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HIGHLY ENTANGLED, NON-RANDOM SUBSPACES OF TENSOR
PRODUCTS FROM QUANTUM GROUPS

MICHAEL BRANNAN AND BENOÎT COLLINS

Abstract. In this paper we describe a class of highly entangled subspaces of a tensor
product of finite dimensional Hilbert spaces arising from the representation theory of free
orthogonal quantum groups. We determine their largest singular values and obtain lower
bounds for the minimum output entropy of the corresponding quantum channels. An ap-
plication to the construction of d-positive maps on matrix algebras is also presented.

1. Introduction

Entanglement is one of the most important properties that differentiates quantum phe-
nomena from classical phenomena. This property pertains to bi-partite or multi-partite
systems. In a classical context, a multi-partite system is modeled by a Cartesian product
of sets (e.g. of state spaces), whereas in the quantum context, where linear structures are
required, the Cartesian product is replaced by the tensor product (of Hilbert spaces describ-
ing each individual system). For example, if HA and HB describe the states of systems
A and B, then the bipartite system AB is described by the Hilbert space tensor product
H = HA ⊗HB.

Given a Hilbert space H , a (pure) state ξ ∈ H is a vector of norm 1, taken up to a phase
factor. Equivalently, a pure state ξ can be viewed as the rank one projection ρξ = |ξ⟩⟨ξ| onto
Cξ ⊆ H in B(H). The (closed) convex hull of pure states is called the state-space of H , and
denoted by D(H). This is a convex compact set, and its extremal points are the rank one
projectors, i.e., pure states. Given a bipartite system modeled by the Hilbert space tensor
product H = HA ⊗HB, a state ρ ∈ D(H) is said to separable if it belongs to the convex hull
of the set of product states ρ = ρA ⊗ ρB, where ρA ∈ D(HA) and ρB ∈ D(HB). A state ρ is
called entangled if it is not separable. We shall call a Hilbert subspace H0 ⊂ HA ⊗ HB an
entangled subspace if all of its associated pure states are entangled.

For the sake of simplicity in this introduction (precise definitions will be given later), we
say that a Hilbert subspace H0 ⊂ H = HA⊗HB is highly entangled if the set of pure states on
H associated to H0 are uniformly “far away” from the set of product states ρA⊗ρB ∈ D(H).
A maximally entangled state on H is usually called a Bell state: All of the singular values
(Schmidt-coefficients) associated to a Bell state are equal. It is easy to see that if the
dimensions of HA and HB are equal, the only subspace H0 ⊆ H such that all its associated
pure states are maximally entangled is a dimension one space H0 = CρB spanned by a Bell
state ρB.

Naturally, the larger the dimension of subspace H0 ⊆ H , the less likely it will be highly
entangled, as per the above definition of entanglement. In recent years it has become a very
important problem in Quantum Information Theory (QIT) to: Find subspaces H0 of large
relative dimension in a tensor product H = HA⊗HB such that all states are highly entangled.
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quantum world, property RD was observed by Vergnioux to be intrinsically connected to the
geometry of the relative position of a subrepresentation of a tensor product of irreducible rep-
resentations of a given quantum group. More precisely, Vergnioux [Ver07, Section 4] points
out that property RD for a given quantum group G is related to the following geometric
requirement: Given any pair of irreducible representations HA, HB of G, all multiplicity-free
irreducible subrepresentations H0 ⊂ HA ⊗ HB must be asymptotically far from the cone of
decomposable tensors in HA ⊗HB.

An exploration of this premonitory remark turns out to be extremely fruitful for a certain
class of compact quantum groups, called the free orthogonal quantum groups (O+

N)N≥3. This
remarkable class of quantum groups, introduced by Wang [Wan95], forms a centerpiece
in the theory of C∗-algebraic compact quantum groups. O+

N arises as a certain universal
non-commutative deformation of the function algebra on the classical real orthogonal group
ON , and has been the topic of much study over the past 20 years. See, for example, the
survey [Bra16] and the references therein. One remarkable fact for our purposes, discovered
by Banica [Ban96], is that the quantum groups O+

N have a unitary representation theory
that closely parallels that of SU(2). In particular, the unitary irreducible representations
of O+

N have the same fusion rules as SU(2), and their construction is well understood in
terms of the planar calculus of the Temperley-Lieb category [KL94]. This close parallel with
SU(2), on the one hand, allows for a highly computable framework (like one has for SU(2)).
On the other hand, the genuinely quantum features of O+

N result in a much higher degree
of entanglement in subrepresentations of tensor products, in comparison to what can be
obtained for SU(2).

