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Chapter 0

Introduction

In geometry group theory, we discover a relationship between groups and
geometric objects, which may be linked to one another.

The main idea for this course is finding nice metric spaces, on which a given
group acts. Metric properties of the space then teach us something about the
group. But this is not a one way road: algebraic properties of the group will
also give information about a given metric space.

Example: Groups that you may have encountered throughout your studies are
the symmetric group Sn, finite cyclic groups, i.e. (Z/nZ,+), infinite cyclic
groups, i.e. (Z,+), or matrix groups like Sl(n,Z), Gl(n,Z) or O(n,R).

Something which you might not have seen until now are fundamental groups.
A fundamental group is a group associated to a topological space, consisting
of equivalence classes of paths in the topological space modulo homotopy (i.e.
continuous deformations of one path into another path).

Further examples of groups would be braided groups, mapping class groups
and automorphism groups, e.g. Aut(Fn).

For this course, we will be mostly interested in infinite groups. More precisely
in infinite groups that are finitely generated. Among other questions that
we are going to tackle, we will ask ourselves, what a good way for describing
infinite, finitely generated groups would be. For spoiled readers it may already
be known that presentations are of no use.

In a first approach, we will try to think of ways to draw such a group. More
precisely, we assign to our group G and a chosen set S of generators a graph
(see Figure 0.1 for two example graphs). This graph is called the Cayley graph
Γ = Γ(G,S). Unfortunately, the graph Γ depends on the set S of generators.
“Looking from further away”, meaning looking up to quasi-isometry, identifies
graphs that should be considered the same. This leads to “coarse geometry” or
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−5 −4 −3 −2 −1 0 1 2 3 4 5
1 1 1 1 1 1 1 1 1 1

. . . . . .

G = Z, S = {1}

−5 −4 −3 −2 −1 0 1 2 3 4 5

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

. . . . . .

G = Z, S = {2, 3}

Figure 0.1: Some examples of Cayley graphs for the group Z.

“large scale geometry”. A reasonable goal would then be finding invariants of
quasi-isometry.

Our more general goal is relating group theoretical properties of a given
group to geometric properties of a space, on which it acts.
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Chapter I

Cayley Graphs

In this chapter, we want to associate to an infinite, finitely generated group
G with set of generators S a graph Γ = Γ(G,S). On this graph Γ(G,S), the
group acts in a “good way” and the graph already knows a lot about the group.

1 The Category of Graphs
Definition I.1.1 (Graph): Let V and E be disjoint sets, let δ : E → V × V be
a map and let ι : E → E be a map. If for any e in E it holds o(e) = t(ι(e)),
t(e) = o(ι(e)), ι(ι(e)) and ι(e) ̸= e, then the quadruple Γ = (V,E, δ, ι) is called
an unoriented graph.

The elements of V are called vertices and the elements of E are called edges.
The boundary map δ assigns to an edge e a tuple of vertices (o(e), t(e)), the
so-called origin of e and terminus of e. The inverse map ι assigns to an edge e
the inverse edge ē := ι(e).

For any edge e in E, the set {e, ē} =: [e] =: [ē] is called geometric edge.
For a choice of a subset E+ of E, denote by E− the image of E+ under

the inverse map. If for a subset E+ of E it holds that E = E+ ∪ E− and
E+ ∩ E− = ∅, then E+ is called an orientation of E.

In the following, we will write δ = o × t, where o : E → V , e 7→ o(e) and
t : E → V , e 7→ t(e).

Remark I.1.2: Let Γ = (V,E, δ, ι) be a graph and let E+ be an orientation
of Γ. The triple (Γ+, E+, δ+) with δ+ := δ|E+×V fully determines our original
graph Γ. We call Γ+ an oriented graph.

Let M be a set. We may consider maps hV : V → M and hE : E → M .
These are called vertex-labellings respectively edge-labellings.
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Chapter I Cayley Graphs

Definition I.1.3 (Generalised Cayley Graph): Let (G, ·) be a group and let S
be a subset of G. Let V = G, let E+ = G × S and let δ+ : G × S → G × G,
(g, s) 7→ (g, g · s). Then Γ+(G,S) respectively Γ(G,S) = (V,E, δ, ι) is called
generalised oriented Cayley graph respectively generalised Cayley graph.

Example I.1.4 (The Symmetric Group on Three Letters): Recall that the sym-
metric group on three letters is S3 = {id, (12), (13), (23), (123), (132)}. Choosing
the set of generators S = {(12), (123)}, we obtain the Cayley graph

id

(123)(132)

(12)

(13)(23)

Choosing the set of generators S = {(12), (13)} yields the Cayley graph

(132)

(12)id

(13)

(123) (23)

From “very far away” both graphs look very similar: Both look like a point.
Choosing the set S = {(12)}, which does not generate S3, yields yet another
different graph—this time an honest generalised Cayley graph. Later we will
say that graph were not connected.

Remark I.1.5: The generalised Cayley graph Γ(G,S) has the following natural
edge labelling with values in S ∪ S−1:

hE : E −→ S ∪ S−1, e 7−→

s, if e ∈ E+ = G× S and e = (g, s),
s−1, if e ∈ E− and ē = (g, s) ∈ G× S.
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1 The Category of Graphs

Here, as usual, we denote S−1 := {s−1 | s ∈ S}.

Definition I.1.6 (Combinatorial Structure): Let Γ = (V,E, δ, ι) be a graph.

(i) Let v1 and v2 be vertices. If there is some edge e such that o(e) = v1 and
t(e) = v2, then v1 and v2 are called neighbours.

(ii) Let [e1] and [e2] be geometric edges. If the intersection of {o(e1), t(e1)}
and {o(e2), t(e2)} is non-empty, the geometric edges are called neighbours.

(iii) Let e respectively [e] be an edge respectively geometric edge. If it holds
that o(e) = t(e), then e respectively [e] is called a loop.

(iv) Let v1 and v2 be distinct vertices. If there are distinct edges e and e′ such
that o(e) = v1 = o(e′) and t(e) = v2 = t(e′), then Γ has multiple edges
between v1 and v2.

(v) If Γ has no loops and no multiple edges, then Γ is called a combinatorial
graph.

Remark I.1.7: Often times, combinatorial graphs are often defined as pairs
(V,E) with and arbitrary set V and a subset E of P(V ) such that every element
of E has order 2.

Definition I.1.8 (Basic Definitions for Graphs): Let Γ = (V,E, δ, ι) be a graph
and let x be a vertex of Γ.

(i) The set Ex = {e ∈ E | o(e) = x} is called the star of x.
(ii) The cardinality of the star of x is called the valency or order of x, denoted

val(x).
(iii) Let k be a natural number. If for any vertex v of Γ it holds val(v) = k,

then the graph is called k-regular.
(iv) Let e1, . . . , en be edges of Γ. If for 1 ≤ i ≤ n− 1 it holds t(ei) = o(ei+1),

then c = (e1, . . . , en) is called an edge-path. We denote o(c) := e1 and
t(c) = en.

(v) An edge path c = (c1, . . . , cn) with o(e1) = t(en) is called a cycle.
(vi) If for any vertices x1 and x2 of Γ there is an edge path c with o(c) = x1

and t(c) = x2, then Γ is called path-connected.

In the following, we aim at defining a morphism of graphs to make the class
of graphs into a category. For a sensible concept of a morphism, we’d need two
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Chapter I Cayley Graphs

maps fV and fE that rendered the diagrams

E E ′ E E ′

V × V V ′ × V ′ E E ′

δ

fE

δ′ ι

fE

ι′

fV ×fV fE

commutative. Indeed, this turns out to be the “correct” definition.

Definition I.1.9: Let Γ = (V,E, δ, ι) and Γ′ = (V ′, E ′, δ′, ι′) be two graphs
and let fV : V → V ′ and fE : E → E ′ be two maps. If it holds that δ′ ◦ fE =
(fV ×fV )◦δ, i.e. o′◦fE = fV ◦o and t′◦fE = fV ◦o, and if ι′◦fE = fE ◦ι, i.e. if for
any edge e of Γ it holds (fE(e)) = fE(ē), then the pair f = (fV , fE) is called a
morphism of graphs. In this case, we write f : Γ → Γ′ to indicate the categorical
nature of this definition. We denote Mor(Γ,Γ′) := {f : Γ → Γ′ is a morphism}.

Remark I.1.10: We obtain a category called Graphs as follows: The objects are
all graphs, for two graphs Γ1 and Γ2, the set of morphisms Mor(Γ1,Γ2) is as
defined above, for three graphs Γ1, Γ2 and Γ3, we define a composition

◦ : Mor(Γ2,Γ3) × Mor(Γ1,Γ2) −→ Mor(Γ1,Γ3),
(g = (gV , gE), f = (fV , fE)) 7−→ g ◦ f := (gV ◦ fV , gE ◦ fE)

and for each graph Γ, we define its identity morphism idΓ in Mor(Γ,Γ) to be
idΓ := (idV , idE).

To show that the graphs indeed form a category in this way, we have to check
that the composition of graph morphisms indeed yields a new morphism of
graphs. Then, one has to check associativity for the composition of morphisms,
which follows immediately from the associativity for composition of maps on
vertices and edges. Finally, one has to check that the identity morphism acts
trivially.

Reminder I.1.11: Let Γ1, Γ2 and Γ be graphs.

(i) Let f : Γ1 → Γ2 be a morphism of graphs. If there is a morphism
g : Γ2 → Γ1 such that g ◦ f = idΓ1 and f ◦ g = idΓ2 , then f is called an
isomorphism. Note that in this case, g is unique and usually denoted f−1.

(ii) The set of automorphisms Aut(Γ) := {f : Γ → Γ is an isomorphism}
turns into a group with composition of morphisms as law of composition.
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2 Cayley Graphs

Proposition I.1.12 (Isomorphism via Bijectivity): Let Γ1 and Γ2 be graphs
and let f = (fV , fE) : Γ1 → Γ2 be a morphism of graphs. The maps fV

and fE are bijective if and only if f is an isomorphism.

Definition I.1.13 (Subgraphs): Let Γ = (V,E, δ, ι) be a graph and let Γ′ =
(V ′, E ′, δ′, ι′) be a quadruple of two sets V ′ and E ′ and two maps δ′ : V ′ → V ′,
ι′ : E ′ → E ′. If V ′ is a subset of V , if E ′ is a subset on E, if δ′ is the restriction
δ|V ′ and if the restriction ι|E′ equals ι′, then Γ′ is called a subgraph of Γ.

Remark I.1.14: Let Γ = (V,E, δ, ι) and Γ′ = (V ′, E ′, δ′, ι′) be combinatorial
graphs and let fV : V → V ′ be a map.

(i) The map fV uniquely determines a morphism of graphs f = (fV , fE with
fE((a, b)) = (fV (a), fV (b) if and only if for any neighbouring vertices x and y
in Γ, their images fV (x) and fV (y) are neighbouring vertices in Γ′.

(ii) The map fV determines an isomorphism of graphs if and only if fV is
bijective and if for any neighbouring vertices fV (x) and fV (y), their preimages
x and y are neighbouring vertices in Γ.

2 Cayley Graphs
In this section, we want to relate properties of a tuple (G,S) of a group G and
a set of generators S to properties of its Cayley graph Γ = (G,S). Furthermore,
we want to see how G acts on Γ(G,S) and we try to find criteria to decide if a
given graph is a Cayley graph.

Remark I.2.1: Let G be a group. Two elements g and h of G are neighbours
in Γ(G,S) if and only if g−1h belongs to S ∪ S−1.

Example I.2.2 (Generalised Cayley Graphs): (i) Consider the trivial group
G = {1} and the sets of generators S and ∅. Those lead to the generalised
Cayley graphs

1 1

(ii) Consider the group G = Z/2Z×Z/3Z and the subset S = {(1, 0), (0, 1)}.
Then we obtain the generalised Cayley graph
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Chapter I Cayley Graphs
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Proposition I.2.3 (First Properties of Cayley Graphs): Let G be a group, let
S be a subset of G and let Γ = Γ(G,S) be the corresponding generalised Cayley
graph.

(i) There are loops in Γ if and only if the identity belongs to S.
(ii) There are multiple edges in Γ if and only if there is some element s in S,

whose inverse also belongs to S.
(iii) The graph Γ is combinatorial if and only if S ∩ S−1 = ∅.
(iv) The graph Γ is connected if and only if S generates G.1

Proof: The statements in (i)-(iii) are clear.
“=⇒”: Assume Γ is connected. For any element g in G there is a path

c = (e1, . . . , en) in Γ such that o(e1) = 1 and t(en) = g. Let hE : E → S ∪ S−1

be the natrual edge-labelling of Γ defined in Remark I.1.5. Define si := hE(ei).
Then t(ei) = o(ei)si and thus g = 1s1 · · · sn for si in S ∪ S−1, i.e. G = ⟨S⟩.

“⇐=”: Assume that S generates G. We have to show that for any distinct
elements g and h in G, there is an edge-path from h to g. Since G is generated
by S, there are some elements s1, . . . , sn in S such that h−1g = s1 · · · sn.
Recursively, we now define

ei :=

(h · s1 · · · si−1, si), if si ∈ S,

ι(h · s1 · · · si, s
−1
i ), if si ∈ S−1. □

Remark I.2.4: Let S be a generating system for the group G. Then Γ = Γ(G,S)
is called Cayley graph.

1Recall that a subset S of a group G is said to generate the group, if it holds that
G =

⋂
(H ⊆ G | H is a subgroup of G with S ⊆ H) = {s1 · · · sk | si ∈ S or si ∈ S−1}

14



2 Cayley Graphs

Definition I.2.5: Let G be a group, let C be a category, let X be an object in
C and let Aut(X) be the group of automorphisms of X.

(i) A group homomorphism ρ : G → Aut(X) is called an action of G on X.
(ii) Let ρ1 : G → Aut(X1) and ρ2 : G → Aut(X2) be two actions. If there is

an isomorphism f : X1 → X2 with κf ◦ ρ1 = ρ2, then ρ1 and ρ2 are called
equivalent.

Here, κf : Aut(X1) → Aut(X2) denotes conjugation with f , i.e. h 7→ f ◦h◦f−1.

Example I.2.6: For the category C = Graphs, an action ρ of a group G on
a graph Γ = (V,E, δ, ι) can equivalently be described as a pair of group
homomorphisms ρV : G → Perm(V ) and ρE : G → Perm(E) such that for any
g in G and e in E it holds o(ρE(g)(e)) = ρV (g)(o(e)), t(ρE(g)(e)) = ρV (g)(t(e))
and ρE(g)(e) = ρE(g)(ē).

Remark I.2.7 (Action on the Cayley Graph): A group G acts on a Cayley
graph Γ = Γ(G,S) of the group via left-multiplication. Namely, we have an
action described by (ρV , ρE) with

ρV : G −→ Perm(V ), g 7−→ (h 7→ gh),
gE : G −→ Perm(E), g 7−→ ((h, s) 7→ (gh, s), (h, s) 7→ (gh, s)).

Reminder I.2.8: Let G be a group and let M be a set. For an action ρ : G →
Perm(M) of G on M and some element x of M , we denote

(i) g · x := ρ(g)(x),
(ii) StabG(x) := {g ∈ G | g · x = x}, called stabiliser of x,
(iii) Gx := orbG(x) := {g · x | g ∈ G}, called orbit of x,
(iv) If it holds G · x = M , then the action is called transitive,
(v) If for any x in X it holds that StabG(x) = {1}, then ρ is called free or

fixed-point free,
(vi) If ρ is injective, the action is called faithful.

Proposition I.2.9 (Properties of Actions by Left-Multiplication): Let G be a
group and let S be a set of generators for G. The action ρ = (ρV , ρS) of G on
Γ(G,S) by left-multiplication defined in Remark 2.6 we have the following:

(i) The action ρ is free, i.e. ρV and ρE are free.
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Chapter I Cayley Graphs

(ii) The action ρ is vertex-transitive, i.e. ρV is transitive.
(iii) The action ρ acts without inversions, i.e. for any g in G− {1} and for

any edge e it holds ρE(g)(e) ̸= ē. In particular, ρE acts free on geometric
edges.

Proof: (i) Suppose g and h are group elements such that g belongs to
StabG(h). Since g · h = h, g must be the identity, i.e. ρV is free.

Suppose g is an element of G and e is an edge of such that g belongs to
StabG(e). Then g · o(e) = o(e), which means that g also belongs to StabG(o(e))
and hence, g must be the identity. Thus, ρE is free.

(ii) For group elements h1 and h2, choose h = h2h
−1
1 . Then g · h1 = h2, thus

h1 and h2 are in the same orbit. Because h1 and h2 were arbitrary, the action
ρV is transitive.

(iii) By definition of ρE we have that an edge e belongs to E+ if and only if
ρE(g)(e) belongs to E+. But this implies that ρE(g)(e) ̸= ē. □

Theorem 1: Let Γ = (V,E, δ, ι) be a combinatorial graph.

(i) An action ρ : G → Aut(Γ) is equivalent to the action via left-multiplication
if and only if ρ is free, vertex-transitive and without inversions.

(ii) The graph Γ is the Cayley graph for some group if and only if Aut(Γ)
contains a subgroup which acts freely, vertex-transitively and without
inversions.

Proof: (i) “=⇒”: This was shown in Proposition I.2.9.
“⇐=”: Suppose ρ = (ρV , ρE) has the stated properties. As the first step,

we aim to find a suitable set of generators S. Let x be any vertex and let
Ŝ := {g ∈ G | gx is a neighbour of x}.

This set Ŝ is closed under inversion, as for some s in Ŝ, there is an edge e in E
such that o(e) = x and t(e) = sx. For the edge s−1x we obtain o(s−1e) = s−1x
and t(s−1e) = x, such that x and s−1x are neighbours.

Furthermore, no element in Ŝ is not self-inverse. For an e as above, we get
s−1e ̸= ē, since ρ acts without inversions. If s were equal to s−1, there were
two geometric edges between x and sx, which cant be, since Γ is combinatorial.

Because Ŝ is closed under inverses, but does not contain self-inverse element,
there is a subset S of Ŝ such that Ŝ = S ∪ S−1.

As the second step, we aim to find a morphism f : Γ′ := Γ(G,S) → Γ. As
usual, we denote Γ′ = (V ′, E ′, δ′, ι′). Note that, by choice of S, the graph Γ′ is
combinatorial.
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3 Topological Realisation of Graphs

We define fV : V ′ = G → V , h 7→ h · x. To check that fV indeed defines a
graph homomorphism, one has to check that neighbouring vertices are mapped
to neighbouring vertices. Suppose h1 and h2 are neighbours in Γ′. Then
s = h−1

1 h2 belongs to S ∪S−1 and thus x and sx are neighbours in Γ. Applying
h1 yields that h1x and h1sx = h2x are neighbours in Γ. The other direction,
i.e. going from neighbours in Γ to Γ′, works just the same way.

