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Introduction

In this thesis, we study a type of surfaces called finite translation surfaces.
They are two-dimensional manifolds equipped with a translation structure, i.e.
an atlas such that the transition maps are translations. Alternatively, they
can be obtained by identifying opposite edges of polygons in the Euclidean
plane. We will see that we can divide the space of translation surfaces by their
singularities into strata that can be endowed with the structure of an orbifold.

A special type of translation surfaces are origamis. They are square-tiled
surfaces or equivalently coverings of the once punctured torus. Origamis
have multiple interesting properties such as being entirely determined by two
permutations describing the horizontal and vertical gluing.

Our attention mostly belongs to systoles of translation surfaces. Systoles are
in some sense the shortest closed curves of translation surfaces. We will show
that for translation surfaces with genus g ≥ 2 there is always a systole that
passes through a cone point (i.e. a singularity with angle 2π(k + 1), k ∈ N).
We will then compute the length of systoles for special families of origamis, in
particular for normal origamis with certain deck transformation groups and
origamis induced by cyclic covers of the (n×n)-torus. For this purpose, we will
present two algorithms introduced in Systolic geometry of translation surfaces
[1] that, given an origami, compute the length of the systole. We will also show
a potential implementation of these algorithms in GAP (Groups, Algorithms
Programming) [3].
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Chapter I.

Finite Translation Surfaces

In this chapter, we introduce the notion of finite translation surfaces. We will
see that they can be equipped with a metric and we are thus able to talk about
their singularities with respect to this metric.

1. Definitions and Notations
We will see that there are multiple equivalent definitions of finite translation
surfaces. The first definition is in terms of gluing polygons in the Euclidean
plane together [10].

Definition I.1.1: Let P1, . . . , Pn ⊂ R2 be finitely many disjoint polygons, let P ∗i
denote the polygon Pi without its vertices and let D := ⋃n

i=1 ∂P
∗
i be the union

of the edges of all polygons without their vertices. Moreover, we choose an
orientation of R2 and an involution T : D → D such that the restriction of T
on the interior of an edge is a translation to an edge with opposite orientation.
If the surface

X := (
n⋃
i=1

P ∗i )/T

is connected, then (X,ω) is called a finite translation surface, where ω is the
atlas obtained via the embeddings of the polygons in R2 and the identification
of the edges via T .

We will refer to finite translation surfaces as just translation surfaces. Visually
speaking one obtains a translation surface by gluing parallel sides of polygons
together. Examples of translation surfaces are the torus (see Figure I.1) or the
translation surface in Figure I.3.
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Figure I.1.: The torus is a translation surface obtained by gluing opposite sides
of a unit square.

In the following we want to define a metric on our translation surface. We do
this by considering the quotient metric of ⋃ni=1 P

∗
i induced by the Euclidean

metric of R2. Generally, the quotient space of a metric space does not have to
be a metric space itself, but we will see that in our case the space behaves as
desired. For this chapter let (X,ω) be a translation surface.

Lemma I.1.2: The function dX : X ×X → [0,∞) defined by

dX(x, y) = inf {
m−1∑
i=1

dR2(pi, pi+1) |p1, . . . , pm ∈ R2 s.t [p1] = x, [pm] = y and

∀ 1 ≤ i ≤ m− 1 ∃P ∗j s.t pi, pi+1 ∈ P ∗j }

defines a metric on X, called the flat metric on X.

Proof: We first show the identity of indiscernibles, i.e dX(x, y) = 0⇔ x = y.

Let x, y ∈ X with x = y. Choose an arbitrary point p ∈ π−1(x) ⊂ R2, where
π is the projection. Then we have [p] = x = y. Since dR2 is a metric we have
dR2(p, p) = 0 =⇒ dX(x, y) = 0.

Now let x 6= y. Let p1, . . . , pm ∈ R2 such that [p1] = x and [pm] = y. First,
assume that neither x nor y are on an edge of a polygon. Let

ε := inf ({dR2(π−1(x), p) | p ∈
n⋃
j=1

∂P ∗j } ∪ {dR2(π−1(x), π−1(y))}),

where ∂P ∗j are the edges of the polygon Pj without its vertices. Then 0 < ε ≤∑m−1
i=1 dR2(pi, pi+1), so dX(x, y) ≥ ε > 0.

Now assume that x and y are on some edges of the polygons. If p ∈ R2 is a
point on an edge of a polygon without vertices, denote by Ep the edge p is on
and by E−1

p its opposite edge. Let

δ := inf ({dR2(a, b) | [a] = x, [b] = y}

∪ {dR2(p, q) | [p] = x or [p] = y, q ∈ (
n⋃
j=1

∂P ∗j ) \ (Ep ∪ E−1
p })
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We have 0 < δ ≤ ∑m−1
i=1 dR2(pi, pi+1) =⇒ dX(x, y) ≥ δ > 0. Lastly, w.l.o.g. let

y be on an edge of a polygon and x not. Let

µ := inf {dR2(π−1(x), p) | p ∈
n⋃
j=1

∂P ∗j }.

The same argument as in the other two cases shows dX(x, y) ≥ µ > 0. All
cases combined imply that dX(x, y) 6= 0 and thus dX(x, y) = 0⇔ x = y.

Furthermore, symmetry follows from the symmetry of dR2 .

Now let x, y, z ∈ X. Since every path from x to z to y is a path from x to y,
this path is already considered by the infimum in the definition of dX(x, y).
Hence,

dX(x, z) + dX(z, y) ≥ dX(x, y).

Thus, the triangle inequality holds and dX is a metric. �

The metric space we obtain does not have to be complete, but every metric
space M has a metric completion which can be constructed by considering
equivalence classes of Cauchy sequences in M with respect to the equivalence
relation of having distance 0. A more thorough construction can be found in
[8].

Definition I.1.3: Let X be the metric completion of X. We call the points
Σ := X \X the singularities of X.

The set Σ of singularities is finite, even discrete. By construction of X, they
are exactly the removed vertices of the polygons. In the following section, our
goal is to find some sort of classification of these singularities. Henceforth let
(X,ω) always denote a translation surface and X its metric completion.

2. Classification of Singularities
We first introduce a more general notion of translation surfaces where we allow
translation surfaces to be infinite.

Definition I.2.1: We call a set of translation charts, i.e., charts whose transition
maps are translations, translation atlas. We say that two translation atlases are
equivalent if for all charts of both atlases there are biholomorphic transition
maps. A translation structure is then an equivalence class of a translation atlas.
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Definition I.2.2: A (infinite) translation surface (X,ω) is a connected, two-
dimensional manifold X equipped with a translation structure ω.

One can show that we also have a metric for infinite translation surfaces ([10]
Proposition 1.8) and singularities with respect to this metric.

Definition I.2.1 inspires the following definition of finite translation surfaces.

Definition I.2.3: A finite translation surface (X,ω) is a connected manifold X
together with a translation structure ω such that X is compact and the set Σ
of singularities is finite.

We just need to make sure that the two definitions are talking about the same
object. We give a proof which can also be found in [10] Satz 1.

Proposition I.2.4: The two definitions of finite translation surfaces (Defini-
tion I.1.1, Definition I.2.3) are equivalent.

Proof: Let (X,ω) be a finite translation surface as given in Definition I.2.3.
Consider a finite triangulation of X such that every singularity is a vertex of a
triangle and that for every triangle ∆ ⊂ X there is a chart (U,ϕ) such that
∆ ⊂ U and ϕ(U) is a triangle in R2.

For all vertices of triangles in R2 that do not correspond to a singularity glue
all the adjacent triangles together. This is possible because the transition
maps are translations. This gives polygons in R2 that can once again be glued
together by identifying edges that are shared by triangles in X and hence a
translation surface according to Definition I.1.1.

Now let (X,ω) be a finite translation surface as given in Definition I.1.1. Let
x ∈ X. Then the preimage of the projection π either consists of a single point
in the interior of a polygon or of two points on the edges of two not necessarily
distinct polygons.

In the first case consider a sufficiently small neighborhood U of x such that π
is invertible on U . Then (U, (π|U )−1) is a chart around x.

Similarly, we can find a chart (V, (π|V )−1) in the second case. Since the preimage
of V under π consists of two connected components, we need to transform the
image of (π|V )−1 on one of the connected components via translations to ensure
that the chart is well defined.
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Doing this for every x ∈ X gives a translation atlas. Then X together with
the equivalence class of this atlas gives a finite translation surface according to
Definition I.2.3. �

We will later give a third definition of finite translation surfaces (see Defini-
tion I.4.1) which is also equivalent to the other two definitions.

Lastly, to talk about the classification of singularities we introduce translation
coverings.

Definition I.2.5: Let (X,ω) and (Y, ν) be two not necessarily finite translation
surfaces and let p : X → Y be a covering such that p can be extended to a
continuous map X → Y . p is called translation covering if for any x ∈ X there
are charts (U,ϕ) ∈ ω, (V, ψ) ∈ ν with x ∈ U and p(U) ⊂ V such that for every
z ∈ ϕ(U) we have

(ψ ◦ p ◦ ϕ−1)(z) = z + t for some fixed t ∈ R2 .

We say that p is k-cyclic if Deck(p) ∼= Z /k Z and infinite cyclic if Deck(p) ∼= Z.

Informally speaking one can see that we have some sort of angle around the
singularities of X. This observation can be made mathematically rigorous.

Definition I.2.6: Let σ be a singularity of (X,ω). σ is called

(i) flat point if there is a chart (U,ϕ) of X∪{σ} with σ ∈ U that is compatible
with ω.

(ii) cone angle singularity or cone point if there exist k > 1, ε > 0 and a
neighborhood U of σ in X such that there is a k-cyclic translation covering
of U \ {σ} on the once punctured disk Bε(0) \ {0} ⊂ R2. We call k the
multiplicity of σ.

(iii) infinite angle singularity if there exists an ε > 0 and a neighbourhood
U of σ in X such that there is an infinite cyclic translation covering of
U \ {σ} on the once punctured disk Bε(0) \ {0} ⊂ R2.

(iv) wild singularity if none of the other classifications apply.

The translation surface in Figure I.1 has one flat point. It can be shown that
on finite translation surfaces only flat points and cone points can occur (see
[10] Proposition 2.5). When talking about translation surfaces that are not
finite, this does not need to hold.
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Definition I.2.7: For k1, . . . , kn ∈ N the set

H(k1, . . . , kn) := {(X,ω) is a finite translation surface |
X has n singularities of multiplicities k1 + 1, . . . , kn + 1}/ ∼

is called stratum, where two finite translation surface (X,ω), (Y, ν) are isomor-
phic if there is a homeomorphism ϕ : X → Y that is locally a translation.

3. Homology of Translation Surfaces
In this section, we want to investigate the homology groups of a translation
surface X. This will be useful for establishing a connection between the
singularities of X and the genus of X.

We give a brief introduction to singular homology (with coefficients in Z) as
given in Allen Hatcher’s book about algebraic topology [4].

Let v0, . . . , vn ∈ Rm be n + 1 affine independent points. Then denote by
[v0, . . . , vn] ⊂ Rm the smallest convex set containing v0, . . . , vn. This set is
called n-simplex and is the n-dimensional analog of the triangle. Further,
denote by

∆n := [e0, . . . , en] (I.1)
the standard n-simplex, where {e0, . . . , en} is the standard basis of Rn+1.

Removing one point vi of an n-simplex leaves us with an (n− 1)-simplex. We
write [v0, . . . , v̂i, . . . , vn] for this simplex.

