Universität des Saarlandes

FR 6.1 Mathematik

Prof. Dr. G. Weitze-Schmithüsen

M.Sc. M. Kany M.Sc. C. Steinhart

Fasnetübungsblatt zur Linearen Algebra I

Aufgabe 1.

Seien X,Y zwei Mengen. Auf der Menge der Abbildungen $\mathrm{Abb}(X,Y)$ von X nach Y haben wir folgende Relationen gegeben.

$$fRg : \iff \exists \ \phi \in \text{Abb}(X, X) \text{ mit } f = g \circ \phi$$

 $fLg : \iff \exists \text{ bijektives } \psi \in \text{Abb}(Y, Y) \text{ mit } f = \psi \circ g$

Geben Sie jeweils mit Begründung an, ob es sich bei L bzw. R um eine Äquivalenzrelation handelt und bestimmen Sie gegebenenfalls die Anzahl der Äquivalenzklassen für $X = \{1, 2, 3\}$ und $Y = \{1, 2, 3, 4\}$.

Aufgabe 2.

Gegeben sei das Gleichungssystem:

$$2ax_2+4x_3 + (a+1)x_5 = 9$$

$$ax_2+2x_3+(a-1)x_4 = 4$$

$$2x_1-ax_2-2x_3+(a-1)x_4-(2a+2)x_5 = 0$$

$$x_1-ax_2-2x_3 + (a+1)x_5 = 0$$

Lösen Sie das Gleichungssystem über $\mathbb R$ in Abhängigkeit von $a \in \mathbb R$.

Aufgabe 3.

Wir betrachten den Vektorraum der Abbildungen $\mathrm{Abb}(\mathbb{R},\mathbb{R})$ mit punktweiser Verknüpfung.

- a) Welche der folgenden Mengen sind Untervektorräume?
 - (i) $V_1 := \{ f \in Abb(\mathbb{R}, \mathbb{R}) \mid \forall \ x \in \mathbb{R} : f(x) \ge 0 \}$
 - (ii) $V_2 := \{ f \in Abb(\mathbb{R}, \mathbb{R}) \mid \forall x \in \mathbb{R} : f(x) = -f(-x) \}$
 - (iii) $V_3 := \{ f \in Abb(\mathbb{R}, \mathbb{R}) \mid \forall x \in \mathbb{R} : f(x) \cdot f(-x) \ge 0 \}.$
 - (iv) $V_4 := \{ f \in Abb(\mathbb{R}, \mathbb{R}) \mid f \text{ ist injektiv } \}$
- b) Welche der folgenden Abbildungen sind linear? Bestimmen Sie gegebenenfalls ihr Bild und ihren Kern:
 - (i) $\phi: \mathrm{Abb}(\mathbb{R}, \mathbb{R}) \to \mathrm{Abb}(\mathbb{R}, \mathbb{R})$, $f \mapsto \phi(f)$ mit $\phi(f)(x) = f(x) + f(-x)$
 - (ii) $\psi : Abb(\mathbb{R}, \mathbb{R}) \to Abb(\mathbb{R}, \mathbb{R})$, $f \mapsto f \circ f$

Aufgabe 4.

- a) Geben Sie zwei verschiedene Matrizen in Stufenform in $\mathbb{R}^{5\times4}$ von Rang 3 an. Was ist jeweils die Dimension des Kerns? Sind die beiden Matrizen ähnlich?
- b) Seien nun $A, B \in \mathbb{R}^{5\times 4}$ zwei Matrizen von Rang 4. Zeigen Sie, dass dann eine Matrix $S \in GL_5(\mathbb{R})$ mit A = SB existiert. Geht das auch, wenn A und B Rang 3 haben?
- c) Sei V ein \mathbb{R} -Vektorraum mit geordneter Basis $B=(b_1|b_2|b_3)$ und $\Phi:V\to V$ eine lineare Abbildung mit Abbildungsmatrix

$$D_{BB}(\Phi) = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & l \end{pmatrix},$$

mit reellen Zahlen $a, b, c, d, e, f, g, h, l \in \mathbb{R}$.

Geben Sie die Abbildungsmatrix $D_{B'B'}(\Phi)$ von Φ bezüglich der geordneten Basis $B' = (b_2|b_3|b_1)$ an und bestimmen Sie eine Matrix S mit $D_{BB} = S \cdot D_{B'B'} \cdot S^{-1}$.

Aufgabe 5.

a) Geben Sie jeweils (mit einer Begründung) an, ob es sich bei den folgenden Abbildungen um Gruppenhomomorphismen handelt:

(i)

$$\phi: (\mathbb{Z}, +) \to (\mathrm{GL}_4(\mathbb{R}), \cdot) \quad , \quad k \mapsto \begin{pmatrix} 1 & 0 & -2k & 0 \\ 0 & 1 & 0 & k \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\psi: (\mathbb{Z}, +) \to (\mathbb{R}^{4 \times 4}, +) \qquad , \quad k \mapsto \begin{pmatrix} 1 & 0 & 0 & k \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

b) Für $\sigma \in S_n$ definieren wir die Matrix $A_{\sigma} = (a_{i,j})$ mit

$$a_{i,j} = \begin{cases} 1 & \text{, falls } j = \sigma(i) \\ 0 & \text{, sonst} \end{cases}$$

Zeigen Sie, dass die Abbildung

$$\iota: S_n \to \mathrm{GL}_n(\mathbb{R})$$
 , $\sigma \mapsto A_{\sigma}$

wohldefiniert und ein Gruppenhomomorphismus ist.