As the third step, we want to show that f is an isomorphism. For this, it
remains to show that fV is bijective.

For the injectivity, suppose that h1x = h2x. Then h−1
2 h1x = x, i.e. h−1

2 h1
belongs to StabG(x). Since ρV is free, h−1

2 h1 = 1 and thus h1 = h2.
For the surjectivity, suppose y is a vertex. Because ρV is transitive, there is

some h in G with hx = y, which is another way of writing fV (h) = y.
As the fourth step, we have to show that f induces an equivalence between

the actions of G on Γ1 and Γ2. For this, we have to show that for any g in G it
holds ρ(g) ◦ f = f ◦ ρ′(g). On vertices it holds

ρ(g)(fv(h)) = g · fV (h) = g · h · x = fV (g · h) = fV (ρ′(g)(h)).

Since Γ and Γ′ are combinatorial, we obtain the analogue statement for fE.

(ii) “=⇒”: Suppose Γ is a Cayley graph. Then the action ρ : G → Aut(Γ)
by left-multiplication is free and thus, in particular, ρ is injective. The image
of ρ is a subgroup of the automorphism group with the desired properties by
Proposition I.2.9. “⇐=”: This follows from (i). □

3 Topological Realisation of Graphs
So far, graphs are combinatorial objects. Now, we want to consider geometric
spaces, on which a group acts. For this, we “glue” edges between vertices.

Reminder I.3.1 (Topological Space): Let X be a set.

(i) The system T := P(X) is called discrete topology on X.

(ii) If T is a topology onX and Y is a subset ofX, then T′ := {U∩Y | U ∈ T}
yields a topology on Y , called trace topology or subset topology or relative
topology or induced topology. We have the following characteristic property: If
(Z, T̂) is any other topological space, and if i : Y ↪→ X denotes the inclusion
map, a map f : Z → Y is continuous if and only if i ◦ f is continuous.

17



Chapter I Cayley Graphs

(iii) Suppose that (X,T) is a topological space and let q : X → Y be surjec-
tive. Then T = {U ⊆ Y | q−1(U) ∈ T} defines a topology on Y , called quotient
topology. If (Z, T̂) is another topological space, and if f : Y → Z is a map, then
f is continuous if and only if f ◦ q is continuous.

(iv) Let (Xi, Ti)i∈I be a family of topological spaces. On the disjoint union⋃· i∈I Xi, the set

T :=
{
U ∈ P(

⋃
i∈I

Xi) : For all i ∈ I : U ∩Xi ∈ Ti

}
is a topology. The space (⋃· i∈I Xi,T) is called topological sum of the (Xi,Ti)i∈I .

(v) We consider intervals [a, b] with the trace topology of the Euclidean
topology on R.

Definition I.3.2 (Topological Realisation): Let Γ = (V,E, δ, ι) be a graph.

(i) For an edge e, we define Xe := [0, 1] × {e} as a copy of [0, 1]. We define
X := ⋃· e∈E Xe ∪· V/∼, where ∼ is the equivalence relation generated
by the following requirements: For any edge e and any t from [0, 1],
Xe ∋ (t, e) ∼ (1 − t, ē) ∈ Xē, for any edge e, Xe ∋ (0, e) ∼ o(e) and for
any edge Xe ∋ (1, e) ∼ t(e).

(ii) The set Γtop := X turns into a topological space as follows: Take the
discrete topology on V and the topology as segment on each Xe, then take
the topology as topological sum on ⋃· e∈E Xe ∪· V , then take the quotient
topology for the surjective map q : ⋃· e∈E Xe ∪· V → ⋃· e∈E Xe ∪· V/∼.

(iii) Consider the maps iV : V → Γtop, v 7→ [v]∼; χe : [0, 1] → Γtop, t 7→ [(t, e)]∼.
They are continuous, iV is surjective and χe|[0,1) is injective. We write v
for [v]∼ ∈ Γtop and e for χe([0, 1]) ⊆ Γtop and (t, e) for [(t, e)] ∈ Γtop and
call them vertices respectively edges of Γtop.

The topological space Γtop is called topological realisation of Γ.

Remark I.3.3: (i) Every morphism f = (fV , fE) between two graphs Γ1 and
Γ2 defines a continuous map f top : Γtop

1 → Γtop
2 that maps a vertex fV (v) and

(t, e) to (t, fE(e)).
(ii) We have (f ◦ g)top = f top ◦ gtop and (idΓ)top = idtop

Γ .

Proof: We only show the first assertion. To show that f top is well-defined,
one has to check that the map respects the gluing from Definition I.3.2. For
example, we have

f top(1 − t, i) = (1 − t, fE(ē)) = (1 − t, fE(e)) = (t, fE(e)) = f top(t, e).
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4 Graphs as Metric Spaces

Similarly for the other statements. For the continuity of f top, consider the
following commutative diagram,⋃· e∈E1 Xe ∪· V1

⋃· e∈E2 Xe ∪· V2

Γtop
1 Γtop

2

q1 q2

f top

where on the top row, v is mapped to v and (t, e) is mapped to (t, fE(e)),
which yields a continuous map. Now f top is continuous due to the characteristic
property of the quotient maps. □

Corollary I.3.4: We have a functor Graphs → TopSpaces defined on objects by
Γ 7→ Γtop and on morphisms by (f : Γ1 → Γ2) 7→ f̄ = f top : (Γtop

1 → Γtop
2 . This

functor is covariant. We say that f̄ = f top is the topological realisation of f .

This follows immediately from Remark I.3.3.

4 Graphs as Metric Spaces
In this section, we want to define a metric on the topological realisation Γ⊤ of
a graph Γ. As an idea for this, we want to assign length 1 to each edge.
Reminder I.4.1: Let X be a set. A map d : X × X → R, which for any
elements x, y and z of X satisfies that d(x, y) ≥ 0, d(x, y) = d(y, x) and
d(x, z) ≤ d(x, y) + d(y, z) is called a pseudo-metric. If in addition it holds for
any x and y from X that d(x, y) = 0 if and only if x = y, then d is called a
metric.

If d is a metric on the set X, then d induces a topology on X, whose basis
are the open balls with respect to d. More precisely, a subset U of X is open
with respect to this induced topology if and only if for every x in U there is an
ε > 0 such that B(x, ε) := {y ∈ X | d(x, y) < ε} ⊆ U .

Remark I.4.2: Suppose that we are given a connected topological space X (i.e.
X cannot be decomposed into two non-empty disjoint open subsets), an open
cover (Ui)i∈I of X (i.e. for any i in I, the set Ui is an open subset of X and
X = ⋃

i∈I Ui) and for each i in I a metric di : Ui × Ui → R such that for any
indices i and j and any x and y from Ui ∩ Uj it holds di(x, y) = dj(x, y). Then

d(x, y) := inf
{ n−1∑

k=0
dik

(xk, xk+1) : n ∈ N, x0 = x, xn = y, xk, xk+1 ∈ Uik

}
defines a pseudo-metric on X.
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Chapter I Cayley Graphs

Proof: Let x and y be points of X. Define the set

S(x, y) := {(x0, . . . , xn) | n ∈ N, x = x0, y = xn,

∀ k ∈ {0, . . . , n− 1} ∃ ik : xk, xk+1 ∈ Uik
}

and for ω = (x0, . . . , xn) in S, denote ℓ(ω) := ∑n−1
k=0 dik

(xk, xk+1). Evidently,
d(x, y) ≥ 0 and d(x, y) = d(y, x). Suppose now x, y and z are points of X and
let ω1 = (x = x0, x1, . . . , xn = y) ∈ S(x, y), ω2 = (y = y0, y1, . . . , ym = z) ∈
S(y, z). Then ω3 = (x = x0, . . . , xn = y0, y1, . . . , ym = z) belongs to S(x, z)
and ℓ(ω3) = ℓ(ω1) + ℓ(ω2). Hence, d(x, z) ≤ d(x, y) + d(y, z), which establishes
the triangular inequality.

It remains to show that d is well-defined, i.e. S(x, y) ̸= ∅. Consider the sets
Vx := {y ∈ X | S(x, y) ̸= ∅} and Wx := {y ∈ X | S(x, y) = ∅}. For any i in I
we have that Ui ⊆ Vx or Ui ⊆ Wx, thus

Vx =
⋃
i∈I

Vx ∩ Ui =
⋃
i∈I′

Ui

for I ′ = {i ∈ I | Vx ∩ Ui ̸= ∅} and similarly Wx = ⋃
i∈I−I′ Ui. Thus Vx and

Wx are open, disjoint and they satisfy X = Vx ∪· Wx. Because X is connected,
we must have that X = Vx or X = Wx. As x belongs to Vx, Vx is non-empty,
which enforces X = Vx. □

Remark I.4.3 (Graph Metric): Let Γ = (V,E, δ, ι) be a connected graph and
let Γtop be its topological realisation. For fixed r < 1/2, choose the following
open subset of X: For each e in E, let Ue = χe((0, 1)), for each v in V let
Uv,r := ⋃ (χe([0, r)) | e ∈ E, o(e) = v). Define on them the following metrics.
On Ue define the metric de via de((t1, e), (t2, e)) := |t1 − t2|, and on Uv,r define
dv,r via

dv,r((t1, e1), (t2, e2)) :=

|t1 − t2|, if e1 = e2,

t1 + t2, if e1 ̸= e2,

where o(e1) = o(e2). Observe that for e1 = ē2 we obtain de1 = de2 on Ue1 = Ue2

and that if Ue ∩Uv,r is non-empty, we have o(e) = v or t(e) = v and the metric
coincide and finally that Uv1,r ∩ Uv2,r is empty. Hence, we can glue the metric
by Remark I.4.2. This yields a pseudo-metric on X = Γtop.

Proposition I.4.4: Let Γ = (V,E, δ, ι) be a connected graph. Then, the pseudo-
metric from Remark I.4.3 is in fact a metric, called the Graph metric for
Γ.
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Proof: We have to show that for any x, y in X = Γtop with d(x, y) = 0 it holds
that x = y. Let ω = (x = x0, x1, . . . , xn = y) be an element of S(x, y). If
x0, x1, . . . , xn lie in the same Ue, then

ℓ(ω) = de(x0, x1) + · · · + de(xn−1, xn) ≥ de(x0, xn) > 0.

In the same way, we obtain that if all the x0, . . . , xn are contained in the same
Uv,r, then ℓ(ω) ≥ dUv,r(x, y).

If not all x0, . . . , xn are contained in the same Ue or Uv,r, then there is
some index i in {0, . . . , n − 2} such that for some edge e and some vertex
v we have that xi, xi+1 in Ue xi+1, xi+2 in Uv,r and xi /∈ Uv,r or that xi, xi+1
in Uv,r, xi+1, xi+2 in Ue and xi+2 /∈ Uv,r. Without loss of generality, we may
assume the first. We denote xi = (t1, e), xi+1 = (t2, e) and xi+2 = (t3, ẽ) with
o(e) = o(ẽ) =: v. Then t1 > r, since xi doesn’t belong to Uv,r and thus

ℓ(ω) ≥ de(xi, xi+1)+dV,r(xi+1, xi+2) = |t1−t2|+t2+t3 ≥ t1−t2+t2+t3 ≥ t1 > r.

In all three cases, the lengths of the sequences are bounded below be positive
constants, hence d(x, y) > 0. □

Remark I.4.5 (First Properties of the Graph Metric): Let Γ be a connected
graph, let X = Γtop be its topological realisation and let d be the graph metric
on X. For any x and y from X it holds:

(i) If x, y ∈ χe([0, 1]), i.e. if x = (t1, e) and y = (t2, e), then d(x, y) = |t2 − t1|.
(ii) If x and y are vertices, then

d(x, y) = min{n ∈ N | There is an edge path ω = (x0 = x, . . . , xn = y)}.

(iii) If x = (t1, e1) and y = (t2, e2) with e1 ̸= e2 and e1 ̸= ē2, then

d(x, y) = min{t1 + t2 + d(o(e1), o(e2)), t1 + 1 − t2 + d(o(e1), t(e2)),
1 − t1 + t2 + d(t(e1), o(e2)), 1 − t1 + 1 − t2 + d(t(e1), t(e2))}.

This can be shown with arguments similar to those used to show Proposi-
tion I.4.4.

Remark I.4.6 (Graph Metric for Graphs with Edge-Weights): Suppose Γ is
a connected graph, E+ the choice of an orientation and ω : E+ → R>0 an
edge-labelling. If there is a positive constant C such that for all edges e in E+
it holds ω(e) ≥ C, then we obtain, in a similar fashion to Proposition I.4.4, a
metric on X = Γtop such that the length of the geometric edge {e, ē} is ω(e)
for any e in E+.
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Chapter I Cayley Graphs

Example I.4.7: The constant C in Remark I.4.6 is needed. Consider the graph

A B

...

1

1/2

1/3

with V = {A,B}, E+ = N, o(e) = A and t(e) = B for any e in E+ and
ω : E+ → R>0, n 7→ 1/n. Then d(A,B) = 0, even though A ̸= B. Hence, in
this case we end up with a pseudo-metric.

Example I.4.8:

Remark I.4.9 (Two Different Topologies): If Γ has a vertex x with valency
val(x) = ∞, then the topology on X = Γtop defined by the graph metric is
different to the original topology.

Proposition I.4.10 (Graph Morphisms are Contractions): Let Γ1 and Γ2 be
graphs and let X1 and X2 be their topological realisations equipped with the corre-
sponding graph metrics d1 respectively d2. Furthermore, let f = (fV , fE) : Γ1 →
Γ2 be a graph morphism and let f̄ : X1 → X2 be its topological realisation.
Then f̄ is a contraction, i.e. for any points x and y of X1 it holds that
d(f(x), f(y)) ≤ d(x, y).

Proof: Recall that f̄(t, e) = (t, fE(e)). Observe the following:

(i) If e belongs to E1 and v belongs to V1, then f̄(Ue) = UfE(e) and f̄(Uv,r) ⊆
UfV (v),r.

(ii) For x = (t1, e) and y = (t2, e) in the same open edge Ue it holds
d2(f(x), f(y)) = d2((t1, fE(e)), (t2, fE(e))) = |t1 − t2| = d1(x, y). Similarly, if x
and y belong to the same open star Uv,r, then d2(f(x), f(y)) ≤ d1(x, y).

For arbitrary points x and y in X1, let ω = (x = x0, x1, . . . , xn = y) be a chain
in S(x, y). Then also f̄(ω) = (f(x) = f(x0), f(x1), . . . , f(xn) = f(y)) is a chain
going from f(x) to f(y). For the distance d2(f(x), f(y)) we find

d2(f(x), f(y)) ≤ ℓ(f̄(ω)) =
n∑

i=1
d2(f(xi−1), f(xi)) ≤

n∑
i=1

d1(xi−1, xi) = ℓ(ω).

By taking the infimum, we obtain that d2(f(x), f(y)) ≤ d1(x, y). □
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Notation I.4.11: Let Γ be a graph, let Γ⊤ be its topological realisation. If we
consider the topological realisation equipped with the topology induced by the
graph metric, we will denote this space Γgeom. In this case, we write f geom

for the topological realisation f̄ of a graph morphism and call it its geometric
realisation.

Corollary I.4.12 (of Proposition I.4.10): Let Γ1, Γ2 be graphs and let f : Γ1 →
Γ2 be a graph morphism. Then, its geometric realisation f̄ = f geom : Γgeom

1 →
Γgeom

2 is continuous.

Proof: This follows from Proposition I.4.10, since f̄ is a contraction. □

Corollary I.4.13: Let Γ1, Γ2 be graphs and let f : Γ1 → Γ2 be an isomorphism
of graphs. Then, f geom : (Γgeom

1 , d1) → (Γgeom
2 , d2) is an isometry.

Here, of course, d1 and d2 denote the respective graph metrics.

5 Isometry Group and Quotient Graphs
In this section, we want to see that the isometry group of the geometric
realisation of a graph equals the isomorphism group of said group. Further, we
want to study objects that result of quotients by subgroups of the isomorphism
group.

In this section, Γ = (V,E, δ, ι) will denote a graph with geometric realisation
X = Γgeom and graph metric d. Similarly for graphs Γ1 and Γ2. Furthermore,
we want to assume for this section that all graphs are connected.

Proposition I.5.1 (Isomorphism and Isometries):

(i) Suppose that Γ1 has a vertex v of valency val(v) ̸= 2. Then for each
isometry h̄ : X = Γgeom

1 → Y = Γgeom
2 there is a graph isomorphism

h : Γ1 → Γ2 such that h̄ = hgeom.
(ii) Γ1 and Γ2 are isomorphic if and only if Γgeom

1 , d1) and (Γgeom
2 , d2) are

isometric.

Note that if h̄ doesn’t preserve vertices, then we don’t stand a chance.

Reminder I.5.2 (Connected Components): Let (X,T) be a topological space
and let x be a point in X. Then the union of all connected sets in X containing
x is called the connected component of X. It is equivalently described as the
unique largest connected subset of X containing x. Here, “largest” is to be
understood with resepct to inclusion.
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Chapter I Cayley Graphs

Example I.5.3 (Connected Components of Punctures Neighbourhoods): (i)
Let x be a vertex of the graph Γ with val(x) = n, let ε ∈ (0, 1/4) and let
U = B(x, ε) − {x}. Then U has n connected components.

(ii) Let x = (t, e) for some t in (0, 1) and some edge e of Γ, let ε ∈
(0,min{1, 1 − t}) and let U = B(x, ε) − {x}. Then U has two connected
components.

Lemma I.5.4 (Isometries Preserve Valencies): Suppose that h̄ : X = Γgeom
1 →

Y = Γgeom
2 is an isometry and x = v is a vertex in V1 with valency val(x) ̸= 2.

Then y = h̄(x) is a vertex w in V2 with the same valency.

Proof: The number of connected components of the punctured balls B(x, ε) −
{x} and of B(h̄(x), ε) − {h̄(x)} has to be equal. □

Proof: (i) We are given an isometry h̄ : X → Y and we know there is a
point x0 = v in V1 with valency val(x) ̸= 2. By Lemma I.5.4, y0 = h̄(x0) is
again a vertex w in V2. Observe that x in X is a vertex if and only if d(x0, x)
is a natural number; same for a vertex y in Y . Hence h̄ preserves vertices, i.e.
h̄(V1) = V2. But this means in particular that h̄ preserves open edges. More
precisely, for any e in E1 and Ue = {(t, e) | t ∈ (0, 1)} we have h̄(Ue) = Uẽ for
some ẽ in E2.

Defining hV := h̄|V1 : V1 → V2 and hE : E1 → E2, e 7→ ẽ, where ẽ is chosen
such that h̃(t, e) = (t̃, ẽ) yields a graph morphism, as h̄ being an isometry
ensures that t̃ = t.

This means in total that h̄ is the geometric realisation of the graph isomor-
phism h = (hV , hE).

