Geometric Group Theory

held by Prof. Dr. Weitze-Schmithüsen and Prof. Dr. Barthodli in Summer 2022

Contents

0 Introduction 7
I Cayley Graphs 9
1 The Category of Graphs 9
2 Cayley Graphs 13
3 Topological Realisation of Graphs 17
4 Graphs as Metric Spaces 19
5 Isometry Group and Quotient Graphs 23
6 Trees 27
7 Free Groups 36
II A Topological Crash Course 43
1 Fundamental Groups 43
2 Covering Theory 48
3 From Coverings to Groups and Back 51
4 The Hyperbolic Plane 55
III Growth of Groups 61
1 Amalgamated Products 64
2 Heisenberg Group 65
3 Growth Functions 66
4 Quasi-Isometries 67
5 Solvable Groups 71
6 Nilpotent Groups 72

General Information

This write-up is created by a student of the course, it is an unauthorised write-up. Typesetting is no warrant for accuracy. If you find mistakes in the write-up, a hint via E-Mail would be appreciated:
s9fhguen@stud.uni-saarland.de

Chapter 0

Introduction

In geometry group theory, we discover a relationship between groups and geometric objects, which may be linked to one another.

The main idea for this course is finding nice metric spaces, on which a given group acts. Metric properties of the space then teach us something about the group. But this is not a one way road: algebraic properties of the group will also give information about a given metric space.

Example: Groups that you may have encountered throughout your studies are the symmetric group S_{n}, finite cyclic groups, i.e. ($\mathbb{Z} / n \mathbb{Z},+$), infinite cyclic groups, i.e. $(\mathbb{Z},+)$, or matrix groups like $\mathrm{Sl}(n, \mathbb{Z}), \mathrm{Gl}(n, \mathbb{Z})$ or $O(n, \mathbb{R})$.

Something which you might not have seen until now are fundamental groups. A fundamental group is a group associated to a topological space, consisting of equivalence classes of paths in the topological space modulo homotopy (i.e. continuous deformations of one path into another path).

Further examples of groups would be braided groups, mapping class groups and automorphism groups, e.g. $\operatorname{Aut}\left(F_{n}\right)$.

For this course, we will be mostly interested in infinite groups. More precisely in infinite groups that are finitely generated. Among other questions that we are going to tackle, we will ask ourselves, what a good way for describing infinite, finitely generated groups would be. For spoiled readers it may already be known that presentations are of no use.

In a first approach, we will try to think of ways to draw such a group. More precisely, we assign to our group G and a chosen set S of generators a graph (see Figure 0.1 for two example graphs). This graph is called the Cayley graph $\Gamma=\Gamma(G, S)$. Unfortunately, the graph Γ depends on the set S of generators. "Looking from further away", meaning looking up to quasi-isometry, identifies graphs that should be considered the same. This leads to "coarse geometry" or

Chapter 0 Introduction

Figure 0.1: Some examples of Cayley graphs for the group \mathbb{Z}.
"large scale geometry". A reasonable goal would then be finding invariants of quasi-isometry.

Our more general goal is relating group theoretical properties of a given group to geometric properties of a space, on which it acts.

Chapter I

Cayley Graphs

In this chapter, we want to associate to an infinite, finitely generated group G with set of generators S a graph $\Gamma=\Gamma(G, S)$. On this graph $\Gamma(G, S)$, the group acts in a "good way" and the graph already knows a lot about the group.

1 The Category of Graphs

Definition I.1.1 (Graph): Let V and E be disjoint sets, let $\delta: E \rightarrow V \times V$ be a map and let $\iota: E \rightarrow E$ be a map. If for any e in E it holds $o(e)=t(\iota(e))$, $t(e)=o(\iota(e)), \iota(\iota(e))$ and $\iota(e) \neq e$, then the quadruple $\Gamma=(V, E, \delta, \iota)$ is called an unoriented graph.
The elements of V are called vertices and the elements of E are called edges. The boundary map δ assigns to an edge e a tuple of vertices $(o(e), t(e))$, the so-called origin of e and terminus of e. The inverse map ι assigns to an edge e the inverse edge $\bar{e}:=\iota(e)$.

For any edge e in E, the set $\{e, \bar{e}\}=:[e]=:[\bar{e}]$ is called geometric edge.
For a choice of a subset E_{+}of E, denote by E_{-}the image of E_{+}under the inverse map. If for a subset E_{+}of E it holds that $E=E_{+} \cup E_{-}$and $E_{+} \cap E_{-}=\varnothing$, then E_{+}is called an orientation of E.