For the free orthogonal quantum groups (O+
N)N≥3, we show that one can describe very

precisely the largest singular values of states that appear in irreducible subrepresentations
of tensor product representations (see Theorem 3.4). As a result we describe very precisely
a new non-random class of subspaces of tensor products with the property of being highly
entangled and of large relative dimension. In particular we find deterministic examples of
entangled subspaces of large relative dimension such that the quantity Eµ defined in (1)
is strictly positive for any µ < 1/2. We also deduce from our entanglement results some
interesting properties for the class of quantum channels associated to these subspaces. We
compute explicitly the S1 → S∞ norms of these channels, and obtain large lower bounds on
their minimum output entropies (see Section 4.1).

It is our hope that this paper will be a first step towards substantiating the claim that
quantum groups form a rich well of entangled subspaces and quantum channels with inter-
esting analytic properties. Along the way, we revisit the fundamental geometric inequality
associated to the rapid decay property for O+

N (Proposition 3.1), and improve our under-
standing thereof. In particular, we show that entanglement inequality for property RD
is essentially optimal for the free orthogonal quantum groups, and establish a higher-rank
generalization of it (Theorem 3.4).

The remainder of our paper is organized as follows: After this introduction, we recall in
the first part of Section 2 some concepts related to entangled subspaces, quantum channels,
and minimum output entropy of quantum channels. The second half of Section 2 introduces
the free orthogonal quantum groups and describes aspects of their irreducible unitary rep-
resentation theory that will be used in the sequel. The main section of the paper is Section
3 where we study the entanglement of irreducible subrepresentations of tensor products of
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the previous section. Recall that we set q = 1
N

(
2

1+
√

1−4/N2

)

∈ (0, 1). Our main interest is

to study the entanglement of the αl,m
k (Hk) ⊆ Hl ⊗Hm, and the following proposition gives

a measure of this.

Proposition 3.1. Fix N ≥ 3 and let (k, l,m) ∈ N3
0 be an admissible triple. Then for any

unit vectors ξ ∈ Hk, η ∈ Hl, ζ ∈ Hm, we have

|⟨αl,m
k (ξ)|η ⊗ ζ⟩| ≤

( [k + 1]q
θq(k, l,m)

)1/2

≤ C(q)q
l+m−k

4 ,

where

C(q) = (1− q2)−1/2
( ∞
∏

s=1

1

1− q2s

)3/2

Remark 4. We note that the bound C(q)q
l+m−k

4 appearing in Proposition 3.1 is equivalent,

as N is large, to the fourth root of the relative dimension,
(

dimHk

dimHl dimHm

)1/4
.

Proof of Proposition 3.1. Fix η ∈ Hl and ζ ∈ Hm. We identify Hl with the highest weight
subspace of Hl−r ⊗ H⊗r

1 and similarly we identify Hm with the highest weight subspace of
H⊗r

1 ⊗ Hm−r. I.e, Hl = pl(Hk−r ⊗ H⊗r
1 ) and Hm = pm(H

⊗r
1 ⊗ Hm−r), where pl, pm are the

corresponding Jones-Wenzl projections. Then we can uniquely express

η =
∑

i:[r]→[N ]

ηi ⊗ ei & ζ =
∑

i:[r]→[N ]

ei ⊗ ζi,

where ηi ∈ Hl−r, ζi ∈ Hm−r, and {ei = ei(1) ⊗ . . . ei(r)}i:[r]→[N ] is the standard orthonormal
basis for H⊗r

1 . (Here [x] = {1, 2, . . . , x}.) Recalling formula (6), we have

αl,m
k =

( [k + 1]q
θq(k, l,m)

)1/2
(pl ⊗ pm)

(

ιHl−r
⊗ Tr ⊗ ιm−r

)

pk.

Noting that Tr =
∑

i:[r]→[N ] ei⊗eǐ, where ǐ : [r] → [N ] is defined by ǐ(s) = i(r−s+1). Using
this formula, we then obtain

(αl,m
k )∗(η ⊗ ζ) =

( [k + 1]q
θq(k, l,m)

)1/2
pk
( ∑

i,j:[r]→[N ]

T ∗
r (ei ⊗ ej)ηi ⊗ ζj

)

=
( [k + 1]q
θq(k, l,m)

)1/2

pk
( ∑

i:[r]→[N ]

ηi ⊗ ζǐ

)

.

Applying the triangle and Cauchy-Schwarz inequality to the above expression, we then obtain

∥(αl,m
k )∗(η ⊗ ζ)∥ ≤

( [k + 1]q
θq(k, l,m)

)1/2(∑

i

∥ηi∥2
)1/2(∑

i

∥ζǐ∥
)1/2

=
( [k + 1]q
θq(k, l,m)

)1/2
∥η∥Hl

∥ζ∥Hm,
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