(ii) “=⇒”: This follows from Proposition I.4.10.
“⇐=”: Let h̄ : X → Y be an isometry. If Γ1 or Γ2 has a vertex of valency

different from 2, then h̄ is the geometric realisation of some graph isomorphism,
and thus Γ1 ∼= Γ2.

If not, then Γ1 ∼= Circn for n ∈ N0 ∪ {∞}. Observe that

diam(Circgeom
n ) = sup{d(x, y) | x, y ∈ Circgeom

n } =

n/2, if n ∈ N,
∞, if n = ∞.

which has to be preserved by the isometry h̄. Hence Γ1 and Γ2 are isomorphic.
Do be careful however. In the latter case, h̄ does not have to be an isomorphism.
□

24



5 Isometry Group and Quotient Graphs

Example I.5.5 (Graphs whose valencies are all two): The only connected pos-
sible offenders, i.e. graphs whose vertices all have vertices 2, are the following:

(i) Circn, a circle with n vertices, where n is a natural number.
(ii) Circ∞ = Cay(Z, {1}).

Definition I.5.6 (Isometry Group): The set

Isom(Γ) = {h̄ : (Γgeom, d) → (Γgeom, d) isometry}

is the isometry group of Γ. Here, d denotes the graph metric.

Corollary I.5.7 (of Proposition I.5.1, Automorphisms via Isometries): If Γ is
not isomorphic to Circn for n ∈ N ∪ {∞}, then Aut(Γ) ∼= Isom(Γ).

Reminder I.5.8 (Quotients of Sets by Group Actions): (i) Let X be a set
and let “∼” be an equivalence relation. Then X/∼ = {[x] | x ∈ X} is the set
of equivalence classes with respect to “∼” and q : X → X/∼, x 7→ [x] is the
canonical projection. Let Y be any set and let f : X → Y be a map. If for
any x1 and x2 in X with x1 ∼ x2 it holds that f(x1) = f(x2), we say that f
equivariant with respect to “∼”.

Observe that X/∼, q has the following universal property: For any map
f : X → Y being equivariant with respect to “∼”, there is one and only one
map f̄ : X/∼ → Y such that f = f̄ ◦ q. We say that f factors through X/∼.

A fancy way of saying this is that X/∼ is a universal object. With respect
to what functor?

(ii) Let now X be a set and let ρ : G → Perm(X) be a group action. Then
“If Gx = Gy, then x ∼ y” declares an equivalence relation on X and we denote
X/∼ := G\X = {Gx | x ∈ X}. Again, we have the canonical projection
q : X → G\X, x 7→ Gx. A map f : X → Y which for all x in X and g in G
satisfies that f(gx) = f(x) is called G-invariant.

(iii) If X is a topological space and ρ : G → Perm(X) is a group action, then
G\X comes with the quotient topology and we have everything as in (i) just
with continuous maps.

Definition I.5.9 (Quotients of Graphs by Group Actions): Let Γ = (V,E, δ, ι)
be a graph, let G be a group and let ρ : G → Aut(Γ) be a group action without
inversions. Then, the data V̄ := G\V = {Gv | v ∈ V }, Ē := G\E = {Ge |
e ∈ E}, ō(Ge) = Go(e), t̄(Ge) = Gt(e), ῑ(Ge) = Gι(e) makes up the quotient
graph, denoted G\Γ := ρ\Γ := Γ̄ = (V̄ , Ē, δ̄ = ō× t̄, ῑ).

Here, we use the following notations: ρ = (ρV , ρE) with gv := ρV (g)(v),
ge := ρE(g)(v).
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Remark I.5.10 (Well-definednes): Observe the following:
(i) For any g in G, the map ρ(g) = (ρV (g), ρE(g)) is a graph morphism, thus

o(ge) = go(e), t(ge) = gt(e) and ι(ge) = gι(e). This shows precisely that ō, t̄, ῑ
from Definition I.5.9 are well-defined.

(ii) The quotient graph Γ̄ is indeed a graph. This is seen as follows: For
any edge e of Γ we have ō(Ge) = Go(e) = Gt(ι(e)) = t̄(Gι(e)) = t̄(ῑ(Ge)) and
ῑ(ῑ(Ge)) = Ge by similar arguments.

(iii) Since G acts without inversions, it holds ιGe ̸= Ge for any edge e.
Example I.5.11 (Some Quotient Graphs): (i) Let Γ = Cay(Z, {1}) = Circ∞
and consider the action ρ1 given by ρ1,v : Z → Perm(Z), 1 7→ (z 7→ z + 1). Its
quotient graph by ρ1 is a graph with one vertex and one edge. The quotient
by the action ρ3 declared via ρ3,v : Z → Perm(Z), 1 7→ (z 7→ z + 3) is a graph
with three vertices and three edges.

(ii) Let Γ = Cay(G,S) be the Cayley graph of some group with finite set of
generators S and let ρ : G → Aut(Γ) be the action by left multiplication. Then
the quotient graph G\Γ again has only one vertex, since G acts transitively on
G by the cancellation law. For each generator, we obtain an edge. Hence, G\Γ
is a rose with #S many leaves.

(iii) Sketch missing. Consider the action ρ : Z/3Z → Aut(Γ), given by
ρE(1) = (e1e2e3). Then G\Γ is Sketch missing.
Remark I.5.12 (Quotient Group): Let G be a group, let Γ = (V,E, δ, ι) be a
graph and let ρ : G → Aut(Γ) be a group action. Then we have the following:

(i) The maps qV : V → G\V , v 7→ Gv and qE : E → G\E, e 7→ Ge make up
a graph homomorphism q = (qV , qE) : Γ → G\Γ.

(ii) The graph morphism q is G-invariant, i.e. for any group element g,
q ◦ ρ(g) = q.

(iii) The graph morphism q has the universal property. More precisely: For
each G-invariant graph morphism f : Γ → Γ′, there is a unique graph morphism
ḡ : G\V → Γ′ with f̄ ◦ q = f .

(iv) The geometric realisation qgeom is continuous, open and G-invariant.
(v) For the geometric realisations it holds (G\Γ)geom ∼= G\Γgeom. To be more

precise we have the commutative diagram

Γ

(G\Γ)geom G\Γgeom

qgeom q
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Proof: The first two statements are clear. As for the third statement, f̄V : Gv 7→
f(v) and f̄E : Ge 7→ fe give rise to a well-defined graph morphism and it is the
only possible map.

As for (iv), we already know that qgeom is continuous by (Corollary I.4.13)
and G-invariant by definition. It remains to show that qgeom is open. Let thus
U be open in Γgeom and let y = f(x) be a point in f(U). Now we distinguish
cases for x.

If x = (t, e) for some edge e and some t in (0, 1), y is the point y = (t, Ge).
In this case, choose ε < δx := min{t, 1 − t} such that B(x, ε) ⊆ U . Then
B(f(x), ε) is contained in f(U).

If x is a vertex, then y = Gv. Choose ε < δx := 1/4 such that B(x, ε) is
contained in U . Then, for any t′ in (0, ε) and e in E with o(e) = v we have that
x′ = (t′, e) belongs to U , and thus f(x′) = (t, Ge) belongs to f(U). Hence, for
any t′ in (0, ε) and Ge with ō(Ge) = Gv it holds (t′, Ge) ∈ f(U). This means
that B(f(x), ε) is contained in f(U).

As for (v), we have to show that the pair (G\Γ)geom, qgeom) satisfies the
universal property, i.e. for any other topological space Y and a G-invariant
map f : Γgeom → Y , there is a unique map f̄ : (G\Γ)geom → Y such that
f = f̄ ◦ qgeom.

Let thus f : Γgeom → Y be a continuous and G-invariant map. Then

f̄ : (G\Γ)geom −→ Y, (t, Ge) 7−→ f((t, e))

is our candidate. It remains to show that f̄ is continuous. For an open subset
U of Y it holds f̄−1(U) = qgeom(f−1(U)) by the surjectivity of qgeom and by the
openness of qgeom, the preimage of U under f̄ is open, which shows that f̄ is
continuous. □

6 Trees
In this section, we want to show that a graph is a tree if and only if that graph is
contractible. For this section, let Γ = (V,E, δ, ι) be a graph, let ω = (e1, . . . , en)
be an edge-path and for each vertex v, denote by ωv the constant edge-path
with origin and terminus v.

Definition I.6.1 (Basic Definitions):

(i) If for the edge-path ω it holds o(ω) = t(ω), then ω is called closed.
(ii) If for all indices i ∈ {1, . . . , n} it holds ei ̸= ēi+1, then ω has no backtrack-

ing.
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(iii) If the edge-path ω has no backtracking and if for any distinct indices i
and j it holds that o(ei) ̸= o(ej) and t(ei) ̸= t(ej), then ω is called simple.

(iv) The edge-path ω̄ = (ēn, . . . , ē1) is called inverse edge-path.
(v) For the additional edge-path ω′ = (f1, . . . , fm) with o(f1) = t(e1), the

path ωω′ = (e1, . . . , en, f1, . . . , fm) is called product or concatenation.
(vi) For the edge-path ω, the number ℓ(ω) = n is called combinatorial length

or briefly length of ω.
(vii) If the edge-path ω is closed and has no backtracking, then ω is called a

cycle.

Note that some authors require cycles to be simple as well.

Definition I.6.2 (Tree): Let Γ = (V,E, δ, ι) be a graph. If V is non-empty, if Γ
is connected and if Γ has no simply cycle ω of length greater then zero, then Γ
is called a tree.

Proposition I.6.3 (Basic Properties):

(i) Let ω = (e1, . . . , en) be a cycle of length ℓ(ω) ≥ 1. Then ω contains a
simple cycle.

(ii) A graph Γ is a tree if and only if V is non-empty and if for any two
vertices u and v there is a unique edge-path without backtracking from u
to v.

Proof: Statement (i) is clear. For (ii), there are two assertions. “=⇒”: By
assumption, V is non-empty, and it is easy to see that V is connected. Remains
to show that V doesn’t contain simple cycles of positive length.

Suppose Γ contained a simple cycle ω = (e1, . . . , en) with origin e1 and end e1.
Then both ω and the constant edge-path ωv were both without backtracking,
contradicting the assumption.

“⇐=”: The existence of a path ωu,v from u to v follows from the connectedness
of Γ, as we can remove backtracking inductively. Assume now there were two
paths ωu,v = (e1, . . . , en) and ω′

u,v = (f1, . . . , fm) without backtracking from u
to v. Denote ω := ωu,vω̄

′
u,v. If the length of ω were zero, then both ωu,v and

ω̄u,v were empty.
If not, then we inductively rempte backtracking to obtain a simple cycle.□

Reminder I.6.4: Let (X1,T1) and (X2,T2) be topological spaces and denote
by pi the projection pi : X1 ×X2 → Xi.
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6 Trees

(i) The sets of the form {p−1
i (U) | U ∈ Ti} make up a subbasis for a topology

on (X1 ×X2). It is the coarsest topology rendering continuous the projections
p1 and p2, called product topology.

A sequence (xn, yn)n∈N converges to (x, y) in X × Y with respect to the
product topology if and only if xn converges to x in X and yn converges to y
in Y .

We have the following universal property: If Y is another topological space
and if there are continuous maps fi : Y → Xi, then there is one and only one
continuous map f : Y → X such that pi ◦ f = fi. This is captured by the
following diagram:

X = X1 ×X2

Y Xi

pi

fi

f

(ii) Denote by I the closed unit interval and let f1, f2 : X → Y be continuous
maps. If there is a continuous map H : X × I → Y such that for any x it holds
H(x, 0) = f1(x) and H(x, 1) = f2(x), then f1 and f2 are called homotopic.

Let f : X → Y be a continuous map. If there is a continuous map g : Y → X
such that g ◦ f is homotopic to idX and f ◦ g is homotopic to idY , then f is
called a homotopy equivalence.

If f is homotopic to a contant map, i.e. if there are y in Y and a continuous
map H : X × I → Y such that for any x in H it holds H(x, 0) = f(x) and
H(x, 1) = y, then f is called null-homotopic.

(iii) Let (X,T) be a topological space. If idX is null-homotopic, i.e. if there
are a point x0 in X and a continuous map H : X×I → X such that for any x in
X it holds H(x, 0) = x and H(x, 1) = x0, then the space is called contractible.

Let T denote a tree, let X be its geometric realisation X = T geom and let x0
be a point in X. For any point x in X there is a unique geodesic cx from x0 to
x. Denote dx := d(x0, x) and define

H : X × I −→ X, (x, t) 7−→ cx(dxt).

Then, for any x in X it holds H(x, 0) = x and H(x, 1) = x0. It remains to
show that H is indeed continuous. Instead of verifying continuity in this special
situation, we will move to a more general statement.

Definition I.6.5 (Geodesics and Friends): Let (X, d) be a metric space.

(i) A continuous map α : [a, b] → X is called a path.2

2For this notion it is sufficient for X to be merely a topological space.
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Chapter I Cayley Graphs

(ii) Let c : [a, b] → X be a map. If c is isometric, i.e. if for any t1, t2 in
[a, b] it holds d(c(t1), c(t2)) = |t1 − t2|, then c is called a geodesic.3 The
image c[a, b] is called a geodesic segment. Observe that in this case
b− a = d(c(t1, c(t2)).

(iii) Let c : [a, b] → X be a geodesic. If there is a constant λ > 0 such that
for any t1, t2 in [a, b] it holds d(c(t1), c(t2)) = λ|t1 − t2|, then c is called a
constant speed geodesic. Its image is again a geodesic segment.

(iv) Let c : [a, b] → X be a map. If for any point t in [a, b] there is an open
neighbourhood U of t such that c|U is a geodesic, then c is called a local
geodesic.

Do be warned. Sometimes local geodesics are called geodesics, e.g. in the
context of translation surfaces or differential geometry in general.

Definition I.6.6 (Geodesic Spaces): Let (X, d) be a metric space.

(i) If for any two points x and y in X there is a geodesic segment between
them, then the space is called a geodesic space.

(ii) If for any two points x and y in X there is a unique geodesic segment
between then, then the space is called uniquely geodesic space.

(iii) Let x1, x2 and x3 be points in X and let [x1, x2], [x2, x3] and [x3, x1]
be geodesic segments between the respective points. Their union ∆ :=
[x1, x2] ∪ [x2, x3] ∪ [x3, x1] is called a geodesic triangle with vertices x1, x2
and x3.

Example I.6.7: (i) The plane (R2, dE), equipped with the Euclidean metric
dE, is a uniquely geodesic space. In this space, geodesics are precisely lines,
geodesic triangles are ordinary triangles as known from elementary geometry.

(ii) Trees are uniquely geodesic spaces. This was shown on Exercise Sheet 2.

Definition I.6.8 (Comparison Triangle): Let (X, d) be a metric space and let
∆ = [x1, x2] ∪ [x2, x3] ∪ [x3, x1] be a geodesic triangle. Choose in (R2, dE) a
geodesic triangle ∆̄ = [x̄1, x̄2] ∪ [x̄2, x̄3] ∪ [x̄3, x̄1] with vertices x̄1, x̄2 and x̄3
such that d(xi, xj) = d(x̄i, x̄j). Then ∆̄ is called comparison triangle for ∆.

For each p in [x1, x2] denote by p̄ ∈ [x̄1, x̄2] the unique point with d(x̄1, p) =
d(x1, p) which is equivalent to d(x̄2, p̄) = d(x2, p). Similarly for p in [x2, x3] and
p in [x3, x1].

3Note that geodesics are in particular paths, because the isometric property implies sequen-
tial continuity and thus continuity.
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6 Trees

Definition I.6.9 (CAT0 Space): Let (X, d) be a geodesic space. If for all
geodesic triangles ∆ = [x1, x2] ∪ [x2, x3] ∪ [x3, x1] and for all p and q in ∆
it holds that d(p, q) ≤ d(p̄, q̄), where p̄ and q̄ are corresponding points in the
comparison triangle ∆, the space (X, d) is called CAT(0).

Example I.6.10: The plane (R2, dE) is a CAT(0) space.

In the following, we will show that Trees are CAT(0) spaces, and then we
will show that CAT(0) spaces are contractible.

Proposition I.6.11: Let T be a tree and let X := T geom with graph metric
d. Then, we have the following: For any points x1, x2 and x3 in X and
the geodesic segments [x1, x2], [x2, x3] with [x1, x2] ∩ [x2, x3] = {x2}, it holds
[x1, x2] ∪ [x2, x3] ∪ [x3, x1].

Proof: It follows from Proposition I.6.3 that the geodesic between two points
is the unique path without backtracking. □

Proposition I.6.12 (Trees are CAT0): Let (X, d) be a geodesic space such that
(X, d) is uniquely geodesic and such that it holds “For any x1, x2 and x3 in X
with [x1, x2] ∩ [x2, x3] = {x2}, [x1, x2] ∪ [x2, x3] = [x1, x3]”. Then we have:

(i) Any geodesic triangle ∆ = [x1, x2] ∪ [x2, x3] ∪ [x3, x1] has a triple point,
i.e. there is some point m in ∆ with [x1, x2] = [x1,m] ∪ [m,x2], [x2, x3] =
[x2,m] ∪ [m,x3] and [x3, x1] = [x3,m] ∪ [m,x1].

(ii) (X, d) is CAT0.

Proof: (i) We show that [x1, x2] ∩ [x2, x3] ∩ [x1, x3] = {m} for some point m
in X. Denote d1 := d(x2, x3), d2 = d(x1, x3) and d3 = d(x1, x2). Furthermore,
let c3 : [0, d3] → X and c2 : [0, d2] → X be geodesics with c3(0) = x1 = c2(0)
and c3(d3) = x2 and c2(d2) = x3.

Let t0 := max{t ∈ [0, d3] | c3(t) ∈ [x1, x3]} = max{t ∈ [0, 1] | c3(t) = c2(t)}.
We claim that m := c3(t) = c2(t) does the trick.

Firstly, observe that for t ≤ t0 we have c1(t) = c2(t), as c2|[t,t0] = [x,m] =
c1|[t,t0]. If on the other hand t > t0, then c3(t) doesn’t belong to [x1, x3] and
thus [x1, x2] ∩ [x1, x3] = c3([0, t0]) = c2([0, t0]).

Secondly, observe that [x2,m] = c3([t0, d3]) ∩ c2([t, d2]) = [m,x3] = {m}.
Hence, [x2,m] ∪ [m,x3] = [x2, x3] and [x1, x2] ∩ [x1, x3] ∩ [x2, x3] = {m} as
[x1, x2] ∩ [x1, x3] = c3([0, t0]) = c2([0, t0] and [x2, x3] = c3([t0, d3) ∪ c2([t0, d2]).
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(ii) Let ∆ = [x1, x2] ∪ [x2, x3] ∪ [x3, x1] be a geodesic triangle and let m be
the triple point of this triangle. Let ∆̄ = [x̄1, x̄2] ∪ [x̄2, x̄3] ∪ [x̄3, x̄1] be the
comparison triangle in (R2, dE). Finally, let p, q be two points on different sides
of ∆ and let p̄, q̄ be the corresponding points on ∆̄. We will now distinguish
cases.