Aufgabe 6.

Sei $n \in \mathbb{N}$ eine natürliche Zahl. Wir betrachten den Vektorraum $\mathbb{R}^{n \times n}$ der $n \times n$ -Matrizen über \mathbb{R} .

a) Für eine Matrix $A \in \mathbb{R}^{n \times n}$ sei die Abbildung

$$\phi_A: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n} \quad , \quad B \mapsto A \cdot B$$

gegeben. Zeigen Sie, dass ϕ_A eine lineare Abbildung ist. Wann ist ϕ_A eine Bijektion?

b) Gegeben sei die Basis

$$E:=(\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&1\\0&0\end{pmatrix},\begin{pmatrix}0&0\\1&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix})$$

Bestimmen Sie die Abbildungsmatrix $D_{EE}(\phi_A)$ für $A:=\begin{pmatrix} 3 & 4 \\ -1 & 2 \end{pmatrix}$ und die Determinante von ϕ_A .

c) Bestimmen Sie die Dimension des Kerns $\operatorname{Kern}(\phi_A)$ in Abhängigkeit des Ranges von A.

Aufgabe 7.

Sei $E = \{e_1, e_2, e_3\}$ die Standardbasis des \mathbb{R}^3 .

- a) Zeigen Sie: $b_1 = e_1 + e_2$, $b_2 = e_1 e_3$ und $b_3 = e_2$ sind linear unabhängig.
- b) Bestimmen Sie die Inverse der Matrix

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

c) Gegeben sei das lineare Gleichungssystem $A \cdot x = b$. Bestimmen Sie $A \in \mathbb{R}^{3 \times 3}$ und $b \in \mathbb{R}^3$ so, dass $\mathbb{L}_h := \langle \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \rangle$ die homogene Lösungsmenge und $x_s := \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ eine spezielle Lösung des linearen Gleichungssystem sind.

Aufgabe 8.

Seien V, W zwei endlich-dimensionale K-Vektorräume.

a) Seien weiterhin $V_1, V_2 \subset V$ zwei Untervektorräume die sich trivial schneiden, d.h. es gilt $V_1 \cap V_2 = \{0\}$, und für i = 1, 2 jeweils

$$\phi_i: V_i \to W$$

eine lineare Abbildung. Zeigen Sie, dass dann eine lineare Abbildung $\phi: V \to W$ existiert, sodass $\phi_i = \phi|_{V_i}$ gilt. Wann ist ϕ eindeutig bestimmt?

b) Sei $\phi:V\to W$ eine surjektive lineare Abbildung. Zeigen Sie, dass dann $V\cong W\times \mathrm{Kern}(\phi)$ gilt.

Aufgabe 9.

Gegeben seien die zwei drei-dimensionalen Vektorräume:

$$V := \langle \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \\ 0 \end{pmatrix} \rangle$$

$$W := \langle \begin{pmatrix} 3 \\ 3 \\ 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \\ -2 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 3 \\ 4 \\ 4 \end{pmatrix} \rangle$$

- a) Bestimmen Sie $\dim(W+V)$ und $\dim(W\cap V)$.
- b) Geben Sie eine Basis von W+V und $\mathbb{R}^5/(W+V)$ an.
- c) Geben Sie eine lineare Abbildung $\phi: \mathbb{R}^5 \to \mathbb{R}^5$ mit $\phi(V) = W$ und deren Abbildungsmatrix $D_{BC}(\phi)$ bezüglich Basen B, C Ihrer Wahl an.

Aufgabe 10.

Sei V ein K-Vektorraum und $\phi \in \operatorname{End}(V)$ ein Endomorphismus mit $\phi^2 = 4 \cdot \operatorname{id}_V$.

- a) Zeigen Sie, dass ϕ bijektiv ist.
- b) Zeigen Sie, dass alle Vektoren in $Bild(\phi + 2 \cdot id_V)$ Eigenvektoren zum Eigenwert 2 sind.
- c) Zeigen Sie, dass $Bild(\phi + 2 \cdot id_V)$ und $Kern(\phi + 2 \cdot id_V)$ zwei Untervektorräume sind, die sich trivial schneiden, d.h. es gilt $Bild(\phi + 2 \cdot id_V) \cap Kern(\phi + 2 \cdot id_V) = \{\underline{0}\}.$
- d) Folgern Sie, dass ϕ diagonalisierbar ist. Was sind die möglichen Eigenwerte von ϕ ?