Now let X be an arbitrary topological space. A singular n-simplex is a
continuous map

σ : ∆n → X

where ∆n is the standard simplex given in Eq. (I.1).

Define Cn(X) to be the free abelian group with the set of singular n-simplices
as its basis. The elements of Cn(X) are called n-chains and are of the form∑
i niσi, where ni ∈ Z, σi : ∆n → X and the sum is finite.

The boundary map ∂n : Cn(X)→ Cn−1(X) is defined as

∂n(σ) =
∑
i

(−1)iσ|[v0,...,v̂i,...,vn],

with the property that ∂n ◦ ∂n+1 = 0.
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We then define the singular homology groups as

Hn(X) := ker ∂n/Im ∂n+1.

Equivalently, we could consider the cellular homology groups, as they are
isomorphic to the singular homology groups.

Definition I.3.1: The Euler characteristic of a topological space X is given by

χ(X) :=
∑
n

(−1)n rank(Hn(X)),

where the Hn are the singular homology groups.

LetM,N be two orientable and connected n-dimensional manifolds, let D ⊂M
and D′ ⊂ N be two closed n-disks and let ϕ : ∂D → ∂D′ be a homeomorphism.
Define the set

S = (M \ Int(D)) ∪ (N \ Int(D′)).

The connected sum M#N of M and N is then the quotient space obtained by
identifying the boundarys of D and D′ via ϕ. The fact that the connected sum
is unique is highly non-trivial and uses the Annulus theorem proven by Kirby
in [7].

Less rigorously speaking, the connected sum of two manifold M,N is obtained
by removing a ball in each manifold and gluing the two resulting manifolds
together along the boundary spheres.

We want to compute the homology groups of connected sums for closed, con-
nected and orientable manifolds of dimension n. The following lemma can be
found in [4].

Lemma I.3.2: Let M,N be two closed, connected and orientable n-dimensional
manifolds. Then we have

Hi(M#N) =


Z, i = 0 or i = n,

Hi(M)⊕Hi(N), 1 ≤ i ≤ n− 1
0, i > n

In the following, we will show how the Euler characteristic of the genus g
surface Mg, defined as the connected sum of g many tori, relates to g. We will
then use this information to find a connection between the Euler characteristic
of a translation surface and its genus g.
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Proposition I.3.3: Let Mg be the connected sum of g many tori. Then

χ(X) = 2− 2g.

Proof: Since Mg is path connected, we have H0(Mg) = Z (see Lemma I.3.2).
The other homology groups

H1(Mg) = H1(T 2)⊕ · · · ⊕H1(T 2) = Z2⊕ · · · ⊕ Z2 = Z2g

and
H2(Mg) = Z .

and lastly for n > 2
Hn(Mg) = 0.

follow from Lemma I.3.2. Hence, we have

χ(Mg) :=
∑
n

(−1)n rank(Hn(Mg)) = 1− 2g + 1 = 2− 2g. �

Moreover, we use the following classification theorem for closed surfaces from
which we can deduce that every translation surface is homeomorphic to Mg for
some g. We remind the reader that we restrict ourselves to finite translation
surfaces.

Theorem I.3.4 (Classification of Closed Surfaces): Let X be a closed and con-
nected surface. Then X is homeomorphic to one of the following:

(i) The genus g surface, i.e. the connected sum of g many tori. We consider
the sphere as the sum of 0 tori.

(ii) The connected sum of k real projective planes k ≥ 1.

A proof of this theorem can be found for example in Conway’s ZIP Proof [2].

Since the transition maps of a translation surface X are translations and the
Jacobian matrix of a translation is the identity matrix, it immediately follows
that X is orientable. As the real projective plane is not orientable, we get
that X ∼= Mg for some genus g. Due to the homology groups being topological
invariants, we also know the homology groups of the translation surface. Thus
we have the following corollary:

Corollary I.3.5: Let X be a translation surface of genus g. Then

χ(X) = 2− 2g.
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The following basic fact from the theory of translation surfaces (see e.g. [10]
Proposition 3.13) establishes a connection between the genus of a translation
surface and the multiplicities of its singularities.

Proposition I.3.6: Let X ∈ H(k1, . . . , kn) be a translation surface of genus g.
Then

2g − 2 =
n∑
i=1

ki

Proof: Consider a finite triangulation of X such that every singularity of X is
a vertex of a triangle. Denote by v the number of vertices, by e the number
of edges and by f the number of faces of the triangulation. Then we know by
Corollary I.3.5

2g − 2 = χ(X) = v − e+ f.

Since every triangle has 3 edges but every edge is shared by two faces, we have
that e = 3f

2 .

We compare the sum of all interior angles of the triangles:

f · π =
n∑
i=1

(ki + 1) · 2π + (v − n) · 2π

Dividing by π leaves us with

f =
n∑
i=1

2(ki + 1) + 2(v − n)

and thus

χ(X) = v − 3f
2 + f

= v − f

2

= v −
∑n
i=1 2(ki + 1) + 2(v − n)

2

= v −
n∑
i=1

(ki + 1)− (v − n)

= −
n∑
i=1

(ki + 1) +
n∑
i=1

1

= −
n∑
i=1

ki.
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Multiplying both sides by −1 yields

2g − 2 = −(2− 2g) = −(−
n∑
i=1

ki) =
n∑
i=1

ki. �

With this connection, one may easily verify that the following statements are
true.

Corollary I.3.7: Let H(k1, . . . , kn) be a stratum. Then all translation surfaces
in H(k1, . . . , kn) share the same genus g.

Corollary I.3.8: Let X be a translation surface. Then X has at least one cone
point singularity if and only if X has genus g ≥ 2.

Corollary I.3.9: Let n be odd and ki = 1 for 1 ≤ i ≤ n. Then the stratum
H(k1, . . . , kn) is empty.

4. Period Coordinates
In the following, we want to equip the set of translation surfaces with a space
structure. We first introduce an equivalent definition of translation surfaces
using holomorphic 1-forms. For an introduction to differential forms, we refer
to [16].

Definition I.4.1: Let X be a compact and connected Riemann surface and
let ω 6= 0 be a holomorphic 1-form. Let Σ be the set of zeroes of ω and set
X∗ := X \ Σ. Then (X∗, ω) is a finite translation surface.

The singularities of X∗ are then exactly the zeroes of ω. An atlas can be
obtained by integrating over the 1-form ω. For a detailed proof why the two
definitions are equivalent, we refer to [10] Satz 1.

The following introduction to period coordinates is heavily based on the intro-
duction given by Daniel Massart in [9] and Alex Wright in [19].

We have seen that we can divide the set of equivalence classes of translation
surfaces into strata. Let H(k1, . . . , ks) be a stratum consisting of translation
surfaces of genus g. Then the stratum can be endowed with the structure of a
complex orbifold of dimension n = 2g + s− 1 (see [19] Proposition 1.15).

Let (X∗, ω) be a translation surface of genus g, as defined above, and let
Σ = {x1, . . . , xs} be the set of zeroes of the holomorphic differential ω. Choose
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a basis of the relative homology H1(X,Σ). For example, let α1, . . . , α2g be
simple closed curves based at xi which generate H1(X) and for each for each
1 ≤ i ≤ s − 1 let ci be a simple arc joining xi to xi+1. Then the relative
homology classes of α1, . . . , α2g, c1, . . . , cs−1 generate H1(X,Σ). We can then
define the period coordinates of (X∗, ω) as follows:

Definition I.4.2: Let (X∗, ω) be a translation surface. The period coordinates
of (X∗, ω) with respect to the basis [α1], . . . , [α2g], [c1], . . . , [cs−1] of H1(X,Σ)
are the n = 2g + s− 1 complex numbers

ˆ
α1

ω, . . . ,

ˆ
α2g

ω,

ˆ
c1

ω, . . . ,

ˆ
cs−1

ω.

The period coordinates assign to each stratum an atlas of charts to Cn with
transition functions in GLn(Z). These transition functions are change of basis
matrices for the first relative homology group H1(X,Σ).

5. Systoles of Translation Surfaces
We define a curve as a continuous function γ : I → X, where I ⊂ R is a closed
interval. We say that γ is closed if the start point and endpoint of γ coincide.
In this thesis, we want to talk about curves that are locally shortest paths.
Mainly, we are interested in the locally shortest curves that connect two not
necessarily distinct singularities in X.

A geodesic is a curve γ : I → X such that for every x ∈ I \ ∂I there is a
neighborhood U of x such that γ|U is an isometry. A geodesic in X which has
its starting point and endpoint in two not necessarily distinct singularities and
does not contain any more singularities is called saddle connection.

One of our main objects of interest are systoles of translation surfaces. They
are in some sense the shortest closed curves. The following definition makes
this more precise:

Definition I.5.1: A systole of X is a shortest, simple closed, not null-homotopic
geodesic of X. We denote by sys(X) the length of the systole. Moreover, denote
by

SR(X) := sys(X)2

area(X)
the systolic ratio of X.
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Remark I.5.2: We allow systoles to pass through cone point singularities of X.
Therefore, if we talk about systoles of X we also allow them to lie in X.

While the systole of a translation surface does not have to be unique (not even
up to homotopy), it always exists on the surface X. If the genus of X is ≥ 2,
we have that there always exists a systole that passes through a cone point (see
[1], Proposition 2.8). We give the proof of this statement in the following.

Theorem I.5.3: Let X be a translation surface with genus g ≥ 2, then there
exists a systole of X that passes through a cone point.

Proof: Let X be a translation surface and γ be a simple closed geodesic in X
which does not pass through a cone angle singularity. Let ε > 0 be sufficiently
small such that the cylinder

Cε(γ) := {p ∈ X | dX(p, γ) < ε}

around γ does not contain any cone points. Due to Corollary I.3.8, there exists
at least one cone point. Thus, we can expand the cylinder until at width δ the
boundary of Cδ(γ) contains a cone point p (see Figure I.3) or the upper and
the lower segment of the cylinder coincide. Note that the second case implies
that X is a torus which contradicts g ≥ 2.

We can decompose the boundary of the cylinder into two parts, namely the
upper and lower segment of the boundary of the cylinder (left/right lines in
Figure I.2)

∂Cδ(γ) = ∂1Cδ(γ) ∪ ∂2Cδ(γ).
Note that ∂1Cδ(γ) and ∂2Cδ(γ) do not need to be disjoint (i.e. the segments
may partially lie on identified edges).

Let without loss of generality γ′ = ∂1Cδ(γ) be the part of the boundary
containing p.

We have that γ′ \ {p} is either an open segment (see Figure I.2) or consists of
at least two connected components (see Figure I.3)

γ′ \ {p} = γ̊1 t γ̊2 t · · · t γ̊k.

In the first case let γ′′ = γ′. In the second case γ̊i ∪ {p} are simple closed
geodesics and we can choose γ′′ = γ̊1 ∪ {p}.

We have the following estimate

l(γ) = l(γ′) ≥ l(γ′′).
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This shows that for every simple closed geodesic γ which does not pass through
a cone point there exists a simple closed geodesic of equal or smaller length
that intersects a cone point. Thus, the minimum sys(X) is attained in at least
one simple closed geodesic that passes through a cone point. �

γ′′

Figure I.2.: Three images of the same translation surface in H(2), where oppo-
site edges are identified. The blue line is a simple closed geodesic γ.
The dotted/red lines represent the boundary of the cylinder before
and after the expansion, respectively. The green line is a simple
closed geodesic γ′′ that runs through a cone point. In particular,
in this example, γ′′ is a systole of the surface.