Case 1 : Assume p and q lie on the same leg of ∆, without loss of generality
we may assume that they lie on [x1,m]. Furthermore, without loss of generality
we may assume that d(x0, p) ≤ d(x1, q). Choose q̄′ on [x̄1, x̄2] such that
d(x̄1, q̄

′) = d(x1, q) = d(x̄1, q̄). Then

d(p, q) − dE(p̄, q̄′) ≤ dE(p̄, q̄),

since q̄ and q̄′ describe an equilateral triangle in our comparison triangle, and
then elementary arguments do the trick.

Case 2 : Assume p and q lie on different legs. Without loss of generality, we
may assume that p lies on [m,x2] and that q lies on [m,x3]. As we are in a
unique geodesic space, we know that

d(x2,m) + d(x3,m) = d(x2, x3) = dE(x̄2, x̄3) ≤ dE(x̄2, p̄) + dE(p̄, q̄) + dE(p̄, x̄3).

Because dE(x̄2, p) = d(x2,m) − d(m, p) and dE(p, x3) = d(x3,m) − d(m, q), we
obtain by plugging in and cancelling that

d(p, q) = d(m, p) + d(m, q) ≤ dE(p̄, q̄).

Therefore, (X, d) is a CAT(0)-space. □

Definition I.6.13 (R-Tree): Let (X, d) be a geodesic space. If (X, d) is uniquely
geodesic and if for any x1, x2, x3 in X with [x1, x2] ∩ [x2, x3] = {x2} it holds
that [x1, x2] ∪ [x2, x3] = [x1, x3], then (X, d) is called an R-tree.

In particular, the previous proposition shows that R-trees are CAT(0).

Proposition I.6.14 (CAT(0)-Spaces are Convex): Every CAT(0)-space (X, d)
is convex, i.e. for any pair of constant speed geodesics c, c′ : [0, 1] → X the
point-wise distance function t 7→ c(t) − c′(t) is a convex function, which means
that for any t ∈ [0, 1] it holds d(c(t), c′(t)) ≤ (1− t)d(c(0), c′(0))+ td(c(1), c′(1)).

Proof: We establish our claim in two steps. First, assume that c and c′ share
the same starting point, that is c(0) = c′(0). We consider the triangle with
edges c(0), c(1) and c′(1) and its comparison triangle with edges x̄1, x̄2 and x̄3,
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6 Trees

where the length of the side from x̄1 to x̄2 is d3 = d(c(0), c(1)) and where the
length of the side from x1 to x3 is d2 = d(c′(0), c′(1)). Then it holds

d(c̄′(t), c̄(t)) = td(x̄2, x̄3) = td(x2, x3) = t(c(1), c′(1)).

As our space is CAT(0), it follows d(c(t), c′(t)) ≤ d(c̄(t), c̄′(t)) ≤ td(c(1), c′(1)).
Secondly, we allow c(0) to be distinct from c′(0). Denoting by c′′ the

the geodesic from c(0) to c′(1), we obtain from the first consideration that
d(c(t), c′′(t)) ≤ ts(c(1), c′′(1)) and for applied to the inverse path c̄′′ to c′′, we
get d(c′′(1 − t), c′(1 − t)) ≤ td(c(0), c′(0)). By triangular inequality it holds

d(c(t), c′(t)) ≤ d(c(t), c′′(t)) + d(c′′(t), c′(t))
≤ td(c(1), c′′(1)) ≤ td(c(1), c′′(1)) + (1 − t)d(c(0), c′(0))

which we wanted to show. □

Remark I.6.15: On an exercise sheet, you will show that if (X, d) is CAT(0),
then (X, d) is uniquely geodesic.

Definition I.6.16 (Geodesics Vary Continuously With Their Endpoints): Let
(X, d) be a uniquely geodesic space. If for any constant speed geodesic
c : [0, 1] → X from x to y and any sequence (cn : [0, 1] → X)n∈N of constant
speed geodesics with limn→∞ cn(0) = c(0) = x and limn→∞ cn(1) = c(1) = y
it holds limn→∞∥cn − c∥∞ = 0, then we say that in (X, d), geodesics vary
continuously with their endpoints.

Proposition I.6.17: In any CAT(0)-space (X, d), geodesics vary continuously
with their endpoints.

Proof: Let c : [0, 1] → X and (cn : [0, 1] → X)n∈N be constant speed geodesics,
let x = c(0) and y = c(1) and assume that cn(0) → c(0) as well as cn(1) → c(1).
By convexity, for any t ∈ [0, 1] it holds

d(c(t), cn(t)) ≤ (1 − t)d(c(0), cn(0)) + td(c(1), cn(1)) ≤ d(x, cn(0)) + d(y, cn(1))

which, by assumption, implies uniform convergence. □

Theorem 2 (CAT(0)-Spaces are Contractible): Any CAT(0)-space (X, d) is
contractible.
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Proof: Fix a point x0 in X and let cx : [0, 1] → X be the unique constant speed
geodesic from x to x0. Define

H : X × [0, 1] −→ X, (x, t) 7−→ cx(t).

By Proposition I.6.17 this map H is continuous. Suppose (xn)n∈N is a sequence
in X converging to x and suppose (tn)n∈N is a sequence in [0, 1] converging to t.
For cn := cxn we obtain by Proposition I.6.17 that cn converges to c uniformly,
i.e. in particular cn(tn) → c(t). □

Corollary I.6.18 (Trees are Contractible): The geometric realisation of a tree
is contractible.

In the following, we want to show that also the converse is true, i.e. con-
tractible graphs are trees.

Proposition I.6.19: Let Γ be a graph, let T be a subtree of Γ and let Γ/T be
the graph obtained by collapsing T 4 with collapse map p : Γ → Γ/T . Then p is
an homotopy equivalence.

Proof: This will be an exercise on Exercise Sheet 5. □

Proposition I.6.20 (Contractible Graphs are Trees): Let X be the geometric
realisation of a graph Γ. If X is contractible, then Γ is a tree.

Lemma I.6.21 (Topological Basics): Let f1, f2 : X → Y be continuous maps
between topological spaces. If f1 and f2 are homotopic, we write f1 ∼ f2.

(i) Being homotopic is an equivalence relation. If f1, f2 : X → Y are contin-
uous and homotopic and g1, g2 : Y → Z are continuous and homotopic,
then g1 ◦ f1 and g2 ◦ f2 are homotopic.

(ii) Let f : X → Y be a homotopy equivalence. Then X is contractible if and
only if Y is contractible.

(iii) If X is a contractible space and if γ : [0, 1] → X is a closed path, i.e.
γ(0) = γ(1), then γ is null-homotopic.

Proof: Statements (i) and (ii) will be on exercise sheets. As for assertion (iii),
suppose X is contractible. Then there is some point x0 in X such that idX ∼ x0,
where x0 denotes the path that is constantly x0. Hence, by (i) for the path γ it
holds x0 ◦ γ ∼ idX ◦γ = γ, i.e. γ is null-homotopic. □

4See Exercise 1 on Exercise Sheet 3.
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To show the above proposition, we will export the main argument into a
lemma.

Lemma I.6.22 (Cycles in Graphs): Let c = (c1, . . . , cn) be a simple cycle in
the graph Γ of length n ≥ 1 and let γc : [0, n] → Γgeom =: X, k + s 7→ (s, eek+1),
where k ∈ {0, . . . , n− 1} and s ∈ [0, 1] a path realising the cycle c. Then γc is
not null-homotopic.

Proof: In the arguments, we will leave a gap to be filled later. As first step,
we show that we may assume that n = 1. Suppose n ≥ 2 and consider the
tree spanned by the edges e1, . . . , en−1. By Proposition I.6.20, the projection
map p : Γgeom → (Γ/T )geom is a homotopy equivalence. In particular the path
γc is null-homotopic if and only if p ◦ γc is null-homotopic, but p ◦ γc is the
realisation (up to reparametrisation) of a loop.

As second step, we show the statement for n = 1, i.e. for a cycle c = (e1)
with o(e1) = t(e1) = v0. Suppose there were a homotopy H : [0, 1] × [0, 1] → X
with H(1, s) = γc(s) and H(0, s) = x for some point x in X. We may assume
that x = v0. Define H̃ : [0, 1] × [0, 1] → egeom

1 = {(t, e1) | t ∈ [0, 1]} with

(t, s) 7−→

H(t, s), if H(t, s) ∈ egeom
1 ,

v0, otherwise.

This is continuous, since of an open subset U of egeom
1 it holds

H̃−1(U) =

H−1(U), if v0 /∈ U,

H−1(U) ∪H−1(Γgeom − egeom
1 ), if v0 ∈ U.

Therefore, H̃ is a homotopy in egeom, which yields that egeom is contractible.
But egeom is homeomorphic to S1, which is not contractible as we will see later.□

Proof (of Proposition I.6.21): Assume X = Γgeom were contractible. Then
there were x0 in X and a homotopy map H : [0, 1] × X → X between idX

and x0. Thus, firstly X were non-empty and X were connected due to the
maps Hx : [0, 1] → X, t 7→ H(t, x). Furthermore, Γ had no simply cycle, due
to Lemma I.6.23 (cycles in graphs are not null-homotopic) and Lemma I.6.21
(loops on contractible spaces are null-homotopic). □

Theorem 3: A graph is a tree if and only if its geometric realisation is con-
tractible.
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7 Free Groups
Consider the set X = {x, y} and let W (X) be the set of all words with
letters in X. For two words w1 and w2 in W , the concatenation gives a new
word in W . For example, w1 = xyx and w2 = yxxy, their concatenation is
w1 ⋆ w2 := xyxyxxy. If we now add to our alphabet the corresponding inverse
letters X ′ = {x−1, y−1}, then W (X ∪X ′) turns into a group with concatenation
of words.

For this section, the letter X will always denote some set.
Definition I.7.1 (The Monoid of Words):

(i) The set W (X) := {(a1, . . . , an) | n ∈ N, a1, . . . , an ∈ X} ∪ {ε} denotes
the set of words with letters in X and ε denotes the empty word.

For a word w = (a1, . . . , an), the number n is called length of w, denoted
len(w). For ε, we define len(ε) = 0.

We write

⋆ : W (X) ×W (X) −→ W (X),
((a1, . . . , an), (b1, . . . , bm) 7−→ (a1, . . . , an, b1, . . . , bm)

for the concatenation of words and define ⋆((a1, . . . , an), ε) := (a1, . . . , an)
as well as ⋆(ε, (b1, . . . , bm)) := (b1, . . . , bm). Observe that “⋆” is associative
and ε is a neutral element, i.e. (W (X), ⋆) carries the structure of a monoid.

(ii) Identify X with the set X × {1} and define X ′ := X × {−1}. For an
element x of X we write x = (a, 1) and we call x−1 := (a,−1) in X ′

the inverse. Similarly, for an element x = (a,−1) of X ′, we denote
x−1 := (a, 1).

If a word w ∈ W (X ∪X ′) does not contain a subword of the form xx−1

for x ∈ X ∪X ′, we call the word w reduced.
We write w (1)→ w′ if w′ is obtained from w by a single cancellation of a

subword xx−1. Similarly, we write w → w′, if there is a finite sequence
w1, . . . , wk such that w (1)→ w1

(1)→ . . .
(1)→ wk = w′.

Observe that for every word w in W (X ∪ X ′), there is a word w′ in
W (X ∪X ′) such that w′ is reduced and w → w′.

Example I.7.2: Consider the word babb−1a−1c−1ca. By cancellation, we could
obtain baa−1c−1a and then bcc−1a and then ba. But we could also have pro-
ceeded in a different way, e.g. we could come to babb−1aa, then babb−1 and
then ba.

It is thus obvious that “reducing sequences” are not unique, but their out-
comes better be!
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Proposition I.7.3 (Uniqueness of the Reduced Form): Let w in W (X ∪ X ′)
be a word. Then w has a unique reduced form.

Proof: We show the statement via induction on the length n = len(w).
If n = 0, then w = ε, where there is nothing to be done.
Suppose now the claim held for words of the length n and assume w had

length n+ 1. If w were reduced, then the claim held. If w were not reduced,
there were a subword xx−1 for some x from our alphabet. By cancelling this
subword xx−1 from w, we could obtain the word w1. We show that any reduced
form ŵ of w is also a reduced form of w1. This then yields the claim by
induction.

Let ω̂ be a reduced form of w. If at some point in the cancellation sequence
we cancel this pair xx−1, then we can change the order of cancellation and start
with this cancellation, i.e. ŵ is also a reduced form of w1.

If the subword xx−1 we started with is never cancelled, then at least one of
the individual letters has to be cancelled “from the left” respectively “from the
right”, because ŵ is reduced. In both cases, we obtain the same word if we
cancel the initial pair. Hence we obtain the claim by the first case. □

Definition I.7.4 (Equivalence):

(i) Let w be a word in W (X ∪X ′). Then wred denotes the reduced form of
w.

(ii) If two words w1, w2 in W (X∪X ′) have the same reduced form wred
1 = wred

2 ,
we call both words equivalent. This declares an equivalence relation “∼”
and by [w] we denote the equivalence class of w with respect to “∼” .

Proposition I.7.5: Let w1, w
′
1, w2, w

′
2 be words in W (X∪X ′) such that w1 ∼ w′

1
and w2 ∼ w′

2. Then w1 ⋆ w2 is equivalent to w′
1 ⋆ w

′
2.

Proof: Denote ŵ = (w1 ⋆ w2)red and ŵ′ := (w′
1 ⋆ w

′
2)red. To obtain (w1 ⋆ w2)red,

proceed as follows: First, cancel as much as possible in w1. Then, cancel as
much as possible in w2. Then cancel in the result what can be cancelled. Hence

ŵ = (wred
1 ⋆ wred

2 )red = (w′
1

red
⋆ w′

2
red)red = ŵ′. □

Theorem 4 (Free Group): Let X be a set and let X ′ be the corresponding
disjoint copy.

(i) The set F (X) := W (X ∪X ′)/∼ with the operation “·” defined by [w1] ·
[w2] = [w1 ⋆ w2] is a group called free group.
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Chapter I Cayley Graphs

(ii) The map ι : X 7→ F (X), x 7→ [x] is an embedding and we have the
following universal property: For any group G and a map of set f : X →
G, there is one and only one group homomorphism φ : F (X) → G such
that φ ◦ ι = f , i.e. for any group G and any map of sets f , we have the
following commutative diagram:

X F (X)

G

ι

f
∃! φ

(iii) If (H, ι′) is a group H together with a map ι′ : X → H with the same
property as (F (X), ι), there is a unique group isomorphism θ : F (X) → H
such that θ ◦ ι = ι′.

Proof: (i) We have already shown that “·” is well-defined. Furthermore,
it is associative as “⋆” is and 1 = [ε] is a neutral element for this law of
composition on F (X). For a word w = (x1, . . . , xn) for xi ∈ X ∪X ′, the word
w′ = (x−1

1 , . . . , x−1
n ) is its inverse.

(ii) We define a map φ′ : W (X ∪X ′) → G as follows: If w = (x1, . . . , xn) is
a word with len(w) ≥ 1, send w to f(x1) · · · f(xn) and if len(w) = 0, w must
be the empty word and we should send w to 1G. Here, for x = a−1 ∈ X ′ we
denote f(x) = (f(a))−1. In particular, we have f(x)f(x−1) = 1G.

Then clearly φ′(w1 ⋆w2) = φ′(w1) ·φ′(w2) and for equivalent words w1 and w2
it holds φ′(w1) = φ′(w2), because φ′ plays nicely with inverses. Now defining
φ : F (X) → G, [w] 7→ [φ′(w)] does the trick. Because of the way X is embedded
in F (X), there is no other choice for φ′.

(iii) This is shown as usually. □

Notation I.7.6: In the following, we will confound w with its equivalence class
[w] and by abuse of notation, we write w1 = w2 if indeed w1 ∼ w2. In particular,
w1xx

−1w2 = w1w
−1
2 for any x in X∪X ′. One can identify [w] with wred. If X is

the finite set {x1, . . . , xn}, one usually writes F (x1, . . . , xn) for F ({x1, . . . , xn})
and calls this group the free group on n generators.

Example I.7.7: For the empty set X, the free group F (X) is the trivial group.
If X is a singleton {x}, then F (X) = {xk | k ∈ Z} is isomorphic to (Z,+).
IfX is the set {x, y}, then F (X) = {1, x, y, x−1, y−1, xx, xy, xy−1, yx, yy, . . . }.

The Cayley graph of F (X) with S = {x, y} is the four-valent tree.
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7 Free Groups

Proposition I.7.8: Let G be a group and let S be a subset of G. The free group
F (S) is isomorphic to G if and only if the Cayley graph of G is a tree.

Proposition I.7.9 (Groups as Quotients of Free Groups): Each group G is a
quotient group of a free group. That is G ∼= F (X)/N for some set X and some
normal subgroup N of F (X).

Proof: Let S be a generating system of G. If everything else fails, we can
always pick S to be G itself. Let f : S ↪→ G be the embedding. By the
universal property of F (S) there is one and only one group homomorphism
φ : F (S) → G such that for the embedding ι : S → F (S) it holds φ ◦ ι = f .
Since S is a generating set of G, the homomorphism φ is surjective and by the
homomorphism theorem, G ∼= F (S)/ ker(φ). □

Definition I.7.10: Let G be a group and let R be some subset of G. Then

⟨⟨R⟩⟩ :=
⋂

(N | N ◁ G with R ⊆ N) =
{ n∏

i=1
girig

−1
i : gi ∈ G, ri ∈ R ∪R−1

}

is called the normal subgroup normally generated by R.
Let now X be a set, let R be a subgroup of F (X) and let G = F (X)/⟨⟨R⟩⟩.

Then we call ⟨X|R⟩ a presentation of G. If both R = {r1, . . . , rk} and X =
{x1, . . . , xn} is finite, then we also write ⟨x1, . . . , xn|r1, . . . , rk⟩ instead of ⟨X|R⟩.

We further write ⟨X|r1 = r′
1, . . . , rk = r′

k⟩ for the presentation ⟨X|R⟩ where
R = {r′

1, r
′
1

−1, . . . , r′
k, r

′
k

−1}.
We also write G = ⟨X|R⟩ to mean G = F (X)/⟨⟨R⟩⟩.

Example I.7.11: Consider the group G = ⟨x, y | xy = yx⟩, i.e. R = {xyx−1y}.
Then one can show that G = Z2.

Definition I.7.12 (Commutator Subgroup, Abelianisation): Let G be a group.
Then the set [G,G] := ⟨{[g1, g2] = g1g2g

−1
1 g2 | g1, g2 ∈ G}⟩ is called the

commutator subgroup of G and is indeed a subgroup. It has the following
properties:

(i) The commutator subgroup is a normal subgroup of G, and G/[G,G] is
abelian.

