

Fachrichtung Mathematik Prof. Dr. Gabriela Weitze-Schmithüsen Dr. Tobias Columbus Christian Steinhart

Algebra

Übungsblatt 7

Aufgabe 1 (4 Punkte)

Sei R ein kommutativer, faktorieller Ring mit Eins und $S \subseteq R$ eine multiplikativ abgeschlossene Menge.

- a) Sei $a \in R \setminus S$ irreduzibel. Zeige dass dann $\frac{a}{1}$ auch in $S^{-1}R$ irreduzibel ist.
- b) Zeige, dass auch $S^{-1}R$ ein faktorieller Ring ist. Was sind seine irreduziblen Elemente?
- c) Wir wissen, dass $\mathbb{Z}[\sqrt{-5}]$ kein faktorieller Ring ist und $3 \in \mathbb{Z}[\sqrt{-5}]$ irreduzibel. Sei $S := \{2^k \mid k \in \mathbb{N}_0\}$. Zeige, dass $\frac{3}{1} \in S^{-1}\mathbb{Z}[\sqrt{-5}]$ nicht irreduzibel ist.

Aufgabe 2 (3 Punkte)

- a) Sei R ein faktorieller Ring und F ein freier R-Modul. Zeige, dass jedes Element $x \in F \setminus \{0\}$ bis auf Assoziiertheit¹ nur endlich viele Teiler hat, d.h. die Menge $\{\lambda \in R \mid \exists y \in F : \lambda y = x\}/\sim$ ist endlich.
- b) Sei R ein Hauptidealring und F ein endlich erzeugter R-Modul. Sei $B \subset F$ eine linear unabhängige Menge. Zeige, dass sich B genau dann zu einer Basis von F ergänzen lässt, wenn F/< B > torsionsfrei ist.

Aufgabe 3 (4 Punkte)

Für einen Ring R heißt ein R-Modul P projektiv, wenn jede kurze exakte Sequenz

$$0 \to M \to N \to P \to 0$$

von R-Moduln spaltet.

- a) Zeige, dass alle freien R-Moduln projektiv sind.
- b) Sei $0 \to M \to N \to P \to 0$ eine kurze exakte Sequenz von R-Moduln. Zeige, dass die Sequenz genau dann spaltet, wenn $N \cong M \oplus P$ gilt.
- c) Zeige, dass ein R-Modul P genau dann projektiv ist, wenn er direkter Summand eines freien Moduls 2 ist.
- d) Sei nun R ein Hauptidealring. Zeige, dass alle endlich erzeugten³ projektiven R-Moduln frei sind.

¹Zwei Elemente $x,y\in R$ heißen assoziiert, wenn ein $\varepsilon\in R^{\times}$ mit $\varepsilon x=y$ existiert. Wir schreiben dann $x\sim y$.

²Das heißt es gibt einen freien Modul F mit Untermodul U und $F = U \oplus P$.

 $^{^3\}mathrm{Das}$ geht eigentlich genauso gut auch für nicht endlich erzeugte.

Aufgabe 4 (5 Punkte)

Gegeben sei die Baer-Specker Gruppe der Folgen in $\mathbb Z$ mit punktweiser Addition

$$\mathbb{Z}^{\mathbb{N}} := \{(a_1, a_2, \dots) \mid a_i \in \mathbb{Z}\}.$$

Wir möchten durch Widerspruch zeigen, dass $\mathbb{Z}^{\mathbb{N}}$ keine freie abelsche Gruppe⁴ ist. Sei ab nun angenommen, dass $\mathbb{Z}^{\mathbb{N}}$ frei und $J \subset \mathbb{Z}^{\mathbb{N}}$ eine Basis von $\mathbb{Z}^{\mathbb{N}}$ ist.

- a) Sei $e_i := (0, ..., 0, 1, 0, ...) \in \mathbb{Z}^{\mathbb{N}}$ das Element, das nur an der *i*-ten Stelle eine 1 hat und sonst Nullen. Für $j \in J$ sei die Projektion π_j durch $\pi_j : \mathbb{Z}^{\mathbb{N}} \to \mathbb{Z}$, $\sum_{i \in J} \lambda_i i \mapsto \lambda_j$ gegeben und $I := \{j \in J \mid \exists i \in \mathbb{N} : \pi_j(e_i) \neq 0\}$. Zeige, dass I und damit auch ihr Erzeugnis $E := \langle I \rangle$ abzählbar sind und E die endlichen Folgen in \mathbb{Z} enthält.
- b) Zeige, dass die Abbildung $\phi: \mathbb{Z}^{\mathbb{N}} \to \mathbb{Z}^{\mathbb{N}}$, $(a_1, a_2, \dots) \mapsto (a_1, a_1 a_2, a_1 a_2 a_3, \dots)$ injektiv ist.
- c) Sei $a := (a_1, a_2, \dots) \in \mathbb{Z}^{\mathbb{N}}$ eine Folge mit $a_i \notin \{0, \pm 1\}$. Zeige, dass das Bild $[\phi(a)] \in \mathbb{Z}^{\mathbb{N}}/E$ unendlich viele Teiler hat.
- d) Mach dir klar, dass $\mathbb{Z}^{\mathbb{N}}$ und damit auch J überabzählbar sind. Folgere hieraus, dass ein $a \in \mathbb{Z}^{\mathbb{N}}$ wie in Teil c) mit $[\phi(a)] \neq 0$ existiert.
- e) Zeige, dass wenn $\mathbb{Z}^{\mathbb{N}}$ frei wäre, auch $\mathbb{Z}^{\mathbb{N}}/E$ frei wäre und führe dies zu einem Widerspruch.

Abgabe bis spätestens Montag, den 09.12, um 12:00 Uhr. Werfen Sie Ihre Lösungsvorschläge in die dafür vorgesehenen Einwurfkästen vor dem Zeichensaal in Gebäude E 2 5. Abgabe zu dritt ist möglich. Bitte geben Sie Ihren Namen und Ihre Matrikelnummer an!

 $^{^4\}mathrm{Freie}$ abelsche Gruppen sind gerade die freien $\mathbb{Z}\text{-}\mathrm{Moduln}.$