γ′′

Figure I.3.: The same illustration as in Figure I.2, but this time γ′ \ {p} (right
red line) consists of two connected components. The green line γ′′
is then the choice of such a connected component together with
the point p.
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Chapter II.

Origamis and the SL2(Z)-action

The goal of this chapter is to introduce special types of translation surfaces
called origamis, which lie dense in the strata. They are obtained by gluing
finitely many unit squares together. We will see, that SL2(Z) defines an action
on the set of origamis. Other good references for origamis include [15], [14] and
[13].

Definition II.0.1: A finite translation surface (O,ω) is called origami if it can
be represented as a gluing of finitely many unit squares. The number of squares
is called degree of O and is denoted by deg(O).

The simplest example of an origami is the torus as can be seen in Figure I.1.
Another example is given in Figure I.3. There we see an origami of degree 3 in
H(2).

Remark II.0.2: A convenient property of origamis is that they are entirely
determined by two permutations σx and σy in Sd describing the horizontal and
vertical gluing, respectively. We write O = (σx, σy). We obtain the translation
surface from the permutations as follows:

We label the squares of the origami by 1, . . . , deg(O).

• The right edge of the square labeled with i is glued with the left edge of
the square labeled with σx(i).

• The upper edge of the square labeled with i is glued with the lower edge
of the square labeled with σy(i).

Note that we could use an arbitrary underlying set V with #V = d and consider
σx, σy ∈ Sym(V ).
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Equivalently, one may define an origami O as a finite unramified covering of
the once punctured torus p : X∗ → T ∗. The degree d of the origami is the
degree of the covering and the two permutations describing O can be obtained
by considering the monodromy ρ : π1(T ∗)→ Sd of p. In particular, if x, y are
horizontal, respectively vertical, closed paths on T ∗ that do not lie on an edge,
then x and y generate π1(T ∗) and we set σx = ρ(x) and σy = ρ(y).

We say that the origami O is normal if the covering p : X∗ → T ∗ is normal.
Figure II.1 shows an example of a normal origami.

Remark II.0.3: Assume that (X,ω) is an origami. Then we can choose the
curves α1, . . . , α2g, c1, . . . , cs−1 in Definition I.4.2 such that they lie on the edges
of the squares. Hence the period coordinates lie in Z[i].

a a b

b c

c d

d e

e

Figure II.1.: A normal origami in the stratum H(4, 4). The blue curves
α1, . . . , α10 together with the red curve c1 form a basis of the
Z-module H1(X,Σ).

1. Origamis and Cayley Graphs
In Origamis and permutation groups [20], David Zmiaikou shows how to
construct origamis given a 2-generated finite group G together with generators
g, h ∈ G such that G is the deck group of these origamis.

We will need the following definitions.

Definition II.1.1: A labeled digraph is a triple (V,E, L) where V is a set whose
elements are called vertices, L a totally ordered alphabet whose elements are
called labels and E ⊂ V × V × L a subset whose elements are called edges. If
there are k labels in L and every label li,∈ L (1 ≤ i ≤ k) appears in an edge,
then the digraph is called k-labeled.
An isomorphism between two labeled digraphs (V,E, L) and (V ′, E ′, L′) is a pair
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of bijections (f : V → V ′, φ : L → L′), such that φ respects the orders on L
and L′ and we have (u, v, l) ∈ E if and only if (f(u), f(v), φ(l)) ∈ E ′.

Definition II.1.2: Let V be a finite set and let O be an origami corresponding
to a pair of permutations (σx, σy) ∈ Sym(V ) × Sym(V ). Then the origamal
digraph of O is defined as the 2-labeled digraph (V,E, L), where L = {l1, l2},
l1 < l2 is an ordered alphabet and

E = {(v, σx(v), l1) | v ∈ V } ∪ {(v, σy(v), l2) | v ∈ V }.

The labels l1 and l2 are in correspondence with the horizontal and vertical
permutations, respectively.

Lastly, we will need the following definition.

Definition II.1.3: Let G be a group and let {g, h} be a generating set. Consider
G as the set of vertices and let L = {g, h}, g < h, be the alphabet. Moreover,
let there be an edge with label g (resp. h) between two vertices u and v if and
only if v = ug (resp. v = uh). Then the resulting labeled digraph is called
Caley graph. We write C(G;L) = (G,E,L).

Normally, the Cayley graph is defined for arbitrary groups and generating sets
but in this thesis we restrict ourselves to groups with two generators. Given a
presentation G = 〈X | R〉 of G, we write C(X;R) for the Cayley graph of G
with respect to the generating set X.

Now let G be a finite group with generators g and h. The group G defines a
right group action on itself via right multiplication (note that Zmiaikou uses
left multiplication). We get a permutation representation

preg : G→ Sym(G)

of this group action (which is an antihomomorphism).

Then the Cayley graph C(G, {g, h}) is isomorphic to the origamal digraph
defined by (preg(g), preg(h)) ∈ Sym(G)×Sym(G). We denote the corresponding
normal origami by O(G,g,h).

In general, different generators of the same group give different origamis.
However, in some cases, different generators can give rise to the same origami,
as Zmiaikou shows in the following lemma ([20], Lemma 4.2).

Lemma II.1.4: Let (g, h) and (g′, h′) be two pairs of generators of a finite group
G. The origamis O(G,g,h) and O(G,g′,h′) coincide if and only if there exists an
automorphism α ∈ Aut(G) such that α(g) = g′ and α(h) = h′.
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In the next section, we will see an example of this construction, namely for
so-called p-origamis.

2. p-Origamis
In the dissertation of Thevis [17], a special class of origamis called p-origamis
was introduced. They are normal origamis whose deck transformation groups
are p-groups.

Definition II.2.1: Let G be a group. If there is a prime p such that for every
g ∈ G there is an n ∈ N such that ord(g) = pn, then G is called a p-group.

For finite groups, it is sufficient for the order of the group to satisfy this
condition.

Remark II.2.2: Let G be a finite group. Then G is a p-group if and only if
ord(G) = pn for some n ∈ N.

Proof: Let G be a finite p-group. Assume there is a prime q ∈ N, q 6= p, such
that ord(G) is divisible by q. According to the first Sylow theorem, there
is a q-Sylow subgroup H of G such that ord(H) = qk for some k ∈ N. Let
h ∈ H, h 6= 1. Then 1 6= ord(h) | qk and thus, since p and q are primes, ord(h)
is not a p-power. This contradicts G being a p-group. Hence, ord(G) = pn for
some n ∈ N.

Now let G be a finite group such that ord(G) = pn and let g ∈ G. Due to
Lagrange’s theorem, the order of g divides pn. Since p is prime, we have that
ord(g) = pm for a natural number m ≤ n. Hence, G is a p-group. �

Definition II.2.3: A normal origami O whose deck group is a p-group is called
p-origami.

The following example shows a family of 2-groups of order 2n introduced by
Thevis in [17] Proposition 3.1.4, obtained as a semidirect product of two cyclic
groups. We will later compute the systoles of the 2-origamis obtained by these
groups.

Example II.2.4: Let n, k ∈ N such that n > 2 and k ≤ n − 2. Moreover, let
C2k+1 = 〈r〉 and C2n−k−1 = 〈s〉 be two cyclic groups of order 2k+1 and 2n−k−1,
respectively. Define the group automorphism

α : C2k+1 → C2k+1 , rm 7→ r−m.
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Then the map
ϕ : C2n−k−1 → Aut(C2k+1), sm 7→ αm

is a group homomorphism. We can then define the semidirect product

G(n,k) := C2k+1 oϕ C2n−k−1 = 〈r, s | r2k+1 = s2n−k−1 = 1, s−1rs = r−1〉.

Then G(n,k) is a 2-group of order 2n with generators generators r, s. For a more
detailed description of the construction, we refer to Thevis’s dissertation. Note
that Thevis denotes the same group by G2

(n,k).

Let n = 3 and k = 1. Then O(G(3,1),r,s) is the following origami:

r2 r31 r

rs r3s

r2ss a

a b

b c

c d

d

Figure II.2.: The origami O(G(3,1),r,s). Edges without a label are glued with their
opposite edge.

The origami in Figure II.2 is a 2-origami. For 2-origamis, Thevis gives the
following classification of their strata ([17], Theorem 3.2.3).

Theorem II.2.5: Let n ∈ N. For 2-origamis of degree 2n, the following strata
appear:

(i) H(0)
(ii) H(2n−k × (2k − 1)), where 1 ≤ k ≤ n− 2

Remark II.2.6: For k = 1, the origamis O(G(n,k),r,s) defined in Example II.2.4
lie in the stratum

H( 1, . . . , 1︸ ︷︷ ︸
2n−1-times

).

This is a direct consequence of the proof of Theorem II.2.5.
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3. The SL2(Z)-Action
The group SL2(Z) defines an action on the set of origamis (see [18]). For a
matrix A ∈ SL2(Z) and an origami O we obtain a new origami A ·O by applying
the affine map z 7→ Az on every square of O.

In the following, we want to determine the permutations of the origami A ·O
in terms of the permutations of O. We fix the generators S and T of SL2(Z)
given by:

S :=
(

0 −1
1 0

)
T :=

(
1 1
0 1

)
(II.1)

The following lemma (as given in [1] Lemma 5.4) yields a way to compute the
permutations of A·O, where A ∈ {S, T, S−1, T−1}, in terms of the permutations
of O. Additionally, it establishes a connection between the singularities of O
and the singularities of A ·O.

Lemma II.3.1: Let O be an origami with permutations (σx, σy). We have

(i) • S(σx, σy) = (σ−1
y , σx),

• T (σx, σy) = (σx, σyσ−1
x ),

• S−1(σx, σy) = (σy, σ−1
x ),

• T−1(σx, σy) = (σx, σyσx).
(ii) Let [i] be the singularity of O associated with the lower left vertex of the

square labeled with i and let [j] be the singularity of A ·O corresponding
to [i]. Then the following statements hold:
• [j] = [σ−1

y (i)], if A = S,
• [j] = [σ−1

x (i)], if A = S−1,
• [j] = [i], if A = T or A = T−1.

σy(σ−1
x (i))

σx(i)−1 i σx(i) σx(i)−1

σy(σ−1
x (i))

i σx(i)

T
σy(σ−1

x (i))

i σx(i)σx(i)−1

Figure II.3.: Application of T to an origami.

Proof: Figure II.3 shows four squares of O labeled by i, σx(i), σ−1
x (i), σy(σ−1

x (i))
on O. Moreover, it shows how the labeling carries over to a labeling of T ·O.
The surface T · O can be tiled by squares, as suggested by Figure II.3, by
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keeping the horizontal edges of the parallelograms and taking the diagonals of
the parallelograms as vertical edges (hinted by the dotted lines). We can label
the resulting squares with the numbers of the parallelograms which intersect
their right lower part. This yields exactly the stated permutations of T · O.
Figure II.3 also shows the singularity [i]. One can easily see that [i] is mapped
to the square labeled also with i. Every other case follows in similar a fashion
as shown in Figure II.4 and Figure II.5.

i σx(i)

σ−1
y (i)

σx(i)

i σ−1
y (i)

S

σy(i)

iσ−1
x (i)

S−1
σ−1
x (i)

i σy(i)

Figure II.4.: Application of S and S−1 to an origami.