(ii) The quotient G/[G,G] is the “biggest abelian image of G”, more precisely:
G/[G,G] together with the quotient map q : G → G/[G,G] has the follow-
ing universal property. For any abelian group A and any homomorphism
φ : G → A the is one and only one homomorphism φ̄ : Q → A such that
φ̄ ◦ q = φ.
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Chapter I Cayley Graphs

A pair (Q, q) consisting of an abelian group Q and a morphism q : G → Q such
that the property (ii) holds is called abelianisation of G. Any two abelianisations
(Q1, q1) and (Q2, q2) are uniquely isomorphic to each other, i.e. there is a unique
isomorphism φ : Q1 → Q2 such that φ ◦ q1 = q2. In this case, we thus denote
by Gab “the” abelianisation of G.

Proof: (i) Let g be an element of G and let a commutator [g1, g2] be given.
Then a quick calculation shows that [gg1g

−1, gg2g
−1] = g[g1, g2]g−1, thus [G,G]

is a normal subgroup, hence we can form G/[G,G]. For elements ā and b̄ in
G/[G,G] it holds āb̄ = b̄ā ⇔ aba−1b−1 ∈ [G,G], i.e. G/[G,G] is abelian.

(ii) By the Fundamental Theorem on Homomorphisms, the map φ descends
to the quotient if and only if [G,G] is contained in kerφ. As for any g1, g2 in
G it holds

φ([g1, g2]) = φ(g1)φ(g2)φ(g1)−1φ(g2)−1 = 1A,

we obtain the desired universal property.
(iii) This is the same argument as always. □

Corollary I.7.13 (Properties of Commutator): Let G be a group.

(i) The commutator [G,G] is the smallest normal subgroup of G such that
the quotient is abelian. More precisely: For any normal subgroup N of G,
whose quotient G/N is abelian, contains [G,G].

(ii) If S is a generating system of G, then [S, S] := {[s1, s2] | s1, s2 ∈ S}
generates [G,G] as a normal subgroup, i.e. [G,G] = ⟨⟨[S, S]⟩⟩.

Proof: Statement (i) follows directly from Definition I.7.12(ii). As for (ii): We
have that N := ⟨⟨[S, S]⟩⟩ is a subgroup of [G,G]. Furthermore, in A := G/N
for two elements ā and b̄ of A, we may write ā = s̄1 · · · s̄k, b̄ = s̄k+1, . . . , s̄k+ℓ

with suitable s1, . . . , sk+ℓ in S ∪ S−1. By definition of N the elements s̄i, s̄j

commute, i.e. āb̄ = b̄ā. Hence [G,G] ⊆ N = ⟨⟨[S, S]⟩⟩ by Definition I.7.12(ii).□

Proposition I.7.14 (Presentation of Zn):

(i) For the free group G = F (x1, . . . , xn), it holds Gab ∼= Zn.
(ii) F (x1, . . . , xn)/⟨⟨xixjx

−1
i x−1

j | i, j ∈ {1, . . . , n}⟩⟩ ∼= Zn.

In particular, G = ⟨x1, . . . , xn | xixj = xjxi, i, j ∈ {1, . . . , n}⟩ is a presentation
of Zn.
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7 Free Groups

Definition I.7.15 (Free Product): Let G1 = ⟨X1|R1⟩ and G2 = ⟨X2|R2⟩ be
two group presentations. Then G1 ⋆ G2 := ⟨X1 ∪ X2|R1 ∪ R2⟩ is called free
product of G1 and G2.

Proposition I.7.16 (Universal Property of Free Product): Let G1 and G2 be
two group presentations. Then G1 ⋆ G2 has the following properties:

(i) G1 ⋆ G2 depends on the chosen representations only up to unique isomor-
phism.

(ii) The free product G1 ⋆G2 comes with natural embeddings ι1 : G1 ↪→ G1 ⋆G2
and ι2 : G2 ↪→ G2 such that we have the following universal property: For
any group H together with morphisms ψ1 : G1 → H and ψ2 : G2 → H,
there is one and only one morphism ψ : G1 ⋆G2 → H such that ψi = ψ ◦ ιi.

Proof: As for assertion (ii): We define a map

ι̂1 : F (X1) −→ F (X1 ∪X2)/⟨⟨R1 ∪R2⟩⟩ = G1 ⋆ G2

via x 7→ [x]. In particular, for some r in R1 we have that ι̂1(r) = [r] = 1G1⋆G2 .
This means that ⟨⟨R1⟩⟩ is contained in ker(ι̂1), i.e. ι̂1 descends to a map
ι1 : G1 → G1 ⋆ G2. We do the same for G2. Given morphisms ψ1 and ψ2 as
described above, we define a map

ψ̂ : F (X1 ∪X2) −→ H, x 7−→

ψ1([x]), if x ∈ X1,

ψ2([x]), if x ∈ X2.

By the same argument as for the ι̂i, i.e. R1 ∪R2 ⊆ ker ψ̂, ψ̂ descends to a map
ψ : G1 ⋆ G2 → H. A short calculation shows that this map ψ has the desired
properties.

Now the uniqueness-party in the first assertion follows from the universal
property in (ii). More precisely, if (H, ι′1, ι′2) also has the universal property
in (ii), then there exists a unique isomorphism h : G1 ⋆ G2 → G′ such that
h ◦ ι1 = ι′1 and h ◦ ι2 = ι′2. □

Definition I.7.17 (Amalgamated Product): Suppose we are given group pre-
sentations G1 = ⟨X1|R1⟩ and G2 = ⟨X2|R2⟩ and another group presenta-
tion U = ⟨X3|R3⟩ together with group homomorphisms α1 : U → G1 and
α2 : U → G2. Let R′

3 := {α̂1(u) = α̂2(u) | u ∈ U}, where α̂i(u) is a preimage of
α1(u) in F (Xi) ⊆ F (X1 ∪X2). Then

G1 ⋆U G2 := ⟨X1 ∪X2|R1 ∪R2 ∪R′
3}⟩

is called the amalgamated product of G1 and G2 over U with respect to α1 and
α2.
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Chapter I Cayley Graphs

Proposition I.7.18 (Universal Property of Amalgamated Product): In the sit-
uation of Definition I.7.12 it holds:

(i) G1 ⋆U G2 does not depend on the chosen representation.
(ii) There are natural morphisms φ1 : G1 → G1 ⋆U G2 and φ2 : G2 → G1 ⋆U G2

such that φ1 ◦ α1 = φ2 ◦ α2 with the following universal property: For
any other group H with morphisms ψ1 : G1 → H and ψ2 : G2 → H with
ψ1 ◦α1 = ψ2 ◦α2, there is one and only one morphism ψ : G1 ⋆U G2 → H
such that ψ1 = ψ ◦ φ1 and ψ2 = ψ ◦ φ2.

Proof: As for the second assertion, consider the free product G1 ⋆ G2 together
with the embeddings ιi : Gi ↪→ G1 ⋆ G2 and let p : G1 ⋆ G2 → G1 ⋆U G2 be
the quotient map. Define φ1 := p ◦ ι1 and φ2 := p ◦ ι2. Then we obtain that
φ1 ◦ α1 = φ2 ◦ α2, since for all u in U it holds that

φ1(α1(u)) = p(ι1(α1(u))) = p(ι2(α2(u))) = φ2(α2(u))

by the additional relations used for passing from G1 ⋆ G2 to G1 ⋆U G2.
If we are now given the group H with the stated homomorphisms, Proposi-

tion I.7.16 yields the existence of homomorphisms ψ̂ : G1 ⋆ G2 → H such that
ψ̂ ◦ ι1 = ψ̂ ◦ ι2. It remains to show that ψ̂ descends to our wanted map ψ. It
holds

ψ̂(ι1(α1(u))) = ψ1(α1(u)) = ψ2(α2(u)) = ψ̂(ι2(α2(u))),

which establishes the claim. The first claim follows from (ii) as usual. □
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Chapter II

A Topological Crash Course

1 Fundamental Groups
In this section, X, X1, X2 and Y always denote topological spaces with points
⋆ ∈ X, ⋆1 ∈ X1 and ⋆2 ∈ X2.

Definition II.1.1:

(i) Let X be a topological space and let ⋆ be a point of X. Then, the tuple
(X, ⋆) is called a punctured topological space. Let (X1, ⋆1) and (X2, ⋆2)
be punctured topological spaces and let f : X1 → X2 be a map. If f is
continuous with f(⋆1) = ⋆2, then f is called a morphism of punctured
spaces.

(ii) Let E be a subset of some topological space X and let f, g : X → Y
be continuous maps between topological spaces such that f |E = g|E.
A continuous map H : X × I → Y that for any x in X satisfies that
H(x, 0) = f(x), H(x, 1) = g(x) and which fulfils H(x, t) = f(x) = g(x)
for any x in E and any t in [0, 1] is called a homotopy between f and g
relative to E. In this case we write f ∼E g.

(iii) The set
π1(X, ⋆) := {γ : [0, 1] → X | γ(0) = γ(1)}/∼[0,1]

is called fundamental group of X at ⋆.

Example II.1.2 (Composition, Reparametrisation): Let φ : [0, 1] → [0, 1] be a
continuous map with φ(0) = 0 and φ(1) = 1. Then φ ∼E id[0,1].

If f, f ′ : X1 → X2 and g, g′ : X2 → X3 are continuous maps such that f ∼E f ′

and g ∼f(E) g
′, then g ◦ f ∼E g′ ◦ f ′.

Let γ : [0, 1] → X be a path and let φ : [0, 1] → [0, 1] be a continuous map
with φ(0) = 0 and φ(1) = 1, then γ ◦ φ ∼{0,1} γ.
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Proof: We need to give homotopies for the considered maps. For the first
statement,

H : [0, 1] × [0, 1] −→ [0, 1], (s, t) 7−→ (1 − t)s+ tφ(s)

does the trick. For the second one, suppose H1 : X1 × [0, 1] → X2 is a homotopy
from f to f ′ relative to E and suppose H2 : H× [0, 1] → X3 is a homotopy from
g to g′ relative to f(E), then H : X1 × [0, 1] → X3, (x, t) 7→ H2(H1(x, t), t) is a
homotopy suitable to our claim. The third assertion directly follows from the
first and second assertion. □

Proposition II.1.3 (Fundamental Group): For two paths γ1, γ2 : [0, 1] → X
with γ1(1) = γ2(0), the path

γ1 · γ2 : [0, 1] −→ X, t 7−→

γ1(2t), if 0 ≤ t < 1/2,
γ2(2t− 1), if 1/2 ≤ t ≤ 1.

is called composition of γ1 and γ2. If γ′
1, γ

′
2 : [0, 1] → X are different paths

with γ1(0) = γ′
1(0), γ1(1) = γ′

1(1), γ2(0) = γ′
2(0) and γ2(1) = γ′

2(1) and if
γ1 ∼{0,1} γ

′
1 and γ2 ∼{0,1} γ

′
2, then γ1 · γ2 is homotopic to γ′

1 · γ′
2, i.e. “·” is

well-defined on homotopy classes.
The set π1(X, ⋆) together with the law of composition defined by composition

of paths turns into a group, called fundamental group of X at ⋆.

Proof: Suppose H1, H2 : [0, 1] × [0, 1] → X are homotopies between γ1 and γ′
1

respectively γ2 and γ′
2. Then

H : [0, 1] × [0, 1] −→ X, (s, t) 7−→

H1(2t, s), if 0 ≤ t ≤ 1/2,
H2(2t− 1, s), if 1/2 ≤ t ≤ 1

is the desired homotopy between the path compositions.
Now to the law of composition. First, we check associativity of path com-

position. Let thus γ1, γ2, γ3 : [0, 1] → X be paths with γ1(1) = γ2(0) and
γ2(1) = γ3(0). Then

γ1 · (γ2 · γ3) : [0, 1] −→ X, t 7−→


γ1(2t), if 0 ≤ t < 1/2,
γ2(4t− 2), if 1/2 < t ≤ 3/4,
γ3(4t− 3), if 3/4 ≤ t ≤ 1

and

(γ1 · γ2) · γ3 : [0, 1] −→ H, t 7−→


γ1(4t), if 0 ≤ t ≤ 1/4,
γ2(4t− 1), if 1/4 ≤ t ≤ 1/2,
γ3(2t− 1), if 1/2 ≤ t ≤ 1.
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Using the map

φ : I −→ I, s 7−→


1/2s, if 0 ≤ s ≤ 1/2,
s− 1/4, if 1/2 ≤ s ≤ 3/4,
2s− 1 if 3/4 ≤ s ≤ 1

it follows from Exercise 1.2 that (γ1 · γ2) · γ3 = γ1 · (γ2 · γ3) ◦ φ is homotopic to
γ1 · (γ2 · γ3) with respect to E = {0, 1}.

Secondly, we verify that [⋆] is the identity element. Using arguments similar
to those above, one shows that for any path γ : [0, 1] → X with γ(0) = γ(1) = ⋆
we have γ · ⋆ ∼{0,1} γ ∼{0,1} ⋆ · γ.

Thirdly, we show that for any path γ : [0, 1] → X we have γ ·γ− = [⋆] = [γ−·γ],
where γ− denotes the inverse path declared by s 7→ γ(1 − s). A suitable
homotopy is given by

H : [0, 1] × [0, 1] −→ X, (s, t) 7−→

γ(2ts), if 0 ≤ s ≤ 1/2,
γ(2t− 2ts), if 1/2 ≤ s ≤ 1.

In total, we have thus shown that (π1(X, ⋆), ·) is indeed a group. □

Proposition II.1.4 (Functoriality):

(i) Every morphism f : (X1, ⋆1) → (X2, ⋆2) between punctured spaces induces
a group homomorphism π⋆(f) := f⋆ : π1(X1, ⋆1) → π1(X2, ⋆2) defined by
[γ] 7→ [f ◦ γ].

(ii) Let f1 : (X1, ⋆1) → (X2, ⋆2) and f2 : (X2, ⋆2) → (X3, ⋆3) be morphisms of
punctured spaces. Then it holds (f2 ◦ f1)⋆ = (f2)⋆ ◦ (f1)⋆.

(iii) For the identity id(X,⋆) it holds (id(X,⋆))⋆ = idπ1(X,⋆).
(iv) If f, f ′ : (X1, ⋆1) → (X2, ⋆2) are morphisms of punctured spaces homotopic

relative to {⋆1}, then f⋆ = f ′
⋆.

Proof: As for (i): By Exercise 1.2, the induced morphism f⋆ is well-defined.
For composable paths γ1 and γ2 we have f ◦ (γ1 · γ2) = (f ◦ γ1) · (f ◦ γ2) by
definitions. The other assertions are immediate. □

Corollary II.1.5 (Fundamental Group as Topological Invariant): If the punc-
tured space (X1, ⋆1) is isomorphic to (X2, ⋆2), then their fundamental groups
π1(X1, ⋆1) and π1(X2, ⋆2) are isomorphic. Even stronger: If the punctured
spaces (X, ⋆1) and (X2, ⋆2) are merely homotopic, then π1(X1, ⋆1) is isomorphic
to (π1(X2, ⋆2).
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Proposition II.1.6 (Independence of Base Point): For points x1 and x2 of X
it holds: If there is a path from x1 to x2, then π1(X, x1) ∼= π1(X, x2). In
particular: If X is path-connected, then any two fundamental groups of X at
distinct base-points are isomorphic. In this case, we just write π1(X) and call
it the fundamental group of X.

Proof: Let c : [0, 1] → X be a path with c(0) = x1 and c(1) = x2. The map
π1(X, x1) → π1(X, x2), [γ] 7→ [c− · γ · c] is an isomorphism with inverse map
[γ] 7→ [c · γ · c−]. □

Definition II.1.7: Let X be a topological space. If X is path-.connected and if
π1(X) = {id}, then X is called simply connected.

Corollary II.1.8: If X is a contractible topological space, then X is simply
connected.

Proof: As an exercise, you have already shown that if X is contractible, then
there is a homotopy f : X → {x} to some point x of X, hence there is only one
fundamental group π1(X), which is isomorphic to π1(X, ⋆), which is trivial.□

Example II.1.9: (i) The euclidean space Rn is simply connected.
(ii) Trees are simply connected.

Import II.1.10 (Theorem of Seifert and van Kampen): Suppose we have a topo-
logical space X with open and path-connected subsets U and V of X such that
X = U ∪ V and such that U ∩ V is non-empty and path-connected. Let ⋆
be a point in U ∩ V . Consider the fundamental groups π1(U, ⋆), π1(V, ⋆) and
π1(U ∩ V, ⋆) and the maps α1 : π1(U ∩ V, ⋆) → π1(U, ⋆) and α2 : π1(U ∩ V, ⋆)
induced by the embeddings ι1 : U ∩ V ↪→ U and ι2 : U ∩ V ↪→ V . Then
π1(X) ∼= π1(U, ⋆) ⋆π1(U∩V,⋆) π1(V, ⋆).

In the following, we will again make use of the fact π1(S1) ∼= Z, which we
will show again later.

Example II.1.11: Consider a rose with two leaves. Using Seifert and van
Kampen, we may compute its fundamental group from its building blocks. For
those, we find π1(U1) ∼= Z = ⟨x⟩, π1(U2) ∼= Z = ⟨y⟩ and π1(U∩V ) = {1}. Hence
the fundamental group of the whole space is π1(X) = Z ⋆ Z = F (x, y) = F2.

More generally, consider the rose with n petals Γ, i.e. V = {·} and #E+ = n.
We obtain with Seifert and van Kampen and via induction that π1(Γgeom) ∼= Fn.
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Corollary II.1.12 (Fundamental Group of Finite Graphs): Let Γ be a connected
finite graph with vertex set V and edge set E. Then π1(Γgeom) = Fg, where g is
#E − #V + 1.

Here, g stands for genus of the graph. Note that there is conflict over the
“correct” definition of genus of a graph, i.e the notion used here is non-standard.
Proof: Let T be a spanning tree, i.e. a subtree of Γ, which contains all the
vertices of Γ (see Exericse 2 on Exercise Sheet 2), thus #V − 1 edges. Then
Γ/T (the graph obtained by contracting T ) is a rose with n petals, where
n = #E − #V + 1. From Exercise 1 on Exercise Sheet 5 it is known that
q : Γgeom → (Γ/T )geom is a homotopy equivalence and by Corollary II.1.5,
also the fundamental groups are isomorphic, which by Example II.1.11 are
isomorphic to Fn. □

Import II.1.13 (Oriented Closed Surfaces): A real two-dimensional manifold
X, i.e. a paracompact Hausdorff topological space in which every point has an
open neighbourhood which is homeomorphic to an open subset of R2, is called
a surface. If X is a compact topological space, the surface X is called closed.
For any natural number g let Σg denote the surface obtained by gluing the edges
with the same labels of a polygon with 4g edges as follows:

Sketch missing
For g = 0 define Σg to be the sphere. The classification of closed oriented
surfaces is a well-known result from algebraic topology. It states: Any closed
oriented surfaces X is homeomorphic to Σg for some non-negative integer g.
This g is then called genus of X.

