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Abstract Given two positive integers n and k and a parameter t ∈ (0,1), we
choose at random a vector subspace Vn ⊂ Ck ⊗Cn of dimension N ∼ tnk. We
show that the set of k-tuples of singular values of all unit vectors in Vn fills
asymptotically (as n tends to infinity) a deterministic convex set Kk,t that we
describe using a new norm in Rk.

Our proof relies on free probability, random matrix theory, complex anal-
ysis and matrix analysis techniques. The main result comes together with a
law of large numbers for the singular value decomposition of the eigenvectors
corresponding to large eigenvalues of a random truncation of a matrix with
high eigenvalue degeneracy.
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1 Introduction

In [15], it was observed that if one takes at random a vector subspace Vn

of Ck ⊗ Cn of relative dimension t for large n and fixed k, with very high
probability, some sequences of numbers in Rk

+ never occur as singular val-
ues of elements in Vn as n becomes large. This result was used to provide
a systematic understanding of some non-additivity theorems for entropies in
Quantum Information Theory. We refer to the bibliography of [15] for more
information on this topic.

Our aim in this paper is to provide a definitive answer to the question of
which sequences of numbers in Rk

+ occur or not as singular values of elements
in Vn. Our main result can be sketched as follows—for the statement with
complete definitions, we refer to Theorem 5.2:

Theorem 1.1 Let t ∈ (0,1) be a parameter and for any n, Vn a vector sub-
space of Ck ⊗ Cn of dimension N ∼ tnk chosen at random. Then, there exists
a compact set Kk,t ⊂ Rk

+ such that any k-tuple λ in the interior of Kk,t occurs
with high probability as the singular value vector of some norm one vector
x ∈ Vn. Moreover, the probability that some vector ν /∈ Kk,t occurs as the
singular value vector of some element y ∈ Vn is vanishing when n → ∞.

The statement of the above theorem, as well as any other result in this
paper about singular values of vectors in a tensor product space, can be im-
mediately translated into a statement about singular values of matrices, sim-
ply by fixing an isomorphism Ck ⊗ Cn ≃ Mk×n(C); note that the Euclidean
norm on Ck ⊗ Cn is pushed into the Schatten 2-norm on Mk×n(C), i.e.
∥X∥ = √

Tr(XX∗).

Theorem 1.2 Let t ∈ (0,1) be a parameter and for any n, Vn a vector sub-
space of Mk×n(C) of dimension N ∼ tnk chosen at random. Then, there
exists a compact set Kk,t ⊂ Rk

+ such that any k-tuple λ in the interior of
Kk,t occurs with high probability as the singular value vector of a matrix
x ∈ Vn of Hilbert-Schmidt norm one. Moreover, the probability that some vec-
tor ν /∈ Kk,t occurs as the singular value vector of some Hilbert-Schmidt norm
one matrix y ∈ Vn is vanishing when n → ∞.

Even though both formulations are completely equivalent, they are of inter-
est to different areas of mathematics. We choose to work with singular values
(or Schmidt coefficients as they are called in quantum information) of vectors
because of the initial quantum information theoretical motivation.
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Abstract: In a previous paper, we proved that, in the appropriate asymptotic regime,
the limit of the collection of possible eigenvalues of output states of a random quantum
channel is a deterministic, compact set Kk,t .We also showed that the set Kk,t is obtained,
up to an intersection, as the unit ball of the dual of a free compression norm. In this paper,
we identify the maximum of ℓp norms on the set Kk,t and prove that the maximum is
attained on a vector of shape (a, b, . . . , b) where a > b. In particular, we compute the
precise limit value of the minimum output entropy of a single random quantum channel.
As a corollary, we show that for any ε > 0, it is possible to obtain a violation for the
additivity of the minimum output entropy for an output dimension as low as 183, and
that for appropriate choice of parameters, the violation can be as large as log 2 − ε.
Conversely, our result implies that, with probability one in the limit, one does not obtain
a violation of additivity using conjugate random quantum channels and the Bell state,
in dimension 182 and less.

1. Introduction

The question of determining the optimal rate at which classical information can be trans-
mitted through a noisy quantum channel is central in the theory of quantum information.
A conjectured one letter formula for the classical capacity of quantum channels, intro-
duced by Holevo [24] was shown to be a strict lower bound for the optimal rate in the
celebrated work of Hastings [23], who showed, using randomly constructed examples,
that several quantities of interest in quantum information theory were non-additive [33].

Hastings’ counter-example, as well as several follow-up constructions, make use of
the same central idea: random quantum channels, constructed from random isometrical
embeddings of large Hilbert spaces inside tensor products, violate the additivity of the
minimum output entropy (MOE). The non-additivity proofs consist of two bounds: an
upper bound for the MOE of a tensor product of two channels and a lower bound for
the MOE of single channels. In our past work [5], we showed that the lower bound for
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5.2. The large n asymptotics. We are interested in a random sequence Vn of subspaces
of Ck ⊗ Cn having the following properties:

1. Vn has dimension dn which satisfies dn ∼ tkn;
2. The law of Vn follows the invariant measure on the Grassmann manifold Grdn (Ck ⊗

Cn).

In this setting, we call Kn,k,t = KVn . We recall the following theorem, which was
our main theorem in [5]:

Theorem 5.1. Almost surely, the following hold true:
• Let O be an open set in #k containing Kk,t . Then, for n large enough, Kn,k,t ⊂ O.
• LetK be a compact set in the interior of Kk,t . Then, for n large enough,K ⊂ Kn,k,t .

5.3. Convergence result for the minimum output entropy. Putting together Theorem 5.1
proved in [5] and Theorem 2.4 proved in Sect. 3, we obtain the following convergence
result for the minimum output p-entropies of random quantum channels.

Theorem 5.2. Let p be a real number in [1,∞] and$n : Mdn (C)→ Mk(C) a sequence
of random quantum channels with constant output space of dimension k, environment of
size n →∞ and input space of dimension dn ∼ tkn. Then, almost surely as n →∞,

lim
n→∞ Hmin

p ($n) = Hp(x∗t ), (53)

with x∗t defined in Eq. (6).

Proof. In the case p > 1, this follows right away from Theorems 5.1 and 2.4. The case
p = 1 can be obtained by continuity of the entropy. ⊓)

6. Violation of the Additivity for Minimum Output Entropies

6.1. TheMOE additivity problem. The following theorem summarizes some of themost
important breakthroughs in quantum information theory in the last decade. It is based in
particular on the papers [22,23].

Theorem 6.1. For every p ∈ [1,∞], there exist quantum channels $ and % such that

Hmin
p ($⊗%) < Hmin

p ($) + Hmin
p (%). (54)

Except for some particular cases (p > 4.73 [25] and p > 2 [20]), the proof of this
theorem uses the random method, i.e. the channels $,% are random channels, and the
above inequality occurs with non-zero probability. At this moment, we are not aware of
any explicit, non-random choices for $,% in the case 1 ! p ! 2.

Moreover, the strategy in all the results cited above are based on theBell phenomenon,
i.e. the choice% = $̄ and the use of themaximally entangled state as an input for$⊗$̄.
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