T−1

i

σy(σx(i))

σx(i)

i σx(i)

σy(σx(i))

Figure II.5.: Application of T−1 to an origami.

Lemma II.3.1 can be used to compute the action of an arbitrary element of
SL2(Z). It also ensures that the application of a matrix in SL2(Z) to an origami
yields an origami again.
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Chapter III.

The Graph of Saddle connections
and Systoles of Origamis

1. Saddle Connections and Variants
The following chapter can be seen as a rough summary of sections 4 and 5 of
Systolic geometry of translation surfaces [1]. As we have seen in Theorem I.5.3,
for every translation surface X of genus g ≥ 2 there exists a systole that is a
concatenation of saddle connections. In the following, we introduce the graph of
saddle connections ([1], Section 4). We will see how the systoles of the surface
are related to the systoles of the graph of saddle connections. This will prove
useful, as we can use methods from graph theory to compute sys(X) of the
surface X.

Definition III.1.1: Let X be a translation surface. Let Γ be the graph whose
vertices are the singularities of X and that has an edge between two vertices
for every saddle connection of X connecting the corresponding singularities.
Then Γ is called the graph of saddle connections of X. Γ can be turned into
a weighted graph by assigning to each edge the length of the corresponding
saddle connection.

An edge path c = c1 . . . cn in Γ is the concatenation of the edges c1, . . . , cn of Γ.
The edge path c defines a path γ on X by considering the concatenation of the
corresponding saddle connections γi and vice versa. We call γ the realization
of c. Moreover, the combinatorial length of an edge path c is the number of
edges it contains and we call c trivial if its combinatorial length is 0. If there
are two edges ci, ci+1 in c that are inverse to each other, we say that c has
backtracking. An edge path that does not have backtracking is called reduced.
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We call a non-trivial closed reduced edge path c of minimal length l(c) in Γ a
systole of Γ.

It would be convenient if there was a bijection between the systoles of a
translation surface and the systoles of its graph of saddle connections. In
general, this is not the case because systoles of Γ can belong to null-homotopic
paths in X, as can be seen in [1] Example 5.6. Due to this, we need a good
criterion when the systole of the graph is also a systole of the surface.

Definition III.1.2: Let c = c1, . . . , cn be a closed edge path and let γ =
γ1, . . . , γn be its realization. For two consecutive edges ci−1, ci let vi be the
vertex between the two edges. Moreover, let αi, βi be the angles around the
corresponding singulary of vi between the saddle connections γi−1 and γi. We
say all angles are greater or equal to π if αi ≥ π and βi ≥ π for all 1 ≤ i ≤ n.

Now we can make use of the following powerful theorem proven in [1] Theorem
4.5:

Theorem III.1.3: Let c be a systole in the graph Γ and let γ be its realization.
If the combinatorial length of c is not 3, then γ is a systole of the surface. If
the combinatorial length of c is 3 and all angles of c are greater or equal to π,
then γ is a systole of the surface.

Theorem III.1.3 shows that in most cases the realization of a systole of the
graph of saddle connections is a systole of the surface. We will later show that
for all origamis up to and including degree 10, there is always a systole of
combinatorial length not equal to three.

In the next section, we want to compute the systoles of origamis. We will need
the following subgraphs of the graph of saddle connections.

Definition III.1.4: Let Γ be a graph of saddle connections of a surface X.

(i) Let S ⊂ Z2 be a finite set. Then ΓS is the subgraph of Γ which contains
all saddle connections whose directions lie in S.

(ii) Let v ∈ Z2 be a vector. Then Γv := Γ{v}.
(iii) For a positive real number ε > 0 we let ΓSε = ΓS, where

S :=
{(

x
y

)
∈ A1 | x2 + y2 ≤ ε

}
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and A1 is the set of primitive vectors in the closed upper half plane, i.e.

A1 : =
{(

x
y

)
∈ Z2 | gcd(x, y) = 1, y > 0 or (y = 0 and x > 0)

}

=
{(

x
y

)
∈ Z2 | gcd(x, y) = 1, y > 0

}
∪
{
e1 :=

(
1
0

)}
.

2. Computing Systoles of Origamis
While computing systoles of arbitrary translation surfaces of genus g ≥ 2 may
be difficult, we can use the permutations of origamis to easily compute their
systoles. For this purpose, we will first present two algorithms introduced
in [1] section 5. The first algorithm (Algorithm III.2.1) computes the saddle
connections of an origami in a given direction v1 ∈ A1. The second algorithm
(Algorithm III.2.3) invokes the first algorithm for all relevant v ∈ A1 and
produces a subgraph of the graph of saddle connections containing all systoles
of the surface. Finally, we introduce an algorithm (Algorithm III.2.4) that, for a
graph of saddle connections, returns sys(X) in the cases where the combinatorial
length of a systole is not 3. In this chapter, we restrict to origamis of genus
g ≥ 2 and to singularities that are cone points.

To compute the saddle connections in a certain direction v ∈ A1, the following
algorithm applies an affine map z 7→ Az (A ∈ SL2(Z)), to the origami O
such that the saddle connections of O in direction v correspond to the saddle
connections of A · O in direction e1. We show in Remark III.2.2 that such a
matrix A always exists. Consequently, the graphs Γv of O and Γe1 of A · O
coincide. Note that it is sufficient to consider vectors in A1 because we will
later treat the union of all the graphs Γv as an undirected graph.

The algorithm uses the crucial fact that the cycles of the commutator [σx, σy]
are in correspondence with the singularities of O. To be more precise: Two
squares i, j have the same singularity as their lower left corner if and only
if i and j are in the same cycle of the commutator [σx, σy]. This is a direct
consequence of the fact that for each square i with a singularity [i] as its lower
left vertex, the commutator [σx, σy] defines a path around the singularity [i]
as a connected component of the preimage of the path y−1x−1yx under the
covering p : O → T . Here x and y are horizontal/vertical paths on T that do
not lie on an edge. A more rigorous explanation can be found in [12]. Note
that the authors consider the commutator [σ−1

y , σ−1
x ] and the path xyx−1y−1.

Additionally, we have seen in Lemma II.3.1 how the singularities of O relate to
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the singularities of A ·O. Now we have all the necessary tools to compute all
saddle connections with directions in A1.

Algorithm III.2.1 (Computation of the subgraph Γv): Let O = (σx, σy) be an
origami and let v ∈ A1.

(i) Choose an A ∈ SL2(Z) such that Av =
(

1
0

)
. Decompose A as a product

of the generators (and their inverses) of SL2(Z) given in II.1. Compute
the origami A ·O = (σ′x, σ′y) and the bijection π : ΣO → ΣA·O, [i] 7→ [π([i])]
between the singularities of O and A ·O using Lemma II.3.1.

(ii) The vertices of Γv are the cycles of the commutator [σ′x, σ′y] := σ′x ◦ σ′y ◦
σ′−1
x ◦ σ′−1

y . The cycles of the commutator are in a 1-1 correspondence
with the singularities of A ·O. If a vertex corresponds to the singularity
[j] of A ·O, then label the vertex with π−1([j]).

(iii) Make a list L of all squares whose lower left corners are singularities.
This can be done as follows: L := {i ∈ {1, . . . , deg(O)} | [σ′x, σ′y](i) 6= i}.

(iv) For i in L do:
Let k := min{a ∈ N | (σ′x)a(i) ∈ L} and let j = (σ′x)k(i).
Γv has an edge labeled with k · ||v|| from the vertex π−1([i]) to the vertex
π−1([j]).

Remark III.2.2: Note that the matrix A ∈ SL2(Z) in the first step of Al-
gorithm III.2.1 always exists. The following proof shows how to explicitly
construct this matrix.

Proof: Let v =
(
x
y

)
∈ A1. Let c, d ∈ Z with c = −y and d = x. Moreover let

a, b ∈ Z be given via the extended Euclidian algorithm such that

1 = ax+ by.

This is possible by Bézout’s identity as x and y are coprime. Now let

A :=
(
a b
c d

)
.

Since the entries of A are integers and det(A) = ad− bc = ax+ by = 1 we have
that A ∈ SL2(Z). Then the computation

Av =
(
a b
c d

)(
x
y

)
=
(
ax+ by
cx+ dy

)
=
(

1
−yx+ xy

)
=
(

1
0

)

concludes the proof. �
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In the following, we describe an algorithm that repeatedly invokes Algo-
rithm III.2.1 and merges the resulting graphs into one graph ΓS containing the
systoles of O. We only need to consider directions with lengths less or equal to
the minimum cycle length of the horizontal and vertical permutations. This
stems from the fact that the cycles of the permutations correspond to closed
paths on the surface where the cycle lengths are exactly the lengths of the
corresponding paths.

Algorithm III.2.3 (Computation of the graph ΓS): Let O = (σx, σy) be an
origami.

(i) Let
ε := min{k | σx or σy contain a k-cycle}

be the minimum cycle length of the permutations.
(ii) Let S := Sε2 (as defined in Definition III.1.4). For each v ∈ S compute

Γv as described in Algorithm III.2.1.
(iii) Merge the obtained graphs Γv into one graph ΓS as follows:

• The vertices of ΓS are the singularities of O.
• For each v ∈ S, every pair of singularities [i], [j] and every edge
between [i] and [j] in Γv add an edge of the same weight between [i]
and [j] to ΓS.

For every systole c of the graph whose realization γ is not null homotopic, γ
is a systole of the surface. In cases where a combinatorial length of 3 does
not occur, the criterion given in Theorem III.1.3 is sufficient to show that γ is
indeed a systole.

To conclude this chapter we give an algorithm that, assuming that a combina-
torial length of 3 does not occur, computes the length of the systole given the
graph obtained via Algorithm III.2.3.

The idea is that a systole of the surface corresponds to a minimum cycle in
ΓS, so the algorithm computes for each edge e of the graph a minimum cycle
containing e. Since it does this for every edge, we find a minimum cycle of the
graph.

Algorithm III.2.4 (Computation of sys(O) given ΓS): Let O be an origami
and ΓS the subgraph of the graph of saddle connections given by Algorithm III.2.3.

(i) Make a list E containing all edges of ΓS.
(ii) Calculate a minimum cycle of ΓS as follows:

min_cycle :=∞;
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For each edge e of ΓS:
• Remove e from ΓS.
• Let i and j be the vertices of the edge e. If i = j let p be the empty
path of length l(p) = 0. Else find a shortest path p from i to j (e.g.
via Dijkstra).
• If l(p) + l(e) ≤ min_cycle then min_cycle = l(p) + l(e).
• Add the edge e back to the graph ΓS.

(iii) We have sys(O) = min_cycle.

Note that this algorithm can be extended to also give the combinatorial length
of the systole. In case the combinatorial length is 3 it is technically possible
to try to find another minimum cycle whose combinatorial length is not 3. If
no other minimum cycle is found, then the angles of the edge path have to be
examined.
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Chapter IV.

Implementation

In this chapter we present a possible implementation of the algorithms from
the previous chapter in GAP (Groups, Algorithms, Programming) [3]. While
in theory each algorithm can be implemented separately, from a practical point
of view it makes sense to interweave the implementations. For instance, instead
of creating multiple graphs which are then merged, we can directly add the
edges to the final graph, thus avoiding the merging process. Little details in the
implementation like this can significantly boost the runtime. This can be felt
especially when calculating the systole of either an origami with an enormous
degree or when computing the systoles of many origamis.