If X is a closed surface of genus g together with a decomposition of X into
polygons, and if χ denotes the number

χ = #vertices − #edges + #polygons,

then we have the 2g = 2 − χ. This number χ is called Euler characteristic and
it is a topological invariant.

Proposition II.1.14 (Fundamental Group of Closed Oriented Surfaces): Let X
be a closed oriented surface of genus g. Then

π1(X) ∼=
〈
A1, B1, . . . , Ag, Bg

∣∣∣∣ g∏
i=1

[Ai, Bi] = 1
〉

=: πg.

This group πg is called the surface group.
Let now D be a closed disk in X and let X∗ := X − D. Then π1(X∗) is

isomorphic to F2g.

47



Chapter II A Topological Crash Course

Proof: For the statement in (ii), consider the following:

Sketch missing

Since X∗ is homotopic to a rose R with 4g petals, we have that π1(X∗) ∼=
π1(R4g) = F4g.

For the statement in (i),

Sketch missing

Let D′ be a disk included in D and let U2 = X − D′. Then U1 ∩ U2 is an
annulus and thus homotopic to a circle. Hence π1(U2) ∼= F (A1, B1, . . . , Ag, Bg),
π1(U1) = {1} and π1(U1 ∩ U2) ∼= Z = ⟨c⟩. For Seifert and van Kampen we now
still need the morphisms α1 and α2. The map α1 : π1(U1 ∩U2) → π1(U1) = {1}
is clear. And α2 : π1(U1 ∩ U2) → π1(U2) is declared via c 7→ ∏g

i=1[Ai, Bi].
Applying the Theorem of Seifert and van Kampen yields that

π1(X) ∼= π1(U1) ⋆π1(U1∩U2) π1(U2) ∼=
〈
A1, B1, . . . , Ag, Bg

∣∣∣∣ 1 =
g∏

i=1
[Ai, Bi]

〉

which concludes the proof. □

2 Covering Theory
Example II.2.1: (i) Let Y be the real line R, let X be the unit circle line
S1 = {x ∈ R2 | ∥x∥2 = 1} and consider the map p : Y → X, t 7→ (cos(t), sin(t)).

(ii) Let Y be the Euclidean plane R2, let X = R2/Z2 be equipped with the
quotient topology and let p : Y → X be simply the quotient map.

(iii) Let Y := Cay(F (x1, . . . , xn), {x1, . . . , xn}) be the n-valent tree, take
X := Y/F (x1, . . . , xn), which gives the Rose with n petals and let p : Y → X
be the quotient map.

Observe that for all those examples, we have the following: For any point x
in X there is an open neighbourhood U such that p−1(U) = ⋃· i∈I (Ui | i ∈ I) for
disjoint open subsets Ui of X and for any i ∈ I, the restriction p|Ui

: Ui → U is
a homeomorphism. Furthermore, in all cases, Y is simply connected.

In this section, X and Y will always denote topological spaces and p : Y → X
will always be a continuous map.
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2 Covering Theory

Definition II.2.2:

(i) Let X be a topological space. If for x in X and any open neighbourhood
V of x there is an open connected resp. path-connected neighbourhood
U of x contained in V , then X is called locally connected at x resp.
locally path-connected at x. If X is locally connected resp. locally path-
connected at any point, then X is called locally connected resp. locally
path-connected.

(ii) If for any point x in X and any open neighbourhood V of x there is an
open neighbourhood U of x containted in V such that any closed path in
U can be contracted in X to the point x, then X is called semi-locally
simply connected.

(iii) For x in X, the pre-image p−1({x}) is called fibre of x. We sometimes
denote it Fx.

Definition II.2.3: Let p : Y → X be a continuous map. If for any point x in
X there is an open neighbourhood U such that p−1(U) = ⋃· i∈I (Ui | i ∈ I) for
disjoint open subsets Ui of X and for any i ∈ I, the restriction p|Ui

: Ui → U is
a homeomorphism, then p is called a covering.

We write p : (Y, y) → (X, x) for a covering with p(y) = x and call it a
covering between marked spaces. The neighbourhood U as described above is
called elementary neighbourhood.

Example II.2.4: Let T denote g-holed torus, which is a representative of closed
surfaces of genus g, and let T ∗ := T − {∞}. A covering of T ∗ is called an
origami.

Import II.2.5 (Basic Properties of Coverings): Let X be a connected and lo-
cally path-connected topological space, let Y be a non-empty and path-connected
topological space and let p : Y → X be a covering. Then p is open and surjective
and the map

X −→ N0 ∪ {∞}, x 7−→ Fx = p−1({x})

is constant. The number #Fx, where x is some element of x, is called the
degree of p, or number of leaves, and is denoted deg(p).

From now on, we assume all coverings to be as described in ?? II.2.5.

Theorem 5 (The Lifting Theorem): Let p : (Y, y0) → (X, x0) be a covering of
marked spaces and let f : (Z, z0) → (X, x0) be a continuous map between marked
spaces. If Z is connected and locally path-connected, then we have the following:
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(i) There is at most one map f̂ : (Z, z0) → (X, x0) of marked spaces such
that p ◦ f̂ = f . A map with the property of f̂ is called a lift of f to Z.

(ii) If f∗(π1(Z, z0)) is contained in p∗(π1(Y, y0)) then there is one and only
one lift f̂ : (Z, z0) → (Y, y0).

As a direct consequence of this theorem, we obtain the following assertion.

Corollary II.2.6 (Lifting Results): Suppose p : (Y, y) → (X, x) is a covering.

(i) For any path c : [0, 1] → X, and any point y in Y with p(y) = c(0) there
is one and only one lift ĉ : [0, 1] → Y in y, i.e. ĉ(0) = y and p ◦ ĉ = c.

(ii) Consider paths ĉ1, ĉ2 : [0, 1] → Y with ĉ1(0) = ĉ2(0) and ĉ1(1) = ĉ2(1).
The lift ĉ1 is homotopic to ĉ2 relative to {0, 1} if and only if c1 is homotopic
to c2 relative to {0, 1}.

(iii) Suppose X̃ is simply connected and u : (X̃, x̃0) → (X, x0) is a morphism
of marked topological spaces. Then there is one and only one covering
p̃ : (X̃, x̃0) → (Y, y0) such that p ◦ p̃ = u.

Definition II.2.7: Let u : (X̃, x̃) → (X, x) be a covering. If for any covering
p : (Y, y) → (X, x) there is a unique covering p̃ : (X̃, x̃) → (Y, y) such that
p ◦ p̃ = u, then u is called a universal covering.

Remark II.2.8: (i) A universal covering ((X̃, x̃), u) is unique up to unique
isomorphy, i.e. for any further universal covering u′ : (X̃ ′, x̃′) → (X, x) there is
a unique homeomorphism h : (X̃ ′, x̃′) → (X̃, x̃) with u ◦ h = u′.

(ii) A map p : (Y, y) → (X, x) is a universal cover if and only if Y is simply
connected. This follows from (i) and Corollary II.2.6(iii).

Theorem 6 (of the Universal Covering): Let X be a connected, locally path-
connected and simply connected and let x0 be a point of X. Then there is a
universal cover u : (X̃, x̃) → (X, x0).

This universal covering for X may be constructed. We denote

π1(x0, x) := {c : [0, 1] → X | c(0) = x0, c(1) = x}|{0,1},

define X̃ to be {X̃ := {(x, [c]) | x ∈ X, [c] ∈ π1(x0, x)} and define p : X̃ → X,
(x, [c]) 7→ x. What remains to be done, and what requires some effort, is the
construction of a topology on X̃. For a point x̃ = (x, [c]) of X̃, and an open
neighbourhood U of x, we want to define

Ũ := {(x′, [c′]) | x′ ∈ U, c′ = cd},
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3 From Coverings to Groups and Back

where d lies in U , which is supposed to become an open neighbourhood of x̃.
One can show that these Ũ form the basis for some topology on X̃ and that,
with respect to this topology, X̃ is path-connected and p : X̃ → X is a covering.

To finally show that X̃ is simply connected, suppose w : [0, 1] → X̃ is a path
with w(0) = w(1) = x̃0 = (x0,x0) and consider the composition w̄ := p ◦ w.
Then w is a lift of w̃ with w(0) = x̃0. The map w′ : [0, 1] → X̃, t 7→ (w̄(t), w̄|[0,1])
also is a lift of w̄ with w′(0) = x̃0 and thus w = w′ which establishes the claim.

3 From Coverings to Groups and Back
In this section, we assume all coverings to be connected. Recall that a topological
space X is said to be Hausdorff, if for any two distinct points x and y of X
there are disjoint open neighbourhoods U of x and V of y.

Definition II.3.1 (Deck Group): Let p : Y → X be a covering. Then we denote

Deck(p) := Deck(Y/X) := {h : Y → Y homeomorphism and p ◦ h = p}.

If for any two points y1 and y2) with p(y1) = p(y2) there is some h in Deck(Y/X)
such that h(y1) = y2, then the covering p is called regular or normal.

Remark II.3.2 (Action of Deck Group): Let p : (Y, y0) → (X, x0) be a cov-
ering. Consider the action ρ : G := Deck(Y/X) → Homeo(Y ) induced by
application of homeomorphisms to points of Y . Then we have the following:

(i) The action is free, i.e. all non-trivial elements have no fixed point.
(ii) The action is properly discontinuous. This means that for any point y in

Y there is a neighbourhood U such that #{g ∈ G | (ρ(g))(U) ∩ U ̸= ∅}
is finite.

(iii) For a point x of X and its fibre Fx = p−1({x}), the action ρ induces an
action ρ̂ : G = Deck(Y/X) → Perm(Fx), which is also free and thus in
particular an embedding of groups.

Assertion (iii) holds because of the uniqueness of liftings described in Import
II.2.5(i), Assertion (i) follows from (iii) and for (ii), we proceed as follows: For
a point y of Y we choose a neighbourhood U such that p|U : U → p(U) is a
homeomorphism. Hence, for every map h in Deck(p), we have h(U) ∩ U = ∅.

Proposition II.3.3 (Proper Discontinuity via Coverings): Let X be a Haus-
dorff topological space and let ρ : G → Homeo(X). Consider the projection map
p : X → X/G = {Gx | x ∈ X}, where X/G carries the quotient topology. The
covering p is free if and only if ρ is free and properly discontinuous.
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The proof of this assertion will be left as an exercise on an upcoming Exercise
Sheet.

Remark II.3.4 (. . . and Back): Let p : Y → X be a normal covering. Then
there is one and only one homeomorphism h : Y/Deck(p) → X, such that
h ◦ q = p, where q : Y → Y/Deck(p) is the quotient map. In this case, we thus
have the following commutative diagram:

Y

X Y/Deck(p)

q
p

h

∼

Proof: By the universal property of quotient space we obtain a continuous map
h : Y/Deck(p) → X. As p is open and surjective, so is h. If h(q(y1)) = h(q(y2)),
then y1 and y2 belong to the same orbit under the action of Deck(p), i.e. they
belong to the same equivalence class, which is to say that q(y1) = q(y2)). Hence,
h is injective. □

Proposition II.3.5 (Deck Group of Universal Covering): Any universal cov-
ering u : (X̃, x̃0) → (X, x0) is normal. Moreover, Deck(u) = π1(X, x0).

We give a sketch of a proof. First, we show that the universal covering is
normal. Let therefore x̃ and x̃′ be points in the fibre of x0. Then the existence
of a suitable map h : (X̃, x̃) → (X̃, x̃′) in the diagram

(X̃, x̃) (X̃, x̃′)

(X, x0)

h

u
u

follows more or less directly from the universal property of our universal covering.
It can be shown that h is indeed a homeomorphism, as desired.

To compute the Deck group, we make use of the simple connectedness of X̃.
We define a group homomorphism

α1 : Deck(u) −→ π1(X, x0), h 7−→ [p(c̃)],

where c̃ is any path from x̃0 to h(x̃0). Convince yourself that this yields a
well-defined map! To establish an isomorphism, we give an inverse map to α1,
namely

α2 : π1(X, x0) −→ Deck(X̃/X), [c] 7−→ h,
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where h is the unique Deck transformation (as the Deck group acts freely)
which is determined by mapping the starting point of the unique lift c̃x0 of c
in x0 to its end point. Verification of the homomorphism properties of α1 and
α2 and verification of them being inverse to each other will be the content of
Exercise 4 on Exercise Sheet 7.

Theorem 7 (Principal Theorem of Covering Theory): Suppose X is a con-
nected, locally path-connected and semi-locally simply connected and suppose
x0 is a base point of X. Furthermore, let u : (X̃, x̃0) → (X, x0) be a universal
covering. Denote

TopCov := {p : (Y, y0) → (X, x0) | p covering, Y connected, Y ̸= ∅}/∼

where p1 and p2 are related if there is a homeomorphism h : (Y1, y
(1)
0 ) → (Y2, y

(2)
0 )

with p2 ◦ h = p1, and let Sgπ := {U ≤ Deck(u)}.

(i) We have the following bijections, which are inverse to each other:

ψ1 : TopCov −→ Sgπ, [p : (Y, y0) → (X, x0)] 7−→ Deck(p̃)

where p̃ : (X̃, x̃0) → (Y, y0) with p ◦ p̃ = u, and

ψ2 : Sgπ −→ TopCov, U 7−→ [p : X̃/U → X, [x̃] 7→ u(x̃)].

(ii) For two coverings p1 : (Y1, y
(1)
0 ) → (X, x0) and p2 : (Y2, y

(2)
0 ) → (X, x0) we

have the following: There is a unique homeomorphism h : Y1 → Y2 such
that p2 ◦ h = p1 if and only if Deck(p̃1) is conjugated to Deck(p̃2).

(iii) A covering p ∈ TopCov is normal if and only if Deck(p) is a normal
subgroup of Deck(u). In this case, Deck(p) ∼= Deck(u)/Deck(p̃).

Proof: (i) Check that ψ1 is well-defined and that ψ1 and ψ2 are inverse to
each other.

(ii) “⇐=”: Consider the diagram

X̃ X̃

Y1 Y2

X

h̃

p̃1

u

p̃2

u

h

p1 p2
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The map h lifts to h̃ : (X̃, x̃0) → (X̃, x̃0), hence we obtain a group homomor-
phism h∗ : Deck(p̃1) → Deck(p̃2) defined by σ1 7→ h̃ ◦ σ1 ◦ h̃−1. As h̃ is a
homeomorphism, h∗ is an isomorphism.

“⇐=”: Consider the same diagram as above. For h̃ ∈ Deck(u) is holds
Deck(p̃2) = h̃◦Deck(p̃1)◦h̃−1. We claim that h̃ descend to some homeomorphism
h : Y1 → Y2 for which then holds p2 ◦ h = p1.

To show that h̃ descends as desired, let a and b be points of X̃ with p̃1(a) =
p̃1(b). Hence, there is some σ in Deck(p̃1) such that σ(a) = b. For σ̂ := h̃σh̃−1

in Deck(p̃2) it holds
σ̂(h̃(a)) = h̃(σ(a)) = h̃(b),

which just means that p̃2(h(a)) = p̃2(h(b)). Therefore, h̃ descends. Observe that
h̃ descends to a map from Y1 to Y2 if and only if h̃ ◦ Deck(p̃1) ◦ h̃−1 = Deck(p̃2).

(iii) The “if and only if”-part follows directly from (ii). If p is normal,
by (ii) we obtain a map Deck(u) → Deck(p) that maps h̃ to its descend
h. This map is a group homomorphism and its kernel is precisely Deck((p̃).
Furthermore, it is surjective since any homeomorphism can be lifted. Thus
Deck(p) ∼= Deck(u)/Deck(p̃). □

Definition II.3.6 (Monodromy Map): Let p : (Y, y0) → (X, x0) be a covering
of finite degree d and let Fx0 := p−1(x0). The map

m : π1(X, x0) −→ Sym(Fx0) ↔ Sd, [c] 7−→ (y 7→ y · [c]),

where y · [c] is the endpoint of the unique lift c̃y of c in y in the fibre of Fx0 ,
is called monodromy map. It is an anti-grouphomomorphism, i.e. for paths c1
and c2 it holds m([c1] ⋆ [c2]) = m([c2]) ◦m([c1]). The image of m in Sd is called
monodromy group.

Example II.3.7: Let G = S3 and consider the following cover:

Sketch missing

Observe that p is a normal covering. The monodromy map m : π1(T ∗) ∼=
F2(x, y) → S6 is determined by x 7→ (123)(456) and y 7→ (14)(26)(35). Do be
careful; as noted before, m is an anti-homomorphism.

Remark II.3.8 (Normal Coverings): Let p : (Y, y0) → (X, x0) be a normal
cover and denote G = Deck(p). We identify elements h of G with elements in
the fibre Fx0 by h 7→ h(y0).
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(i) Firstly, we have the natural action of Deck(p) on Fx0 ↔ G, namely
ρ : G → Sym(Fx), which maps h to (y 7→ h(y)). Identifying Sym(Fx0) with
Sym(G), this idenfitication looks like h 7→ h ◦ g, where we use that if g(y0) = y,
then h ◦ g(y0) = h(y). Hence, by this identification, the action of G becomes
the action of G by G via leftmultiplication.

(ii) Secondly, we have the right-action m : π1(X, x0) → Sym(G) by mon-
odromy. By Theorem 6 and Theorem 7(iii), for any universal cover u : (X̃, x̃0) →
(X, x0) we obtain

π1(X, x0) Deck(u) Deck(p) ∼= Deck(u)/Deck(ũ) = G∼ quotientmap

Observe that the following diagram commutes:

Sym(G)

X

G

m

σ̃

where the upwards arrow is the action by right multiplication h 7→ (g 7→ gh).

4 The Hyperbolic Plane
We consider the upper half plane H := {z ∈ C | Im(z) > 0}. On this topological
space, we want to declare a metric. Originally this space was cooked up as a
counter example to the parallel postulate contained in the Euclidean axioms.
It turned out to be useful for other purposes, too. The Hyperbolic Plane is
biholomorphic to the universal coverings of “almost all” Riemann surfaces. As
a literature suggestion, one might consider “Fuchsian Groups” by Svetlana
Katch.

Facts II.4.1 (Hyperbolic Metric): Let c : [a, b] → H be a piecewise differen-
tiable curve and for t ∈ [a, b], write c(t) = x(t) + iy(t) with suitable real
numbers x(t) and y(t). Then

ℓ(c) :=
ˆ b

a

|c′(t)|
y(t) dt =

ˆ b

a

1
y(t)

√
x′(t)2 + y′(t)2 dt

is called the hyperbolic length of c.
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For points z and w of H, we call

dH(z, w) := inf{ℓ(c) | c : [a, b] → H piecewise differentiable, c(a) = z, c(b) = w}

the hyperbolic distance of z and w. The corresponding map (z, w) 7→ dH(z, w)
is called hyperbolic metric, and indeed is a metric.

