no multiple edges, no self-loops

$$
\operatorname{Aut}(\Gamma)=\left\{\sigma \in S_{N} \mid \sigma \varepsilon=\varepsilon \sigma\right\} \subseteq S_{N} \quad \text { (} \varepsilon \text { adj. matrix) }
$$

Definition [Banica 2005]

Define the quantum automorphism group $G_{a u t}^{+}(\Gamma)$ of Γ via:

$$
A_{S}(N) /\langle u \varepsilon=\varepsilon u\rangle
$$

Then, $\operatorname{Aut}(\Gamma) \subseteq G_{\text {aut }}^{+}(\Gamma) \subseteq S_{N}^{+}$.
Γ has quantum symmetries $\quad: \Longleftrightarrow \quad \operatorname{Aut}(\Gamma) \neq G_{\text {aut }}^{+}(\Gamma)$
Ex.: (a) $\quad G_{\text {aut }}^{+}$(complete graph) $=S_{N}^{+}$has quantum symmetries
(b) $\quad G_{\text {aut }}^{+}($Petersen graph $)=\operatorname{Aut}($ Petersen graph $)=S_{5}$ no qu. symm.

Note: $\operatorname{QSym}\left(C^{*}(\Gamma)\right)=G_{\text {aut }}^{+}(\Gamma)$ [Schmidt-w. 2018]
[Schmidt 2018]

Examples of combinatorial descriptions:
(6) Quantum autom. Groups of Fin. Graphs

Theorem [Mancinska-Foberson eta 2 2017, 2019]
(AlgC) $\Gamma_{1} \cong_{q} \Gamma_{2} \Longleftrightarrow \forall K$ planar: $\mid\left\{\right.$ hom. $\left.K \rightarrow \Gamma_{1}\right\}|=|\left\{\right.$ hom. $\left.K \rightarrow \Gamma_{2}\right\} \mid$
(QIT) $\Gamma_{1} \cong_{q} \Gamma_{2} \Longleftrightarrow$ win graph isom. game using qu. strategy with prob. 1 (QG) $\operatorname{Mor}_{G_{\text {aut }}^{+}(\Gamma)}(k, I)=\operatorname{span}\left\{T^{K \rightarrow \Gamma} \mid K \in \mathcal{P}(k, I)\right\}$, \mathcal{P} planar bi-lab. graphs
$\Gamma_{1} \cong{ }_{q} \Gamma_{2}^{\text {Lovas2 } 1960 \mathrm{~s} \text { S }} \exists \pi$: $A_{S}(N) \rightarrow M_{M}(H), \pi(u) \varepsilon_{1}=\varepsilon_{2} \pi(u) . \quad\left(M=1: \Gamma_{1} \cong \Gamma_{2}\right)$ @(AlgC): $\Gamma_{1} \cong \Gamma_{2} \Longleftrightarrow \forall K$ graph: $\mid\left\{\right.$ hom. $\left.K \rightarrow \Gamma_{1}\right\}|=|\left\{\right.$ hom. $\left.K \rightarrow \Gamma_{2}\right\} \mid$ @(QIT): Given $v_{A}, v_{B} \in V_{1} \sqcup V_{2}$; reply $w_{A}, w_{B} \in V_{1} \sqcup V_{2}$; win " $\in E_{1} \Leftrightarrow \in E_{2}$ " @(QG): More generally, consider graph categories Graph categ.: Bi-labeled graphs K, tensor prod., ... Fiber functor: $T^{K \rightarrow \Gamma}:=\#$ hom. $K \rightarrow \Gamma$ fixing labels

OPEN: Mor $_{G}$ of further $G \subseteq O_{N}^{+}$, i.e. more examples of graph categorıes? e.g. $G=G_{\text {aut }}^{*}(\Gamma) \subseteq G_{\text {aut }}^{+}(\Gamma)$ [Bichon 2003] or $G=$ "easy" $/\langle u \varepsilon=\varepsilon u\rangle \quad$ [Speicher-W. 2019]

Examples of combinatorial descriptions:
7) Vaes-Valveken's example of Property (T)

Triangle presentation: $F=\{1, \ldots, N\} ; T \subseteq F \times F \times F$ invar. under cyclic permutations + some rules ("of order q ") on "predecessors/successors". There is an associated group Γ_{T}.

Definition Naes-Vavekens 2019]
Quantum version of Γ_{T} defined via:

$$
C^{*}\left(u_{i j}, 1 \mid u \text { unitary, } \sum_{a, b, c} \delta_{(a, b, c) \in T} u_{i a} u_{j b} u_{k c}=\delta_{(i, j, k) \in T}\right)
$$

The discrete dual of this CMQG has property (T) under good conditions.
Comb. description: Represent T by partitions with blocks of size 1 or 3 . Fiber functor similar to $p \mapsto T_{p}$ with weights from T-labeling counts OPEN: T_{1}, T_{2} of same order \Longrightarrow assoc. qu. groups monoidally equiv.?

ExAmples of combinatorial DESCRIPTIONS: ? Did I forget one?

- $\left\{G \subseteq \mathrm{GL}_{N}(\mathbb{C})\right.$ compact group $\} \subseteq \mathrm{CMQG} \subseteq \mathrm{CQG} \subseteq \mathrm{LCQG}$
- CMQG $=$ Hopf ${ }^{*}$-algebra + Haar integration
- CMQG may arise as $M_{N}(\mathbb{C})$-valued solutions of matrix entry relations
- Schur-Weyl/Tannaka-Krein opens the door for rep. theory: combinatorial description $=$ combinatorial category + fiber functor
- Meta conjecture: Every CMQG possesses such a comb. description

	comb. category	fiber functor
"easy" QGs	partitions of sets	$T_{p}\left(e_{\mathbf{i}}\right):=\sum_{\mathbf{j}} \delta_{p}(\mathbf{i}, \mathbf{j}) e_{\mathbf{j}}$
variants of "easy"	+ colors; +3 D	$T_{p}+$ weights $\{-1,0,+1\}$
$O^{+}(Q), U^{+}(Q)$	part., block size 2	$T^{Q} \quad(1)=\sum_{i} e_{i} \otimes Q e_{i}$
$S U_{q}(2), S U_{q}(N)$? (generators known $)$	$?$
"non-easy" QG	lin. comb.; skew categ.	$T_{p} ;\left(T_{p^{-}}\right.$smaller ones)
$G_{\text {aut }}^{+}(\Gamma)$	bi-labeled graphs	homomorphism counts
triangle pres. QG	part., block size 1 or 3	$T_{p}+$ label count weights