Note that we only introduce the relevant parts of the implementation, for
everything else we refer to the Appendix. We use the Origami Package [6]
which provides many useful methods for computations related to origamis.

1. Implementation of SystoleLength
An origami O is represented by its permutation given by HorizontalPerm(O)
and VerticalPerm(O). We first implement the function SystoleLength which,
given an origami, computes the length of its systole. We start by computing
the minimal cycle length of the permutations. To avoid dealing with square
roots later, we also save the squared minimal cycle length.

min_cycle_length_horizontal :=
Minimum(List(MovedPoints(HorizontalPerm(O)), x ->
CycleLength(HorizontalPerm(O), x)));
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min_cycle_length_vertical :=
Minimum(List(MovedPoints(VerticalPerm(O)), x ->
CycleLength(VerticalPerm(O), x)));

min_cycle_length := Minimum(min_cycle_length_horizontal,
min_cycle_length_vertical);

min_cycle_length_squared := min_cycle_length^2;

With this information, we can compute the list S which contains all relevant
directions.

S := [[1, 0]];

# y > 0
x := -(min_cycle_length - 1);
y := 1;
while x^2 + y^2 <= min_cycle_length_squared do

while x^2 + y^2 <= min_cycle_length_squared do
if Gcd(x, y) = 1 then

Add(S, [x, y]);
fi;
y := y + 1;

od;
y := 1;
x := x + 1;

od;

As we mentioned at the beginning of the chapter, we immediately want to create
the final graph. In the beginning, the graph has no edges but has as many
vertices as there are singularities. The graph is represented by an adjacency
list, meaning a list of lists, where each list represents a node and contains all
outgoing edges. The edges are represented as records of the form

rec (node := ..., weight := ...)

where node is the other vertex of the edge. We also keep an additional list
of all existing edges for Algorithm III.2.4. These edges are again records but
contain both vertices u and v explicitly.

rec(u := ..., v := ..., weight := ...)
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The exact implementation of the graph and the list of edges can be found in
the Appendix in the section Graphs in GAP. The additional list of edges is
empty in the beginning, too.

# create an empty graph with as much nodes as there are
singularities

graph := CreateGraph(Length(Stratum(O)));

# we keep an extra list of the edges for algorithm 3
edges := [];

Stratum is a function provided by the Origami Package which just returns the
stratum of an origami represented as a list of numbers that are exactly the
multiplicities of the singularities.

Next, we need some way to identify the vertices with the cycles of the commu-
tator. Since a different order of the cycles of the permutation represents the
same permutation, the identification is ambiguous, i.e. we can not properly
define what the nth cycle of a permutation is. To avoid this problem we convert
the permutation into a list of lists, where each inner list represents a cycle. We
do this as follows

# the argument passed to CyclesToList is the commutator of the
permutations

cycle_list := CyclesToList(VerticalPerm(O)^-1 *
HorizontalPerm(O)^-1 * VerticalPerm(O) * HorizontalPerm(O));

where CyclesToList is a helper function that can be found under the section
Helper functions. Now the nth entry of cycle_list corresponds to the nth vertex
of the graph, i.e. the nth entry of the adjacency list. Note that this is only
correct for direction e1. For any other direction, we need to compute a new
cycle list from the original cycle list, by iteratively applying Lemma II.3.1,
which we will see in detail later.

So far we only implemented steps of Algorithm III.2.3. Now we need to loop
over all the directions in S and add the edges we compute to the graph.

# for every direction in S we apply Algorithm 1
for v in S do

# we are now in this loop
od;
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Inside this loop, we first calculate the matrix A ∈ SL2(Z). We only do this if
v 6= [1, 0].

x := v[1];
y := v[2];

A_O := O;
cycle_list_mapped := StructuralCopy(cycle_list);

# if v is the unit vector we do not need to apply a matrix
if not v = [1, 0] then

# find a matrix A in SL_2(Z) s.t. Av = (1, 0) via the
extended Eucledian algorithm

g := Gcdex(x, y);
A := [[g.coeff1, g.coeff2], [-y, x]];

# map the singularities from O to the singularities of A.O
and compute the origami A.O

mapping_result :=
MapCyclesListAndOrigami(String(STDecomposition(A)),
cycle_list_mapped, A_O);

cycle_list_mapped := mapping_result.cycle_list_mapped;
A_O := mapping_result.mapped_origami;

fi;

A_O denotes the origami obtained by applying the matrix A to O. The variable
cycle_list_mapped contains the cycles of the commutator of A_O but already
in the correct order, i.e. the first entry of cycle_list_mapped corresponds to
the first singularity/vertex and so on. These two variables are obtained by the
function MapCycleListAndOrigami which we will discuss now.

This method takes in three parameters. The first parameter is the decomposition
of the matrix A into its generators (see II.1). This is done via the function
STDecompositon provided by the Origami Package. The second parameter is
the cycle list corresponding to the cycles of the commutator of the permutations
of O. At the beginning cycle_list_mapped is just a copy of cycle_list, so we can
use it as an input for the second parameter. The third and final parameter is the
initial origami O. MapCycleListAndOrigami then returns a record containing
the correctly mapped cycle list, i.e. the bijection between the singularities of O
and the singularities of A_O.
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The function itself is the following:

InstallGlobalFunction(MapCycleListAndOrigami,
function(wordString, cycle_list, O)
local i, j, letter, F, word;

F := FreeGroup("S","T");
word := ParseRelators(GeneratorsOfGroup(F), wordString)[1];

# loop over the decompositon of A
for letter in Reversed(LetterRepAssocWord(word)) do

if letter = 1 then
# we apply S to the origami and the singularities
for i in [1..Length(cycle_list)] do

Apply(cycle_list[i], j -> j ^
(VerticalPerm(O)^-1));

od;
O := ActionOfS(O);

elif letter = 2 then
# only need to apply T to the origami
O := ActionOfT(O);

elif letter = -1 then
# we apply S^-1 to the origami and the singularities
for i in [1..Length(cycle_list)] do

Apply(cycle_list[i], j -> j ^
(HorizontalPerm(O)^-1));

od;
O := ActionOfSInv(O);

elif letter = -2 then
# only need to apply T to the origami
O := ActionOfTInv(O);

else
Error("<word> must be a word in two generators");

fi;
od;

return rec(cycle_list_mapped := cycle_list, mapped_origami :=
O);

end);

We loop over the different generators appearing in the decomposition of A. Each
generator then has its own case, in which we apply it to the origami and the
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singularities. We do this exactly as described in Lemma II.3.1. In the cases of
T and its inverse we only need to apply it to the origami. Note that iteratively
applying Lemma II.3.1 to the singularities yields the same commutator as if we
had computed it from the origami A_O. The advantage of doing this iteratively
is that we are directly computing the bijection as well as we are not potentially
changing the order of the cycles.

Before we can finally start with the computation of the edges we first calculate
the list L of all squares having a singularity in its lower left corner.

L := MovedPoints(VerticalPerm(A_O)^-1 * HorizontalPerm(A_O)^-1 *
VerticalPerm(A_O) * HorizontalPerm(A_O));

The edges are now calculated as described in Algorithm III.2.1.

# in this step the edges are computed and added to the graph
for i in L do

perm := HorizontalPerm(A_O);
k := 1;
j := i^perm;

# find the smallest k such that sigma(i)^k is contained in L
while not j in L do

perm := HorizontalPerm(A_O) * perm;
k := k + 1;
j := i^perm;

od;

length := k * (x^2 + y^2)^0.5;
# if i is contained in the nth cycle then LookUpIndex returns

n, same for j
index_i := LookupIndex(i, cycle_list_mapped);
index_j := LookupIndex(j, cycle_list_mapped);

AddEdge(graph, index_i, index_j, length);
AddSingleEdge(edges, index_i, index_j, length);

od;

The only method that really needs an explanation here is LookUpIndex.

InstallGlobalFunction(LookupIndex, function(a, c)
local i, j;
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for i in [1..Length(c)] do
for j in [1..Length(c[i])] do

if c[i][j] = a then
return i;

fi;
od;

od;
Error("No index found!");

end);

This function takes in a singularity a, i.e. the number of the square whose lower
left corner is exactly this singularity, and the mapped cycle list c. LookUpIndex
then just returns the number of the cycle containing the singularity a. We do
this for i and j and know to which vertices the edge we just computed belongs.
Lastly, we add the edge to the graph and the list of edges via AddEdge (for the
graph) and AddSingleEdge (for the list of edges). The implementation of these
functions can be found in the Appendix.

With this step, we are done with the computation of the graph ΓS. We return
from the function with

return MinimalCycle(graph, edges);

which calculates the minimal cycle, i.e. the length of the systole, which
corresponds to Algorithm III.2.4.

2. Implementation of MinimalCycle
This implementation is rather straightforward. We loop over the list of edges,
remove an edge from the graph, update min_cycle and add the edge back to
the graph. In the end, we are left with a minimal cycle which corresponds to a
systole if the combinatorial length is not three.

InstallGlobalFunction(MinimalCycle, function(G, E)
local min_cycle, i, e, distance, combinatorial_length,

temp_length, result;

min_cycle := infinity;
combinatorial_length := -1;
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for i in [1..Length(E)] do
distance := 0;
e := E[i];
RemoveEdge(G, e.u, e.v, e.weight);

# edge from a node to itself already is a path with minimum
distance

if e.u = e.v then
# set distance to 0 because the weight is already added

in the if statement below
distance := 0;
temp_length := 1;

else
result := ShortestPath(G, e.u, e.v);
distance := result.length;
# add one because we removed one edge
temp_length := result.combinatorial_length + 1;

fi;

# update the minimal cycle if necessary
if Float(min_cycle) > Float(distance + e.weight) then

min_cycle := distance + e.weight;
combinatorial_length := temp_length;

fi;

AddEdge(G, e.u, e.v, e.weight);
od;

# we save the combinatorial length to verify its a systole
return rec(systole := min_cycle, combinatorial_length :=

combinatorial_length);
end);

Note that we also return the combinatorial length of the edge path to verify
if we are dealing with a systole or not. The function ShortestPath is just an
implementation of Dijkstra’s algorithm to find a shortest path between two
nodes, which can be found here.
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3. Computing Systolic Ratios for Lists of Origamis
So far we have only considered the length of the systole. In some sense, the
systolic ratio is more interesting when comparing two origamis. We implement
the function SystolicRatio by just calling SystoleLength and dividing by the
degree. As always, we also return the combinatorial length of the systole.

InstallGlobalFunction(SystolicRatio, [IsOrigami], function(O)
local systole_info;

systole_info := SystoleLength(O);
return rec(systolic_ratio := (systole_info.systole)^2 /

DegreeOrigami(O), combinatorial_length :=
systole_info.combinatorial_length);

end);

Consider an arbitrary list of origamis of genus g ≥ 2. We can find the maximal
systolic ratio of this list by using SystolicRatio on all origamis. For this we
implement the function MaximalSystolicRatioOfList.

InstallGlobalFunction(MaximalSystolicRatioOfList, function(origamis)
local max_sr, combinatorial_length, O, result, count,

three_occured, max_origami;

max_sr := -1.;
combinatorial_length := -1;
max_origami := Origami((),());
count := 0;
three_occured := false;

for O in origamis do
result := SystolicRatio(O);
count := count + 1;
if combinatorial_length = 3 then

three_occured := true;
fi;
if(result.systolic_ratio > max_sr) then

max_sr := result.systolic_ratio;
combinatorial_length := result.combinatorial_length;
max_origami := O;

fi;
od;
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return rec(systolic_ratio := max_sr, combinatorial_length :=
combinatorial_length, origami := max_origami,

count := count, three_occured := three_occured);
end);

This function additionally returns the first origami found for which the max-
imum is attained as well as three_occured, which is just an indicator if the
combinatorial length of three occurred for any origami in the list.