Example II.4.2 (Lengths of Special Curves): (i) The curve cb : [0, 1] → H,
t 7→ bi + t has derivative c′

b : t 7→ 1. For this curve, the notation from above
and any point t in [0, 1], we naturally have x(t) = t and y(t) = bi. The length
of this curve is

ℓ(cb) =
ˆ 1

0

|c′(t)|
y(t) dt =

ˆ 1

0

1
b
dt =

[1
b
t
]1

0
= 1
b
.

Observe that this length tends to zero, when b gets arbitrarily large, and that
this length becomes arbitrarily long, when b tends to zero.

(ii) Let a be a real number greater than one and let ca : [1, a] → H, t 7→ ti.
Then

ℓ(ca) =
ˆ a

1

|i|
a
dt =

ˆ a

1

1
t
dt = [ln(t)]a1 = ln(a).

(iii) For an arbitrary differentiable path ĉa : [0, 1] → H with ĉa(0) = i and
ĉa(1) = ia, we have

ℓ(ĉa) =
ˆ 1

0

1
y(t)

√
x′(t)2 + y′(t)2 dt

≥
ˆ 1

0

|y′(t)|
y(t) dt ≥

ˆ 1

0

y′(t)
y(t) dt = [ln(y(t))]10 = ln(a) − ln(1) = ln(a).

From (ii) and (iii) it follows for a > 1 that dH(i, ai) = ln(a). In the same way,
dH(i, ai) = ln(1/a) for a < 1. In particular, the curve from ca from (ii) is a
geodesic.

Without further explanation, we want to raise awareness that the path from
(i) is not geodesic.

Example II.4.3 (The Three Graces): Consider the following maps γ : H → H:

(i) For a real number r, let γ : z 7→ z + r.
(ii) For a positive real number λ, let γ : z 7→ λz.
(iii) For an angle θ in [0, 2π], let γ : z 7→ (sin θz + cos θ)−1(cos θz − sin θ).
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All three of those maps are isometries, which can easily be verified by computa-
tion. Observe that all of these maps are of the form z 7→ (cz + d)−1(az + b) for
real numbers a, b, c, d, where det( a b

c d ) ̸= 0. To be explicit, the corresponding
matirces are (

1 r
0 1

)
,

(
λ1/2 0

0 λ−1/2

)
,

(
cos θ − sin θ
sin θ cos θ

)
.

Proposition II.4.4 (Möbius Transformations as Isometries): The matrix group
Sl2(R) acts on H via isometries by

α : Sl2(R) −→ Isom(H), A =
(
a b
c d

)
7−→ γA : z 7−→ az + b

cz + d
.

For the group PSl2(R) := Sl2(R)/{±I} the group action α induces an action
ᾱ : PSl2(R) → Isom(H), [A] 7→ γA and ᾱ is faithful (i.e. injective).

Proof: Firstly, we have to check that α is indeed a group homomorphism. For
this, observe that Sl2(R) is generated by the special matrices{(

1 r
0 1

)
,

(
λ1/2 0

0 λ−1/2

)
,

(
cos θ − sin θ
sin θ cos θ

)}
.

This is essentially seen from Gaussian elimination with extra care for Sl2(R).
Once one has shown that, the claim follows from II.4.3.

Secondly, as γ−I acts trivially, the induced action ᾱ is well-defined. A
complex number z is a fixed point of γA : z 7→ (az + b)/(cz + d) if and only if
cz2 + dz = az + b. If a = d = 1 and b = c = 0 or if a = d = −1 and b = c = 0,
the equation degenerates and has the whole of C as solution set. Otherwise,
this equation has at most two solutions. From these considerations, one can
draw the conclusion that ᾱ is faithful.

Observe that the proof of (ii) shows that for any A ̸= ±I, the corresponding
Möbius transform γA has at most two fixed points. □

Facts II.4.5 (Möbius Transforms are Great): The action of PSl2(C) acts on
the Riemann sphere C ∪ {∞}, which may be identified with P1(C).

(i) The group PSl2(C) acts 3-transitively on P1(C), i.e. for 3 different points
z1, z2, z3 in P1(C) = Ĉ there is one and only one σ in PSl2(C) such that
σ(0) = z1, σ(1) = z2 and σ(∞) = z3.

(ii) Möbius transformations map generalised circles to generalised circles. By
generalised circle, we mean an Euclidean circle in R2 or a line in R2.
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(iii) Möbius transformations preserve angles between generalised circles.
(iv) For pairwise distinct points z1, z2, z3 and z4 on the Riemann sphere, we

call
(z1, z2; z3, z4) := (z1 − z4)(z3 − z2)

(z1 − z2)(z3 − z4)
the cross ratio of z1, z2, z3 and z4. For γ in PSl2(C) it holds

(γ(z1), γ(z2); γ(z3), γ(z4)) = (z1, z2; z3, z4).

Corollary II.4.6 (Conclusions for PSl2(R)): (i) If [A] belongs to PSl2(R),
then γA(R ∪ {∞}) = R ∪ {∞}, hence γA(H) = H.

(ii) The group PSl2(R) acts 3-transitively on R ∪ {∞}, i.e. for any real
numbers r1 ≤ r2 ≤ r3 ≤ ∞ there is one and only one [A] in PSl2(R) such
that γA(0) = r1, γA(1) = r2 and γA(∞) = ∞.

For (i), check that det(A) = 1 enforces γA(i) to belong to H.

Proposition II.4.7 (Geodesics): (i) For distinct points z1 and z2 in H there
is a unique geodesic through z1 and z2.

(ii) Geodesics are of the following form: Type 1: Vertical line, Type 2:
Semi-circle through both points with midpoint on real line.

(iii) For any distinct points z1 and z2 of H, we can calculate their distance
using the cross-ratio using the start point a and the end point b of the unique
geodesic joining them:

dH(z1, z2) = |ln(a, z1; b, z2)|.

(iv) For any geodesic g and a point P that does not lie on g, there are
infinitely many geodesics h parallel to g through P . Here, parallel means
g ∩ h = ∅.

Using II.4.2 and II.4.5 these assertions can be shown.

Proposition II.4.8 (Return of the Three Graces): (i) Let γA : z 7→ z + t,
whose matrix is A = ( 1 t

0 1 ) and let ⟨A⟩ act on H. The fundamental
domain of this action is the rectangle above the line from (−t/2, 0) to
(t/2, 0). The fixed point of γA is ∞ and |tr(A)| = 2.

(ii) Let γA : z 7→ λ2z with A = ( λ 0
0 λ−1 ). The fixed points of this map are

{0,∞} and |tr(A)| = λ+ λ−1 > 2.
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4 The Hyperbolic Plane

(iii) Let γA : z 7→ (cos θz− sin θ)/(sin θz + cos θ). The fixed points of this map
are {±i} and |tr(A)| = 2|cos θ| < 2.

Facts II.4.9: Every A in PSl2(C) is conjugated to one of the three graces.

This follows directly from the properties of the Jordan Normal Form over
the reals.

Definition II.4.10 (The Three Types): Let [A] ∈ PSl2(R) − {±I}.

(i) If [A] is conjugated to [( λ 0
0 λ−1 )] for some λ > 1, then [A] is called hyperbolic.

This is the case if and only if |tr(A)| > 2 respectively if and only if there
are two fixed points in R ∪ {∞}.

(ii) If [A] is conjugated to [( 1 t
0 1 )] for some real number t, then [A] is called

parabolic. This is the case if and only if |tr(A)| = 2 respectively if and
only if there is one fixed point in R ∪ {∞}.

(iii) If [A] is conjugated to [( cos θ − sin θ
sin θ cos θ )], then [A] is called elliptic. This is the

case if and only if |tr(A)| < 2 respectively if and only if there is one fixed
point in H.
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Chapter III

Growth of Groups

Definition III.0.1: Let G be a group and let S be a set of generators. Then
the assignment

|g|S := min{n | g = s1 · · · sr, si ∈ S ∪ S−1}

defines a norm on G. Using this norm, γG,S(n) := {g | |g|S ≤ n} declares
the so-called growth function and ΣG,S(z) = ∑

g∈G z
|g| ∈ Z[[X]] declares the

so-called growth series.

Obviously, for the norm it hols |g| = 0 if and only if g = 1 as well as
|g| = |g−1| and |gh| ≤ |g| + |h|. As usual, the norm induces a metric via
d(g, h) = |h−1g|S. This metric is invariant under left translation. In fact, this
metric is the distance on Cay(G,S).

For a natural number n, γG,S(n) yields the volume of the radius n-ball in
Cay(G,S).

Using formal manipulations, we may rewrite the growth series as

Σ(z) =
∑
n≥0

(γ(n) − γ(n− 1))zn = (1 − z)
∑
n≥0

γ(n)zn.

Example III.0.2: (i) Let G be a finite group and let S = G. Then firstly
γ(0) = 1 and for any natural number n it holds γ(n) = |G|.

(ii) Let G = Z/rZ and let S = {1}. Then γ(n) = min{r, 2n + 1} and we
obtain distinct values for n ∈ {0, 1, . . . , ⌊r/2⌋}.

(iii) Let G be a subgroup of S54, which is the symmetry group of the Rubiks
cube, together with the generating permutations that are executable on the
Rubiks cube. One knows that for any n ≥ 19 it holds γ(n) = |G| and 19 is
optimal.
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Chapter III Growth of Groups

(iv) Let G = Z and let S = {1}. For the natural number n, one has as in (ii)
that γ(n) = 2n+ 1. The corresponding growth series is Σ(z) = (1 + z)/(1 − z).

(v) Let again G = Z and let S = {2, 3}. Intuitively, we should arrive at
something like γ(n) ≈ 6n. Drawing an instructive picture, one can read off the
beginnings of the growth series to be Σ = 1 + 4z + 8z2 + 6z3 + 6z4 + . . . which
equals (1 + 3z + 4z2 − z3)/(1 − z).

(vi) Let G = Z2 and S = {±(1, 0)t,±(0, 1)t}. The corresponding Cayley
graph is the standard paper grid. Evaluating the growth function at the natural
number n gives γ(n) = ∑n

i=0 4i = 1 + 2n + n2. This yields the growth series
Σ(z) = (1 + z)2/(1 − z)2.

In the following, for a set of generators S that may be embedded into an Rd,
we denote by Conv(S) the convex hull of S in Rd.

Proposition III.0.3: Let G be Zd together with generating set S. Then for the
growth function we have γ(n) ∼ nd vol(Conv(S)).

Proof: Up to order nd−1 we have

γ(n) = #{x ∈ Zd | x ∈ nS} ∼ #{x ∈ 1
n
Zd | x ∈ Conv(S)}

which converges to nd vol(Conv(S)). □

As an exercise, study the example G = Z2 and S = {−1, 0, 1}2, i.e. compute
growth function and series and check the claim of the above proposition.
Additionally, study G = Z2 with the generating set S = {(1, 0), (0, 1), (−1,−1)}
without inverses!

Theorem 8: Let G be an abelian group and let S be a finite generating set.
Then the growth series ΣG,S is a rational function.

Proof: Consider the group ring CG consisting of elements of the form ∑
g∈G αgg.

Then we may declare a grading on CG by deg(g) = |g|S, yielding subvec-
torspaces Fn = {g | |g|S ≤ n}. The direct sumA = ⊕

n≥0 Fn/Fn−1 is again a
ring with basis G and in A we have

g · h =

gh, if |gh| = |g| + |h|,
0, if <

In summary, A is associative, commutative, graded and generated in degree 1
and finite in degree 1. Opening a book on commutative algebra confronts us
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with the following fact: “If A is an associative, commutative, graded algebra
generated in degree 1 and finite in degree 1, then its Hilbert series HA(z) =∑

n≥0 dim(An)zn is rational and more specifically of the form p(z)/(1 − z)α,
where α denotes the number of generators of A”. □

Lets prove the theorem we used in the above proof.
Assume A = ⟨x1, . . . , xd⟩. We may look more generally at a finitely generated

A-module M , which due to the grading of A were graded, i.e. we might decom-
poseM = ⊕

n≥0 Mn. For this module the same claimHM (z) = ∑
n≥0 dim(Hn)zn

holds, which we will show. In particular, the claim for A follows.
We show the claim via induction on the number of generators. For zero

generators, M is clearly finite-dimensional. For the induction step, we consider
the sequence

{y ∈ M | xdy = 0} = ker(µxd
) M M coker(µxd

) = M/xdM
µxd

Then ker(µxd
) is a finitely generated ⟨x1, . . . , xd−1⟩-module and coker(µxd

) is
a finitely generated ⟨x1, . . . , xd−1⟩-module, yielding a short exact sequence
. . . By the fundamental theorem of homomorphisms, this gives the formula∑

n≥0(dimKn − dimMn + dimMn+1 − dimCn+1) for the involved dimensions,
so also ∑

n≥0
(dimKn − dimMn + dimMn+1 − dimCn+1)zn = 0,

and
zHK − zHM +HM − dimM0 −HC − dimC0

yielding HM = (1−z)−1(HC −zHK −dimC0 +dimM0), which is of the desired
form.

Theorem 9: If G is virtually abelian, i.e. there is an abelian subgroup of finite
index, then for every finite generating set S, the growth series is also rational.

This statement is particularly interesting to crystallography.

Example III.0.4: Let d be a natural number and let G be the free group
on d generators Fd. The corresponding growth function is given by γ(n) =
1+2d+2d(2d−1)+ · · ·+2d(2d−1)n−1. By calculating differences, one obtains
the growth series

Σ = 1 + 2dz + 2d(2d− 1)z2 + · · · = 1 + z

1 − (2d− 1)z .

In fact, if for G = Zd, Fd we don’t chose a basis as generating set, we still
end up with a rational growth function.
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1 Amalgamated Products
In the following, let G be the amalgamated product of the groups A and B
over C, i.e. we assume C is embedded in A and B. Further, we assume we
have sets of generators SA, SB and SC of A, B and C, respectively.

Definition III.1.1: Let C be a subgroup of A. If there is a subset TA of A that is
transversal for C such that for all c in C and t in TA it holds |ct| = |c|SC

+ |t|SA
,

then the inclusion of C in A is called admissible.

Theorem 10: If the inclusions of C in A and C in B are admissible, then
G = ⟨SG = SA ∪SC

SB⟩ has growth function

1
1/ΣA + 1/ΣB − 1/ΣC

Proof: For every element g of G there is a unique expression g = ct1t2 · · · tn
for suitable t2i in TA and t2i+1 in TB and c in C, all non-equal to 1, except for
the first or the last. Furthermore, this expression is geodesic, i.e. a word of
shortest length. Hence

ΣG =
∑
i≥1

ΣCΣTB
((ΣTA

− 1)(ΣTB
− 1))nΣTA

.

Plugging in ΣA = ΣCΣTA
yields the claim. □

Consider a surface of genus g = 2 with the three components X, Y and Z
obtained from cutting off half doughnuts at the ends, where Z is the remaining
middle part and the cut off pieces are X−Z and Y −Z. Then π1(Z) = π1(S4 −
4 discs), which is isomorphic to F3, and which has 4 generators. Furthermore,
π1(X), π1(Y ) ∼= F3 with 5 generators. The growth series is

ΣA = ΣB = (1 + z)2

1 − 8z + z2 .

We believe that the inclusions of π1(Z) in π1(X) and π1(Y ) are admissible.
By induction, one shows that for a surface Sg of genus g with the generators

chosen as above, one gets

(1 + z)2

1 − (8g − 6)z + z2 .

Evaluating the analytic continuation of the growth function at 1 often yields
the Euler characteristic of the considered space. This is always the case in our
zoo of examples up to now.
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2 Heisenberg Group

2 Heisenberg Group
Definition III.2.1: The set

H =


1 a b

1 c
1

 : a, b, c ∈ Z


is called Heisenberg group.

A possible generating set of H is given by

u =

1 1 0
0 1 0
0 0 1

 , v =

1 0 0
0 1 1
0 0 1


and their commutator is

w = [u, v] =

1 0 1
0 1 0
0 0 1


We may write H = ⟨u, v | [[u, v], v] = [[u, v], u] = 1⟩. Every element of H my
uniquely be expressed as g = ukvℓwm. This product produces the matrix

ukvℓwm =

1 k m
0 1 ℓ
0 0 1


Theorem 11: For g with entries k, ℓ,m as above it holds max{|k|+|ℓ|,

√
|m|} ≤

|g| ≤ |k| + |ℓ| + 6
√

|m|.

This can be shown using [uk, vℓ] = wkℓ, which implies |wm2| ≤ 4m. This
equality is best validated using the following trick: By definition, [g, h] =
g−1h−1gh, hence

[g, h]−I = g−1h−1gh−I = g−1h−1(gh−hg) = g−1h−1((g−I)(h−I)−(h−I)(g−I))

The product on the right is most easily evaluated, especially in our case.
From these simple calculations, we can already see that the growth function

γ of H roughly behaves like n4.
For understanding the growth series, we need to understand geodesics.
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Chapter III Growth of Groups

Theorem 12 (Stoll): Let G be the Heisenberg group H with the standard gen-
erators. Then ΣG is rational.

This result has recently been improved by Duchin and Shapiro: In fact, the
growth series ΣG is rational for any set of generators of the Heisenberg group.

Let k ≥ 2 be an integer. Then

Hk =



1 z1 · · · zk−1 zk

zk+1
...
z2k

1

 = ⟨ui, vi | [ui, vi] = w, [ui, vj] = 1, [ui, uj] = 1, [vi, vj] = 1 ∀ i ̸= j⟩

Theorem 13: If k ≥ 3, then the growth series with respect to the generators ui

and vi is rational and with respect to ui, vi and w are transcendental.

3 Growth Functions
For a given group G with set of generators S, we defined the growth function
of this group with respect to S to be the function γ : N → N declared via

γG,S(n) = #BG,S(1, n) = #{g ∈ G | |g|S ≤ n}.

Definition III.3.1: Let γ, δ : N → N be functions. If there is a constant C > 0
such that for any natural number n it holds γ(n) ≤ δ(Cn), we write γ ≾ δ
and say γ was dominated by δ. If it holds γ ≾ δ ≾ γ, we say γ and δ were
equivalent.

Proposition III.3.2: Let G be a group. If S and S ′ are generating sets for G,
then γG,S ∼ γG,S′.

Proof: The finite set S is bounded with respect to the norm generated by S ′,
i.e. there is some constant C > 0 such that S ⊆ BG,S′(1, C). Now we have

γG,S(n) = #(S ∪ S−1)n) ≤ #(BG,S′(1, C)n) ≤ #BG,S′(1, Cn) = γG,S′(C, n),

which means that γG,S ≾ γG,S′ . Switching roles gives the other domination. □

Definition III.3.3: Let G be a group. Then we write γG = [γG,S]∼ for any
generating set S for G and call it the growth function of G.
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Example III.3.4: We have already seen that γZd = [nd]. If d ̸= e, then
nd ̸∼ ne. Also, we have seen that γTn = γFd

= [(2d − 1)n], but unfortunately
[(2d− 1)n] = [2n] = [en]. Hence, we lost a lot of information by passing to the
growth function independent of generating set. For the Heisenberg group H3,
we calculated the growth function γH3 = [n4].