4. Computing Systolic Ratios for fixed Degrees and
Strata

Let d ≥ 3. We are interested in the maximal systolic ratio of all origamis with
degree d. For sufficiently small d this can easily be computed as follows: We
loop over all possible permutations in Sd and check if the corresponding origami
is connected. This is done via the function AllOrigamisByDegree provided by
the Origami Package. Then we put all these origamis in a list, remove any
with genus g ≤ 1, and run MaximalSystolicRatioOfList.

InstallGlobalFunction(MaximalSystolicRatioByDegree, function(d)
local origamis;

origamis := Filtered(AllOrigamisByDegree(d), o -> Genus(o) >= 2);
return MaximalSystolicRatioOfList(origamis);

end);

We can additionally fix a stratum H(k1, . . . , kn) and consider all origamis from
deg1 to deg2. Here AllOrigamisInStratum again is a function from the Origami
Package.

InstallGlobalFunction(MaximalSystolicRatioInStratum, function(deg1,
deg2, stratum)
local max_sr, combinatorial_length, deg, origamis, result,

max_origami, count, three_occured;

max_sr := -1.;
combinatorial_length := -1;
max_origami := Origami((),());

42



count := 0;
three_occured := false;

for deg in [deg1..deg2] do
origamis := AllOrigamisInStratum(deg, stratum);
result := MaximalSystolicRatioOfList(origamis);
count := count + result.count;

if result.three_occured then
three_occured := true;

fi;

if result.systolic_ratio > max_sr then
max_sr := result.systolic_ratio;
combinatorial_length := result.combinatorial_length;
max_origami := result.origami;

fi;
od;

return rec(systolic_ratio := max_sr, combinatorial_length :=
combinatorial_length, origami := max_origami, count := count,
three_occured := three_occured);

end);
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Chapter V.

Computational Results

In this chapter, we examine the systolic ratio for certain families of origamis
using the implementations from the previous chapter and the appendix. We
already mentioned in Chapter III, that for each origami up to degree 10, there
always is a systole with combinatorial length not equal to three. This can be
verified computationally with the implementation from the previous chapter.
In the table below, we list the maximal systolic ratio for each degree up to
degree 10, as well as a stratum in which the maximum is attained. The column
count shows, how many origamis of degree deg with genus g ≥ 2 exist.

deg sys SR count stratum
3 1 ∼ 0.33 3 [2]
4
√

2 0.5 19 [1, 1]
5
√

2 0.4 91 [1, 1]
6
√

2 ∼ 0.33 612 [1, 1]
7
√

2 ∼ 0.29 4155 [1, 1]
8 2 0.5 34455 [1, 1]
9 2 ∼ 0.44 314480 [1, 1]
10
√

2 0.4 3202821 [1, 1]

Table V.1.: The maximal systolic ratio of all origamis up to degree 10.

While the stratum H(1, 1) is not the only stratum in which the maximum is
attained for degree 4 to 10, the results suggest that the stratum H(1, 1) is a
good candidate for maximal systolic ratios. This is not too surprising, as there
are reasons to believe that the translation surface with maximal SR in H(1, 1)
([5], Conjecture 1.2) is not an origami but can be approximated by origamis
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in H(1, 1). Furthermore, it is assumed that this surface achieves the maximal
systolic ratio under all translation surfaces.

In general, the principal strata H(1, . . . , 1) are of particular interest, as they
have maximal dimension and lie dense in the space of translation surfaces
of genus g. It is also expected that the maximal systolic ratio of translation
surfaces of genus g is achieved in the principal strata.

1. Systoles for two Families of Normal Origamis
We have seen that we can choose an arbitrary finite group G with 2 generators
r, s to construct an origami O(G,r,s) such that Deck(O(G,r,s)) = G. In this section
we consider origamis coming from the dihedral group Dn and the group G(n,k)
(Example II.2.4) for n ≥ 3. Since we are particularly interested in the principal
strata, we will restrict to k = 1 (see Theorem II.2.5).

For 3 ≤ n ≤ 9 and generators r, s the origamis O(G(n,1),r,s), coming from the
group

G(n,1) := 〈r, s | r4 = s2n−2 = 1, s−1rs = r−1〉,

have the following systoles:

n stratum deg CL sys SR
3 [4× 1] 8 2 2 0.5
4 [8× 1] 16 2 2 0.25
5 [16× 1] 32 2 2 0.125
6 [32× 1] 64 2 2 0.0625
7 [64× 1] 128 2 2 0.03125
8 [128× 1] 256 2 2 0.015625
9 [256× 1] 512 2 2 0.0078125

Table V.2.: Systolic ratios of the origamis O(G(n,1),r,s). CL denotes the combina-
torial length of the systole.

It can be observed, that each origami has a systole of length 2 and of combina-
torial length 2 (see e.g. Figure II.2) and that the systolic ratio tends to 0. This
observation can be generalized for all n ≥ 3.

Proposition V.1.1: Let G(n,1) be the 2-group as given in Example II.2.4 with
k = 1. Then for all n ≥ 3 we have sys(O(G(n,1),r,s)) = 2.
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Proof: A presentation of G(n,1) is given by

〈r, s | r4 = s2n−2 = 1, s−1rs = r−1〉.

Since r−1 = s−1rs, we have s = rsr.

The commutator [σx, σy], where σx, σy are the horizontal and vertical per-
mutations, respectively, defines a walk in the directions down, left, up and
right.

Assume we start in an arbitrary square i. Since O is in correspondence with
the Cayley graph of G(n,1) with the generators r and s, we have that the square
i corresponds to some group element g ∈ G(n,1). So a walk on O starting at
i given by the commutator can also be interpreted as a walk on the Cayley
graph given by s−1r−1sr starting at g and ending in gs−1r−1sr.

One observes the following:

s−1r−1sr
s=rsr= s−1r−1(rsr)r
= s−1(r−1r)sr2

= (s−1s)r2

= r2

Hence, the walk defined by the commutator ends in the same square as the
walk defined by walking right, twice.

Moreover, observe that O has 2n−1 many singularities (see Remark II.2.6) and
that the group G(n,1) has order 2n. Additionally, O is normal and thus, for a
fixed singularity [i], there are exactly

deg(O)
#ΣO

= 2n
2n−1 = 2

squares whose lower left corner is the singularity [i]. Since the cycles of the
commutator [σx, σy] are in correspondence with the singularities, the commuta-
tor must consist of transpositions and thus, for every square labeled with the
group element g, the square labeled with gr2 has the same singularity as its
lower left corner.

Note that a square can not have the same singularity more than once. To see
this, firstly assume that the square i with the singularity [i] and corresponding
group element a has the same singularity in the upper left corner, too. Assume
that the upper edge of the square i is glued to the lower edge of the square i,
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i.e., as = a. Then s = 1, a contradiction. Therefore, the second square with
the singularity [i] must coincide with the square labeled with ar2, i.e. ar2 = as.
But then r2 = s, a contradiction. Hence, the singularity in the lower left corner
of the square i can not also be in the upper left corner of the same square.

Now assume that the square i has the same singularity in the upper right corner.
Then with a similar case distinction, we have that asr = a =⇒ s = r−1 or
asr = ar2 =⇒ sr = r2 =⇒ s = r, both contradictions.

Lastly, assume that i has the same singularity in its lower right corner. Since
1 6= r and r 6= r2, this is a contradiction, too.

Combining these facts we get that, starting in a square i with singularity [i],
we need to walk horizontally twice to reach the other unique square j with the
same singularity [i]. Since the commutator can not be any further simplified,
this is the minimum distance to walk from i to j. This gives a systole of the
surface by Theorem III.1.3 because the combinatorial length is 2. �

Corollary V.1.2: Define On := O(G(n,1),r,s). Then limn→∞ SR(On) = 0.

Proof: G(n,1) is a group of order 2n and we have that sys(On) = 2. Thus,

lim
n→∞

SR(On) = lim
n→∞

sys(On)2

area(On) = lim
n→∞

4
2n = lim

n→∞

1
2n−2 = 0. �

Now we want to examine the systoles of the origamis O(Dn,r,s) coming from the
dihedral group

Dn := 〈r, s | rn = s2 = (rs)2 = 1〉.

Remark V.1.3: Consider the origami given by the following permutations:

σx = (1, . . . , n)(n+ 1, . . . , 2n),
σy = (n, n+ 1)(n− 1, n+ 2) . . . (2, 2n− 1)(1, 2n).

Then we have σnx = 1, σ2
y = 1 and

(σxσy)2 = (1, 2n− 1)(2, 2n− 2), . . . , (n− 1, n+ 1)(n, 2n) = 1

because (σxσy)2 consists of transpositions. Since this origami respects the
relations of Dn and has degree 2n, this origami is exactly O(Dn,r,s). Figure V.1
shows the origami O(Dn,r,s) for n = 4 and n = 5.
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Figure V.1.: The origamis O(D4,r,s) and O(D5,r,s). Edges without a label are
glued together with their opposite edge.

Below, we list a table containing the computed systoles of O(Dn,r,s) for 3 ≤ n ≤
12.

n stratum deg CL sys SR
3 [2, 2] 6 1 1 0.1667
4 [1, 1, 1, 1] 8 2 2 0.5
5 [4, 4] 10 1 1 0.1
6 [2, 2, 2, 2] 12 2 2 0.3333
7 [6, 6] 14 1 1 0.0714
8 [3, 3, 3, 3] 16 2 2 0.25
9 [8, 8] 18 1 1 0.0556
10 [4, 4, 4, 4] 20 2 2 0.2
11 [10, 10] 22 1 1 0.0455
12 [5, 5, 5, 5] 24 2 2 0.1667

Table V.3.: Systolic ratios of the origamis O(Dn,r,s).

If we separate the table w.r.t. the parity of n, we can observe two distinct
patterns for the systoles and the strata of O(Dn,r,s).

Proposition V.1.4: Let n ≥ 3 and let O(Dn,r,s) be the origami coming from the
dihedral group Dn. Then we have

O(Dn,r,s) ∈

H(n2 − 1, n2 − 1, n2 − 1, n2 − 1), n even
H(n− 1, n− 1), n odd
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and

sys(O(Dn,r,s)) =
2, n even

1, n odd

Proof: Since (rs)2 = 1 =⇒ rs = s−1r−1 and s2 = 1 =⇒ s = s−1 we have
that

[s−1, r−1] = s−1r−1sr = rssr = rss−1r = r2

For the order of the commutator [s−1, r−1] we have

ord([s−1, r−1]) = ord(r2) =
n, n odd
n
2 , n even

.

because ord(r) = n.

For normal origamis O(G,r,s), ord([s−1, r−1]) coincides with the multiplicity
of the singularities. Furthermore, we can directly compute the number of
singularities.

#Σ = #G
ord([s−1, r−1]) .

Thus, for n odd we have
2n
n

= 2

singularities with multiplicity n. Hence O(Dn,r,s) ∈ H(n− 1, n− 1).

For n even we have
2n
n
2

= 4n
n

= 4

singularities with multiplicity n
2 and therefore O(Dn,r,s) ∈ H(n2 − 1, n2 − 1, n2 −

1, n2 − 1).