For the remaining weeks, we will concern ourselves with the search of examples
of groups with growth function outside of the families constant functions (finite
groups), polynomials (powers of Z) and exponential functions (like free groups).

Furthermore, we will try to answer what it means for a group to have a
specific growth function.

Similar questions where posed by Milner in Problem 5603 in American
Mathematics Monthly. Groups “between” powers of Z and free groups are now
called groups of intermediate growth, groups that have growth functions nd are
said to be of polynomial growth.

He conjectured that if G has polynomial growth, then there is a finite index
subgroup G0 of G, which is nilpotent. Such groups are called virtually nilpotent
and this conjecture has since been shown by Gromov in 1985.

Furthermore, the mathematician Grigorchuk constructed groups of interme-
diate groups in 1983.

Proposition III.3.5: Let G be a group. If H is a subgroup of G, then γH ≾ γG.
If N is a normal subgroup of G, then γG/N ≾ γG.

Proof: Let S be a generating set for G and let T be a generating set for
H. Without loss of generality, we may assume that T is contained in S,
which immediately yields γH,T (n) ≤ γG,S(n) for any natural number n. Also,
γG/N,S/N(n) ≤ γG,S(n). □

If time permits, we will later show that for an infinite group G and a subgroup
H of G with finite index, it holds γG ∼ γH .

4 Quasi-Isometries
Definition III.4.1: Let X and Y be metric spaces and let φ : X → Y be a map.
If there are positive constants λ and C such that for any x, x′ in X it hlds

1
λ

|x− x′| − C ≤ |φ(x) − φ(y)| ≤ λ|x− x′| + C

then we call it quasi-isometric embedding. If, additionally, there is a positive
constant D such that for any y in Y we have |y − φ(X)| ≤ D, then we call φ
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Chapter III Growth of Groups

an quasi-isometry. If there is a quasi-isometry between X and Y , we call them
quasi-isometric and write X ∼QI Y .

From the definition it is not entirely clear if quasi-isometry is symmetric.
As an exercise, one can show that φ : X → Y is a quasi-isometry, if there are
positive constants λ,C,D and a map ψ : Y → X with

|φ(x) − φ(x′)| ≤ λ|x− x′| + C, |ψ(y) − ψ(x)| ≤ λ|y − y′|

and |ψ(φ(x)) − x| ≤ D, |φ(ψ(y)) − y| ≤ D. To be clear: This does require the
axiom of choice.

Example III.4.2: (i) If X is a metric space with finite diameter, then X is
quasi-isometric to a point.

(ii) Let G be a group with generating set S and metric |·|S. We may embed
G into its Cayley graph Cay(G,S) and this embedding is a quasi-isometry.

(iii) The inclusion of the integers into the real numbers is a quasi-isometry.
(iv) Let G be a group with generating sets S and S ′. Then id : (G, |·|S) →

(G, |·|S′) is a quasi-isometry. In fact, the identity is bilipschitz.
(v) Let G be a finitely generated group and let α : G → G be an automor-

phism. Then α : (G, |·|S) → (G, |·|S) is a quasi-isometry. This can be seen by
the same argument which shows (iv).

(vi) Let H be a subgroup of G with generating sets T for H and S for G.
Is the inclusion H ↪→ G a quasi-isometry? If H is finite, then we are golden
because a point always embeds.

If H is of finite index in G, then G and H will be quasi-isometric. This can
be seen from the characterisation of quasi-isometry given in the exercise above.
The first inequality follows for λ = 1 and C = 0, because we may assume that
the generating set T is contained in S and thus an S-word is at most as long
as the corresponding T -word. For the second inequality, we may find a finite
set X in G such that G = HX. Then ψ(g) = ψ(hx) = h. Now this map ψ
does the job.

If G is the Heisenberg group and H is the centre of G, then H does not
embed quasi-isometrically. For the element h := ∑3

i=1 Eii + E13 we had in H
that |h|H = n, but |h|G ∼ |n|1/2.

Proposition III.4.3: Let G be a finitely generated group. Then G has a unique
quasi-isometric class of word metrics.
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This was discussed in example (iii) from above.
As an exercise, one can show the following: If N is a finite normal subgroup

of G, then G → G/N is a quasi-isometry.

Definition III.4.4: Let γ, δ : [0,∞) → [0,∞) be non-decreasing functions. If
there are constants λ and C such that γ(n) ≤ λδ(λn+ c) + c, we say γ is weakly
dominated by δ, denotes γ ≾w δ. If it holds γ ≾w δ ≾w γ, we call γ and δ
weakly equivalent.

Proposition III.4.5: Let φ : (H, |·|) → (G, |·|) be a quasi-isometric embedding
(which is not necessarily a group homomorphism). Then γH ≾w γG.

Really: H is a metric space, which is uniformly locally finite. This means
there is a function v : [0,∞) → [0,∞) with #BH(x, r) ≤ v(r) for any point x
in X.

Proof: We do have constants such that
1
λ

|x− x′| − C ≤ |φ(x) − φ(x′)| ≤ λ|x− x′| + C

Denote D := |1G −φ(1H)|. Then φ(BH(1H , R)) will be contained in B(1G, λR+
D) due to the second inequality in the chain above. For points x and x′ in H
with φ(x) = φ(x′), then |x−x′| ≤ λC by the first inequality in the chain above.
Hence #φ−1(y) ≤ #BH(x, λC) ≤ E for some constant E. Finally, γH(R) =
#BH(1H , R) ≤ E#φ(BH(1H , R)) ≤ #BG(1G, λR +D) = EγG(λR +D). □

Lemma III.4.6: If γ, δ : [0,∞) → [0,∞) are increasing, if there is t ≥ 0 such
that for all r ≥ t it holds δ(r) ≥ 1, if there is some argument t0 with δ(t0) > 0,
and if γ ≾w δ, then there is some ρ such that for all t ≥ t0 we have γ(t) ≤ ρδ(ρt).

Lemma III.4.7: Let G be a finitely generated group with generating set S. The
group G is infinite if and only if there is a quasi-isometry Z → G.

Königs Lemma states that if Γ is an infinite graph of finite degree, then there
is an infinite ray. It relies on Tychonoffs Theorem.

Proof: Let S be a finite generating set and consider a ray ρ in Cay(G,S).
Translating this ray ρ by ρ(n)−1 yields a sequence of rays ρn. There is an
accumulation point ρ∞ of ρn. This ρ∞ is a quasi-isometric embedding Z → G.□

Lemma III.4.8: If G is infinite and finitely generated by the subset S, then for
every ρ ≥ 1 there is some constant K such that ργG,S(ρn) ≤ γ(Kn).
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Proof: Let (Xn)n∈Z be geodesic in Cay(G,S) with x0 = 1 and |xn| = n.
The disjoint union B(x−2n, n) ∪· B(x2n, n) is contained in B(1, 3n). Hence
2γ(n) ≤ γ(3n). Now there is some natural number k with 2k ≥ ρ, and thus
2kγ(n) ≤ γ(3kn) yields the claim. □

Corollary III.4.9: Let G be a finitely generated group. For growth functions
γ, δ of G, it holds γ ≾ δ if and onl if γ ≾w δ.

Theorem 14 (Efremovich, Svarć): Let X be a non-empty proper geodesic met-
ric space, let G be a group and let G act properly cocompactly by isometries.
Then G and X are quasi-isometric.

What we are going to show is that for every x in X the map G → X,
g 7→ gx is quasi-isometric. A metric space X is proper, if closed balls are
compact. This means that for every x in X the map X → [0,∞), y 7→ d(x, y)
is proper. The action of a group of automorphisms is proper, if the map
G × X → X × X, (g, x) 7→ (gx, x) is proper. This means for every compact
set, the set {g ∈ G | gK ∩K ̸= ∅} is finite. A group G acts cocompactly on
X, if G\X is compact and Hausdorff.

Corollary III.4.10: Let X be a non-empty proper geodesic metric space, let G
be a group and let G act properly cocompactly by isometries. If, additionally,
X is measured, then r 7→ vol(BX(x, r)) ≾w γG.

Proof: Note thatG\X is a metric space by defining d(Gx,Gy) = inf{d(gx, hy) |
g, h ∈ G} = min d(x, gy) | g ∈ G}, where the last equality holds due to the
properness of X (take any g and let K = cl(B(x, d(x, y) + 1)); now there
is a finite subset T of G such that K ∩ gK ̸= ∅ and for all g /∈ T it holds
d(x, gy) ≥ d(x, y) + 1. Hence the infimum is realised in T , which yields the
well-definedness of the metric on G\X).

Let R := diam(G\X). This R is finite by compactness. Let B := cl(B(x0, R))
and let S = {g ∈ G | gB ∩B ̸= ∅} = S−1, which contains 1G and is finite.

Finally, let r = inf{d(B, gB) | g /∈ S} and λ = max{d(x0, sx0) | s ∈ S}.
By choice of g in the definition of r we made sure that B and gB do not

intersect, hence for every g ∈ Sc we have d(B, gB) > 0. Now let g0 ∈ Sc,
let r0 = d(B, g0B) and now only T = {g ∈ Sc | d(B, gB) ≤ r0} need to be
considered. By properness, T is finite. This makes sure that r is indeed greater
than zero.

Next, we will show that there is some constant λ such that for every g in G
it holds λ−1|x0 − gx0| ≤ |g|S ≤ r−1|x0 − gx0| + 1.
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For the first inequality, consider g = s1 · · · sk. Then

|x0 − gx0| ≤ |x0 − skx0| + |skx0 − sksk−1x0| + · · · + |sk · · · s1x0 − gx0| ≤ kλ.

For the second inequality, we use that X is geodesic. Hence there is a geodesic
from x0 to gx0. Let k be such that R+ (k − 1)r ≤ |x0 − gx0| < R+ kr. In the
following, we will construct points x1, . . . , xk on said geodesic, with xk = gx0,
such that |x0 − x1| < R and |xi+1 − xi| < r for i ≥ 1. Choose group elements
gi such that xi ∈ gi−1B and g0 = 1. Let si = g−1

i−1gi, so g = s1 · · · sk. Now

|B − siB| ≤ |g−1
i−1xi − sig

−1
i xi+1| = |xi − xi+1| < r.

This implies si ∈ S. In particular, S generates G. We get that |g|S = k ≤
r−1|x0 − gx0| + 1 − r−1R. Note that we do need “+1”.

Finally, using left invariance yields that the translations are quasi-isometries.
Due to the definitions, |g − h| = |g−1h|S and |gx0 − hx0| = |x0 − g−1hx0|. □

Proof (of the Corollary): Firstly, the balls B(gx0, r/3) are disjoint. Hence
(#Gx0)−1γS(k) vol(r/3) ≤ vol(kλ+ r/3), which immediately shows γS ≾w vol.

Secondly, choose x in B(x0, K). There is some g such that x belongs to
gB and such that |g|S ≤ r−1|x0 − gx0| + 1. This tells us that B(x0, K) ⊆⋃

|g|≤r−1(K+R)+1 gB and thus volX(K) ≤ volX(R)γS(K/r + 1 − R/r), which
means that volX ≾w γS. □

5 Solvable Groups
Let G be a group. If there are subgroups G1, . . . , Gs−1, Gs = {1G} such that
Gi+1 is normal in Gi and Gi/Gi+1 is normal for any legal indices, the group G
is called solvable.

For example, groups of upper triangular matrices are solvable, or the wreath
product Z ≀ Z. Let A be an invertible 2 × 2-matrix over Z. Then the group

Z2 ⋊A Z = {f(v) = Aiv + b | i ∈ Z, b ∈ Z2}

is solvable.

Definition III.5.1: Let G be a group. If every subgroup of G is finitely gener-
ated, then the group G is called Noetherian.

A group G is Noetherian if and only if every non-empty collection of subgroups
has a maximal element. This, in turn, is equivalent to every ascending chain of
subgroups stabilising.
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Proposition III.5.2: Let G be a solvable group. The group G is Noetherian if
and only if it is polycyclic, i.e. there is a chain G = G0 ▷ G1 ▷ ▷ · · · ▷ Gs = {1},
such that Gi/Gi+1 is cyclic.

This is essentially shown using Jordan-Hölders-Theorem and the Structure
Theorem for Abelian Groups.

Definition III.5.3: Let G be a polycyclic group. The well-defined number of
quotients isomorphic to Z is called the Hirsch length of G.

Theorem 15: Let G be a polycyclic group. Then there is a torsion-free normal
subgroup of finite index.

Having a group of finite index induces a permutation of cosets, which gives a
map to a finite symmetric group, whose kernel is normal and has finite index
again. Hence, adding normal does not cost anything.

Proof: This statement is shown via induction on the Hirsch length. If G0/G1
is finite, repeat with G1. If the quotient G0/G1 = ⟨t⟩ is infinite, there is a
torsion-free subgroup K of Gi, which has finite index, and ⟨t,K⟩ = H = K⋊tZ

does the trick. □

6 Nilpotent Groups
Let G be a group. If there is a series of subgroups G0 ▷ G1 ▷ · · · ▷ Gs = {1}
such that Gi/Gi+1 is central in G/Gi+1, then G is nilpotent.

Alternatively, one may characterise nilpotency via the lower central series.
For i = 1 let γ1 = G and for i ≥ 2, let γi+1 := [γi, G]. The minimal index c
with γc+1 = {1} is called the class of G.

For the commutator [x, y] = x−1y−1xy, there are some useful (but hard to
rememeber) formulae: [xy, z] = [x, z]y[y, z] and [x, yz] = [x, z][x, y]z. This has
the following consequence:

Corollary III.6.1: Let G be a group and let H = ⟨X⟩G, K = ⟨Y ⟩G be normal
subgroups of G. Then [H,K] = ⟨[x, y] | x ∈ X, y ∈ Y ⟩G.

For a natural number n, one defines [x1, . . . , xn] := [[x1, . . . , xn−1], xn].
Note that it absolutely matters where the brackets are put in the right side,
since taking the commutator is not associative. Expressions like this are
called elementary left-normed commutators. For those, one has the identity
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[x, y−1, z]y[y, z−1, x]z[z, x−1, y−1] = 1. As before, one has for normal subgroups
H, K and L of G that [H,K,L] ≤ [K,L,H][L,H,K].

Furthermore, we can now verify for the terms of the lower central series that
[γi, γj] ≤ γi+j.

Corollary III.6.2: Let G = ⟨X⟩ be a group and for i ≥ 2 let γi = [γi, G]. Then
γi is normally generated by [x1, . . . , xi] for xj ∈ X.

Corollary III.6.3: If G is a finitely generated nilpotent group, then γi/γi+1 is
finitely generated abelian.

This means that finitely generated nilpotent groups are polycyclic.

Theorem 16: Let G be a nilpotent group. Then its set of torsion elements
constitute a subgroup.

This statement is shown by induction on the class of G. Groups of class 1
are abelian, for which this statement is clearly true.

Consider a mimimal counterexample G. Let x be an element of finite order
of G and let G′ := γ2. The group ⟨x,G′⟩ has the property that the set of its
torsion elements forms a subgroup. For any i ≥ 2, we have γi(⟨x,G′⟩) ⊆ γi+1(G)
and thus xy ∈ ⟨x,G′⟩⟨y,G′⟩.

Definition III.6.4: Let G be a group. We write (δi)i∈I for a series of subgroups
of G such that δi/γi is the torsion subgroup of G/γi.

We have the characterisation δi = {x ∈ G | xn ∈ γi for some n ̸= 0}. Note
that δi/γi has to be interpreted correctly using preimages.

Proposition III.6.5: Let G be a group. The series (δi)i∈I as defined before is
in fact a central series with [δi, δj] ⊆ δi+j and δi/δi+1 is torsion-free abelian.

This can be shown using the following lemma:

Lemma III.6.6: If G is torsion-free nilpotent and if in G it holds xn = yn for
some n ̸= 0, then in fact x = y.

For abelian groups, this is clear. Otherweise 1 = [y, yn] = [y, xn], so xn =
y−1xny = (xy)n. By induction x = xy and we conclude using the abelian case.

Proof (of the Proposition): Let x in δi and y in δj. Consider the torsion-free
quotient G/δi+j. We have that xm ∈ γi and yn ∈ γj, such that [xm, yn] ∈ γi+j.
This element is trivial in G/δi+j, hence xm ≡ (xm)yn ≡ (xyn)m, which by the
lemma implies that x ≡ xyn and thus yn ≡ (yn)x ≡ (yx)n, i.e. y ≡ yx which
means that [x, y] ∈ δi+j. □
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Theorem 17 (Dixmier): Let G be finitely generated virtually nilpotent group.
Then there is some d such that γG ≾ nd.

A refinement was later given by Guivarćh and Bass:

Theorem 18: If G is a finitely generated virtually nilpotent group, then γG ∼ nd

for d = ∑
i≥1 i rankQ(γi/γi+1).

Proof: Thanks to previous recitements, we may forget about “virtually” and
“torsion”. Let G = ⟨xi,j⟩. For i ≥ 1 we have δi/δi+1 = ⟨xi,1, . . . , xi,ri

⟩ ∼= Zri .
Consider a word w of length n in {xi,j} and put it in the normal form w =
x

ei,1
i,1 x

ei,2
i,2 · · ·xei,ri

i,ri
· · · Bringing x

ei,j

i,j to the left costs at most n2 commutators
[xi,k, xi,j].

Sometimes switch xij with [xk,ℓ, xm,n, xr,q . . . ], . . . at most A · nsweight s
commutators.

In δs/δs+1 ∼= Zrs , which has growth nrs , we see at most A · ns generators.
Hence the growth is bounded by (Ans)rs = nsrs . Now w is determined by
its value v1 in δ1/δ2, v2 in δ2/δ3, . . . Hence the total number of values is
B1n

1r1B2n
2r2 · · · = Bn1r1+2r2+... = Bnd.

For the lower bound: For every z ∈ γℓ, there is some constant A such that
|zn| ≤ A|n|1/c. This can be seen as follows: Without loss of generality, we
may assume that z = [x, y] for x in γc−1 and y in G. Let m =⌉n1/c⌈ and
n = qmc−1 + r. By induction, xmc−1 is a word u of length at most B and xr is
a word v of length at most B modulo γc. Now

zn = [xn, y] = [xqmr−1+1,y]=[n,yq ][v,g]whichhaslengthatmost8m+8

modulo γc. Therefore, we can produce all words xe1,1
1,1 · · ·xec,1

c · · ·xec,rc
c,rc

with
|ei,j| ≤ ni in a ball of radius C, which gives nd ≾ γG □
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