To determine the length of the systole of O(Dn,r,s) we again make a case
distinction w.r.t. the parity of n.

Let n be odd. Observe that

([s−1, r−1])n+1
2 = (r2)n+1

2 = rn+1 = r.

This implies that the squares labeled with the group elements 1 and r share
the same singularity as their lower left corner. This gives a closed saddle
connection of length 1. Since there can be no shorter saddle connection and
the combinatorial length is 1, the length of the systole is 1.
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Finally, let n be even. Since [s−1, r−1] = r2, the squares labeled by 1 and r2

have the same singularity as their lower left corner. This gives a closed, not
null-homotopic geodesic of length 2. Assume that there is a shorter closed
saddle connection, i.e. ([s−1, r−1])k ∈ {r, s, rs} for some k ∈ N.

Assume that r2k = r. Then r2k−1 = 1 which can not be true because the the
order of r is even and 2k − 1 is odd.

Now assume that r2k = s or that r2k = rs. Every element of Dn can be written
as a unique product rksl with k ∈ {0, . . . , n−1} and l ∈ {0, 1}. But we already
have s = s1, a contradiction.

Hence, the length of the systole of O(Dn,r,s) is 2. �

Corollary V.1.5: Let n ≥ 3. Then

SR(O(Dn,r,s)) =


2
n
, n even

1
2n , n odd.

Corollary V.1.6: Let k ≥ 2. Then

lim
k→∞

SR(O(D2k,r,s)) = 0

and
lim
k→∞

SR(O(D2k−1,r,s)) = 0.

2. Cyclic Covers of the (n× n)-torus
In this section, we study a special class of origamis introduced in [11] that come
from cyclic covers of the (n× n)-torus.

Definition V.2.1: Let n ∈ N. The (n× n)-torus Tn is the set

(R2 \Z2)/(nZ)2.

Hence, the (n× n)-torus can be seen as the set of orbits of the group action of
(nZ)2 on R2 \Z2 defined by translation. Note that the fundamental group of
Tn is isomorphic to the free group Fn2+1 (see [11], Satz I.2.11).

In [11] Rogovskyy studies normal coverings p : X → Tn that are cyclic with
deck transformation group Z /dZ. These coverings are entirely determined by
their monodromy m : π1(Tn)→ Z /dZ (see [11], Satz I.4.2).
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Equivalently one can choose a basis B of the fundamental group π1(Tn) and
only consider the image of every basis element in Z /dZ. This yields a vector
in (Z /dZ)N , where N = rank(π1(Tn)) = n2 + 1.

We will consider the following bases, as given by Rogovskyy:

Definition V.2.2: In the proof that π1(Tn) ∼= Fn2+1 (see [11], Satz I.2.11) Ro-
govskyy uses the graph in Figure V.2 which is a deformation retract of Tn.
Every edge of the graph not contained in the spanning tree passes through

Figure V.2.: A graph (red lines) that is a deformation retract of Tn. The green
lines form a spanning tree. This figure was provided by Alexander
Rogovskyy.

exactly one edge of the lattice given by the (n× n)-torus Tn (see Figure V.3).
We call these edges of the lattice slits and denote them by si, 1 ≤ i ≤ n2 + 1.
Every slit induces a generator of the fundamental group π1(Tn) as follows:

Fix the base point × = (1
2 ,

1
2). The generator corresponding to si consists of a

path on the spanning tree starting in ×, passing the slit si, and going back to
the base point via the spanning tree. Figure V.3 shows the generator induced
by s8.

We set N = rank(π1(Tn)) = n2 + 1 and call the basis S := {s1, . . . , sN} the slit
basis.

Definition V.2.3: We again fix the base point (1
2 ,

1
2). Moreover, we define the

following paths (see Figure V.4):

• a is the horizontal path passing through the base point and going to the
right.

• b is the vertical path passing through the base point and going upwards.
• For (x, y) ∈ (Z /nZ)2 the paths l(x,y) are defined as loops going counter-

clockwise around the points (x, y).
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s1 s2 s3

s4

s5

s6

s7 s8

s9 s10

×

Figure V.3.: Visualization of the slit basis S. This figure was provided by
Alexander Rogovskyy.

×
a

b

l1 = l(0, 0) l2 l3

l4 l5 l6

l7 l8

l9

Figure V.4.: Visualization of the loop basis L. This figure was provided by
Alexander Rogovskyy.

Fix a path starting at the base point, heading to the square with mid
point (x− 1

2 , y −
1
2). Then walk through the 4 squares around the point

(x, y) and then back to the basepoint via the fixed path. Figure V.4 shows
a possible choice for the loop l6.

We enumerate the loops l(x,y) starting at 1 from the left to the right and
from the bottom to the top (see Figure V.4).

These paths form a basis L := {a, b, l1, . . . , ln2−1} called the loop basis. Note
that the loop ln2 does not belong to the basis because it can be expressed in
terms of the elements of L (see [11], Bemerkung I.2.14).
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Change of basis matrices can be found in [11] in the section Bestimmung der
Basiswechselmatrix DBS. Note that Rogovskyy denotes the slit basis with B
and the loop basis with S.

Remark V.2.4: The surface X of a normal, cyclic covering p : X → Tn with
deck transformation group Z /dZ can be visualized as follows:

Let v ∈ (Z /dZ)N be the vector representing the covering w.r.t. the slit basis.
Take d copies of Tn where opposing edges are glued together. Moreover, glue
these copies together such that passing through a slit si changes vi-many copies
of Tn. Then X is the resulting surface.

The cyclic covers of Tn introduced above naturally define origamis, as described
in the following. Let us denote the cyclic torus cover by p : X → Tn. This
covering has degree d, where Z /dZ is the deck group of p. Moreover, let
q : Tn → T be the normal covering defined by sending each square of Tn onto
one square. This covering has degree n2. Then the composition of the coverings

o : X p−→ Tn
q−→ T

defines an origami of degree dn2. In general, the resulting origami is not normal.
We denote by On

d the set of origamis induced by the coverings p : X → Tn up
to isomorphism. Figure V.5 shows an example of an origami in O5

2.

For d prime, Rogovskyy gives the following classification for the strata of o (see
[11], Korollar IV.2.4).

Proposition V.2.5: Let d be prime and o ∈ On
d . Moreover, let v be a vector

representing o w.r.t. the loop basis. Then we have

o ∈ H(d− 1, . . . , d− 1︸ ︷︷ ︸
k times

),

where k denotes the number of non-zero elements in (v3, v4, . . . , vN ,
∑N
i=3 vi).

In this section, we restrict to the principal stratum H(1, 1), i.e. all origamis in
On

2 constructed as follows:

Let n ≥ 2. Moreover, let a, b, l1, . . . , ln2−1 ∈ Z /2Z such that

#{i ∈ {1, . . . , n2 − 1} | li 6= 0} ⊂ {1, 2}

Then the origamis induced by the monodromy vectors (w.r.t. the loop basis)

(a, b, l1, . . . , ln2−1)
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Figure V.5.: An origami in O5
2 induced by the monodromy vector v ∈

(Z /dZ)26,where v6 = v7 = v15 = v16 = 1, vi = 0 for 1 ≤ i ≤
26, i 6= 6, 7, 15, 16, w.r.t. the slit basis. The red line is a systole.

lie in the stratum H(1, 1).

The table below shows the computed systolic ratios for the stratum H(1, 1) up
to n = 12, where count denotes how many cyclic covers for fixed n exist.

n deg sys SR count
2 8 2 0.5 24
3 18

√
8 ∼ 0.44 144

4 32 4 0.5 480
5 50 5 0.5 1200
6 72 6 0.5 2520
7 98 7 0.5 4704
8 128 8 0.5 8064
9 162 9 0.5 12960
10 200 10 0.5 19800
11 242 11 0.5 29040
12 288 12 0.5 41184

Table V.4.: Systolic ratios of origamis in the stratum H(1, 1) induced by cyclic
covers of the (n× n)-torus.

These computational results inspire the following theorem:
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Theorem V.2.6: Let n 6= 3. Then the maximal systolic ratio of all cyclic torus
covers in H(1, 1) is 1

2 . The maximum is achieved at least once for every n 6= 3.
If n = 3, then the maximal systolic ratio of a cyclic torus cover in H(1, 1) is 4

9 .

Figure V.6.: Cyclic covers in H(1, 1) that achieve the systolic ratio 1
2 . At the

top: Origami of degree 32; At the bottom: Origami of degree 50.
The copies of Tn are glued together along the blue slits.

Proof: Let p : X → Tn be a cyclic torus cover of degree 2 with 2 branch points.
We first show that sys(X) ≤ n. Let s1 and s2 be the singularities of X and
p(s1), p(s2) be their images on Tn. Let c be one of the two horizontal paths of
length n that start in s1. The image p(c) of c under p is a closed horizontal
path on Tn. Since #(p−1(s1)) = 1, we have that c has to be a closed path, too.
Moreover p(c) is a generator of the fundamental group π1(Tn) and thus not
null-homotopic. Hence, c is not null-homotopic and there is always a closed,
not null-homotopic geodesic of length n, i.e. sys(X) ≤ n.

In the following we present for every n ∈ N, n 6= 3 a cyclic covering with a
systole of length n. For n even, we choose a cyclic cover p : X → Tn with
branch points (0, 0) and (n2 ,

n
2 ) (right image of Figure V.6). For n odd, we

choose a cyclic cover q : Y → Tn with branch points (0, 0) and (n−1
2 , n−1

2 ) (left
image of Figure V.6). In both cases, the argument from above ensures the
existence of a not null-homotopic closed geodesic of length n.

We need to show that there is no shorter closed path. We first consider the
case n even. Let s1 = p−1((0, 0)) and s2 = p−1((n2 ,

n
2 )). Assume that c is a

systole of X and l(c) < n. We can choose c such that it is a concatenation of
saddle connections. Let c = p(c). Then we have l(c) ≥ l(c) and that c is a
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Figure V.7.: Sections of the universal covers of Tn where n is odd (left image)
and n is even (right image).

concatenation of geodesic segments with endpoints in {p(s1), p(s2)}. Now if c
contains a closed segment then l(c) ≥ n because the shortest closed geodesic
on Tn is the horizontal/vertical path.

Hence, assume that c consists of at least two segments whose distinct starting
points and endpoints lie in {p(s1), p(s2)}. Then l(c) ≥ 2 · d(p(s1), p(s2)). We
need to show that d(p(s1), p(s2)) ≥ n

2 .

The right image of Figure V.7 shows a part of the universal cover of Tn. A
geodesic segment from p(s1) to p(s2) lifts to a Euclidean segment h which
connects a purple and a blue point in the Euclidean plane. The shortest
possible path connecting the singularities has a length of√(

n

2

)2
+
(
n

2

)2
=
√

2
2 n.

We have that
√

2
2 n >

n
2 for n > 0 because this is equivalent to

√
2n > n which

is obviously true for n > 0. Therefore, d(p(s1), p(s2)) > n
2 .

Now, we proceed similarly for the surface Y in the case that n is odd. Let
s1 = q−1((0, 0)) and s2 = q−1((n−1

2 , n−1
2 )). Assume that c is a systole on Y

with length less than n which is a concatenation of saddle connections. We
set c = q(c). With the same reasoning, we have that either l(c) ≥ n or that c
consists of at least two segments whose distinct starting points and endpoints
lie in {q(s1), q(s2)}. The left image of Figure V.7 again shows the universal
cover of Tn. A geodesic segment connecting q(s1) and q(s2) also lifts to a
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Euclidean segment h connecting a blue point and a purple point. The shortest
segment connecting a blue and a purple point has a length of√(

n− 1
2

)2
+
(
n− 1

2

)2
=
√

2
2 (n− 1).

We need to show that for n > 3
√

2
2 (n− 1) > n

2 .

We prove this via induction. For n = 4 we have
√

2
2 (4− 1) = 3

2

√
2 > 2 = 4

2 . For
n→ n+ 1 we have

√
2

2 ((n+ 1)− 1) =
√

2
2 n

=
√

2
2 (n− 1) +

√
2

2

>
n

2 +
√

2
2

= n+
√

2
2

>
n+ 1

2 .

Hence, d(q(s1), q(s2)) > n
2 and therefore, for n 6= 3, there always exists a cyclic

torus cover with a systole of length n. Since the covering X → Tn → T has
degree 2n2 we get a systolic ratio of 1

2 .

Figure V.8.: An example of a cyclic cover in H(1, 1) for n = 3. The red line is
a systole.

Now let n = 3. Consider a cyclic cover p : X → Tn of degree 2 with 2 branch
points. W.l.o.g. fix the image of a singularity at (0, 0). We then have the
following possibilities for the second singularity:
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• The second image of the singularity is on an edge of the 3 × 3 squares.
Then we have a closed geodesic on X of length 2.

• The second image of the singularity is on one of the four inner points.
Then we have a closed geodesic on X of length 2

√
2.

In both cases, the combinatorial length is not equal to 3. Theorem III.1.3
ensures that these closed geodesics are not null-homotopic. This implies that
the maximal length of the systole is 2

√
2.

Finally, let q : Y → Tn be a cyclic cover as shown in Figure V.8. We see that
the shortest closed geodesic has a length of 2

√
2. We call it γ. In this case, we

can even waive Theorem III.1.3 and show that γ is not null-homotopic with
the following argument. Consider the surface Y \ γ. Both squares are still
connected and for each point x in a square we can find a path starting in x
and passing a slit. Hence, Y \ γ is still connected and as a consequence γ is
not null-homotopic. This gives a systolic ratio of 4

9 . �

We end this section with a short prospect about systoles of cyclic torus covers
in other principal strata.

Let p : X → Tn be a cyclic cover of degree 2 with 2k branch points. Let
s1, . . . , s2k be the singularities of X and p(s1), . . . , p(s2k) the branch points on
Tn. Then the systoles on X can either be a lift of a horizontal/vertical, closed
curve on Tn that starts in a singularity or a lift of the shortest path connecting
two branch points and of the path back in the other copy such that the resulting
combined path is not null-homotopic on X. In either case, Theorem III.1.3
applies.

To simplify notation, we assume that the length of the square Tn is 1. In the
first case we have sys(X) = 1. In the other case let

mindist(S) := min{d(x1, x2) | x1 6= x2, x1, x2 ∈ S}.

Then
sys(X) = 2 ·mindist(p(s1), . . . , p(s2k)).

Hence for all cyclic covers of the (n× n)-torus X in H(1, . . . , 1︸ ︷︷ ︸
2k

) the maximal

systole is
sys Maxk = min{1, R}

where
R := max{2 ·mindist(S) | S ⊂ Tn \ Tn,#S = 2k}.
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Hence, the maximum systolic ratio of cyclic torus covers in H(1, . . . , 1︸ ︷︷ ︸
2k

) is

(sys Maxk)2

2

Note that if S consists of irrational points, then the corresponding surface is
no origami. We can improve the systolic ratio by considering the hexagonal
torus, i.e. instead of a square we consider the parallelogram formed by two
equilateral triangles.

Example V.2.7: Let 2k = n2. Distribute the points x1, . . . , x2k on the n2

vertices of the squares.

Figure V.9.: An example of the distribution for k = 8 and n = 4.

Then mindist(x1, . . . , x2k) = 1
n

= 1√
2k . Hence,

sys(X) = 2 · 1√
2k

=⇒ SR(X) =
2
k

2 = 1
k
.

This gives a linear lower bound for maximal systoles in the principal strata.
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Appendix

Graphs in GAP
CreateGraph creates a graph with i nodes and no edges.

InstallGlobalFunction(CreateGraph, function(i)
local G;
G := [];
for i in [1..i] do

Add(G, []);
od;
return G;

end);

AddEdge adds an undirected edge from a to b with weight w to the graph G.

InstallGlobalFunction(AddEdge, function(G, a, b, w)
Add(G[a], rec(node := b, weight := w));
Add(G[b], rec(node := a, weight := w));

end);

RemoveEdge removes the edge from a to b with weight w from the graph G.

InstallGlobalFunction(RemoveEdge, function(G, a, b, w)
local j, k;

Remove(G[a], Position(G[a], rec(node := b, weight := w)));
Remove(G[b], Position(G[b], rec(node := a, weight := w)));

end);

ShortestPath returns a shortest path from src to dst in the graph G.

InstallGlobalFunction(ShortestPath, function(G, src, dest)
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local pq, dist, p, u, i, weight, v, prev, S, node;
pq := [];
dist := [];
prev := [];

for p in [1..Length(G)] do
Add(dist, infinity);
Add(prev, -1);

od;

PQueue_push(pq, rec(first := 0., second := src));
dist[src] := 0;

while(not IsEmpty(pq)) do
u := PQueue_pop(pq).second;

for i in G[u] do
v := i.node;
weight := i.weight;

if (Float(dist[v]) > Float(dist[u] + weight)) then
dist[v] := dist[u] + weight;
PQueue_push(pq, rec(first := dist[v], second := v));
prev[v] := u;

fi;
od;

od;

S := [];
node := dest;
if not (prev[node] = -1) or node = src then

while not (prev[node] = -1) do
Add(S, node, 1);
node := prev[node];

od;
fi;

return rec(length := dist[dest], combinatorial_length :=
Length(S));

end);

AddSingleEdge adds an edge from a to b with weight w to a list of edges E.
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InstallGlobalFunction(AddSingleEdge, function(E, a, b, w)
Add(E, rec(u := a, v := b, weight := w));

end);

Priority Queue in GAP
We implement a priority queue w.r.t. the lexographical order in GAP for
the shortest path algorithm. PQueue_push adds an element to the queue,
PQueue_top returns the first element in the queue and PQueue_pop returns
the first element in the queue and removes it.

InstallGlobalFunction(PQueue_push, function(q, elem)
local low, high, mid;

low := 1;
high := Length(q);

while low < high do
mid := Int((low + high) * 0.5);
if q[mid] < elem then

low := mid + 1;
else

high := mid;
fi;

od;

Add(q, elem, low);
end);

InstallGlobalFunction(PQueue_top, function(q)
return q[1];

end);

InstallGlobalFunction(PQueue_pop, function(q)
local temp;

temp := q[1];
Remove(q, 1);
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return temp;
end);

Helper functions
CyclesToList takes in a permutation sigma and returns a list of lists, where
each list corresponds to one cycle of sigma.

InstallGlobalFunction(CyclesToList, function(sigma)
local L, k, i, cycle_list, curr, temp;

L := List(MovedPoints(sigma));
cycle_list := [];
curr := 1;

while(Length(L) > 0) do
k := 1;
i := L[1];

Add(cycle_list, []);
Add(cycle_list[curr], i);
while(not (i ^ (sigma ^ k) = i)) do

temp := i ^ (sigma ^ k);
Remove(L, Position(L, temp));
Add(cycle_list[curr], temp);
k := k + 1;

od;

Remove(L, Position(L, i));
curr := curr + 1;

od;

return cycle_list;
end);

ArrayWithOnes returns a list with all possibilities arranging 2k or 2k − 1 ones
in an array of length n.

InstallGlobalFunction(ArrayWithOnes, function(k, n)
local result, i, j, temp, combination;
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result := [[0], [1]];
if n = 1 then

return result;
fi;

for i in [2..n] do
temp := [];
for j in [1..Length(result)] do

combination := StructuralCopy(result[j]);
if n - i >= 2*k - 1 - Sum(combination) then

Add(combination, 0);
Add(temp, StructuralCopy(combination));
Remove(combination, Length(combination));

fi;
Add(combination, 1);
if not (Sum(combination) > 2 * k) then

Add(temp, StructuralCopy(combination));
fi;

od;
result := StructuralCopy(temp);

od;
return result;

end);

Normal Origamis
GenerateOrigamiByFpGroup takes in a finitely presented, 2-generated group G,
generators r, s and returns the normal origami coming from the Cayley graph
C(G, {r, s}).

InstallGlobalFunction(GenerateOrigamiByFpGroup, [IsFpGroup],
function(G, r, s)
local horizontalPerm, verticalPerm, i, j, elemTimes_r,

elemTimes_s, elements, elem;

elements := Elements(G);

horizontalPerm := [1..Order(G)];
verticalPerm := [1..Order(G)];
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for i in [1..Order(G)] do
elemTimes_r := elements[i] * r;
elemTimes_s := elements[i] * s;
j := 1;
for elem in elements do

if elemTimes_r = elem then
horizontalPerm[i] := Position(elements, elem);

fi;
if elemTimes_s = elem then

verticalPerm[i] := Position(elements, elem);
fi;

od;
od;

return Origami(PermList(horizontalPerm), PermList(verticalPerm));
end);

G_n_k returns the group G(n,k) introduced in Example II.2.4.

InstallGlobalFunction(G_n_k, function(n, k)
local G, r, s;

G := FreeGroup("r", "s");
r := G.1;
s := G.2;
G := G / [r^(2^(k+1)), s^(2^(n-k-1)), s^-1*r*s/r^-1];

return G;
end);

D_n returns the dihedral group Dn.

InstallGlobalFunction(D_n, function(n)
local G, r, s;

G := FreeGroup("r", "s");
r := G.1;
s := G.2;
G := G / [r^n, s^2, r*s*r*s];

return G;
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end);

Cyclic Covers
MaximalSystolicRatioOfCyclicTorusCover returns the maximal systolic ratio of
all cyclic covers in the stratum H(1, . . . , 1︸ ︷︷ ︸

2k

) for a specific n.

InstallGlobalFunction(MaximalSystolicRatioOfCyclicTorusCover,
function(k, n)
local max_sr, combinatorial_length, O, result, count,

three_occured, max_origami,
a, b, l_list, vec, max_vec, i;

max_sr := -1.;
combinatorial_length := -1;
max_origami := Origami((),());
count := 0;
three_occured := false;
max_vec := [];

l_list := ArrayWithOnes(k, n^2 - 1);
for a in [0..1] do

for b in [0..1] do
for i in [1..Length(l_list)] do

vec := [a, b];
Append(vec, l_list[i]);
O := CyclicTorusCoverOrigami(n, 2, vec *

Inverse(BaseChangeLToS(n)));
result := SystolicRatio(O);
count := count + 1;
if combinatorial_length = 3 then

three_occured := true;
fi;
if(result.systolic_ratio > max_sr) then

max_sr := result.systolic_ratio;
combinatorial_length :=

result.combinatorial_length;
max_origami := O;
max_vec := StructuralCopy(vec);
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fi;
od;

od;
od;

return rec(systolic_ratio := max_sr, combinatorial_length :=
combinatorial_length, origami := max_origami,

count := count, three_occured := three_occured,
monodromy := max_vec);

end);
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