In the following, we will write $\delta=o \times t$, where $o: E \rightarrow V, e \mapsto o(e)$ and $t: E \rightarrow V, e \mapsto t(e)$.

Remark I.1.2: Let $\Gamma=(V, E, \delta, \iota)$ be a graph and let E_{+}be an orientation of Γ. The triple ($\Gamma_{+}, E_{+}, \delta_{+}$) with $\delta_{+}:=\left.\delta\right|_{E_{+} \times V}$ fully determines our original graph Γ. We call Γ_{+}an oriented graph.
Let M be a set. We may consider maps $h_{V}: V \rightarrow M$ and $h_{E}: E \rightarrow M$. These are called vertex-labellings respectively edge-labellings.

Definition I.1.3 (Generalised Cayley Graph): Let (G, \cdot) be a group and let S be a subset of G. Let $V=G$, let $E_{+}=G \times S$ and let $\delta_{+}: G \times S \rightarrow G \times G$, $(g, s) \mapsto(g, g \cdot s)$. Then $\Gamma^{+}(G, S)$ respectively $\Gamma(G, S)=(V, E, \delta, \iota)$ is called generalised oriented Cayley graph respectively generalised Cayley graph.

Example I.1.4 (The Symmetric Group on Three Letters): Recall that the symmetric group on three letters is $S_{3}=\{$ id, (12), (13), (23), (123), (132) \}. Choosing the set of generators $S=\{(12),(123)\}$, we obtain the Cayley graph

Choosing the set of generators $S=\{(12),(13)\}$ yields the Cayley graph

From "very far away" both graphs look very similar: Both look like a point. Choosing the set $S=\{(12)\}$, which does not generate S_{3}, yields yet another different graph - this time an honest generalised Cayley graph. Later we will say that graph were not connected.

Remark I.1.5: The generalised Cayley graph $\Gamma(G, S)$ has the following natural edge labelling with values in $S \cup S^{-1}$:

$$
h_{E}: E \longrightarrow S \cup S^{-1}, \quad e \longmapsto \begin{cases}s, & \text { if } e \in E_{+}=G \times S \text { and } e=(g, s), \\ s^{-1}, & \text { if } e \in E_{-} \text {and } \bar{e}=(g, s) \in G \times S .\end{cases}
$$

Here, as usual, we denote $S^{-1}:=\left\{s^{-1} \mid s \in S\right\}$.
Definition I.1.6 (Combinatorial Structure): Let $\Gamma=(V, E, \delta, \iota)$ be a graph.
(i) Let v_{1} and v_{2} be vertices. If there is some edge e such that $o(e)=v_{1}$ and $t(e)=v_{2}$, then v_{1} and v_{2} are called neighbours.
(ii) Let $\left[e_{1}\right]$ and $\left[e_{2}\right]$ be geometric edges. If the intersection of $\left\{o\left(e_{1}\right), t\left(e_{1}\right)\right\}$ and $\left\{o\left(e_{2}\right), t\left(e_{2}\right)\right\}$ is non-empty, the geometric edges are called neighbours.
(iii) Let e respectively $[e]$ be an edge respectively geometric edge. If it holds that $o(e)=t(e)$, then e respectively $[e]$ is called a loop.
(iv) Let v_{1} and v_{2} be distinct vertices. If there are distinct edges e and e^{\prime} such that $o(e)=v_{1}=o\left(e^{\prime}\right)$ and $t(e)=v_{2}=t\left(e^{\prime}\right)$, then Γ has multiple edges between v_{1} and v_{2}.
(v) If Γ has no loops and no multiple edges, then Γ is called a combinatorial graph.

Remark I.1.7: Often times, combinatorial graphs are often defined as pairs (V, E) with and arbitrary set V and a subset E of $\mathfrak{P}(V)$ such that every element of E has order 2.

Definition I.1.8 (Basic Definitions for Graphs): Let $\Gamma=(V, E, \delta, \iota)$ be a graph and let x be a vertex of Γ.
(i) The set $E_{x}=\{e \in E \mid o(e)=x\}$ is called the star of x.
(ii) The cardinality of the star of x is called the valency or order of x, denoted $\operatorname{val}(x)$.
(iii) Let k be a natural number. If for any vertex v of Γ it $\operatorname{holds} \operatorname{val}(v)=k$, then the graph is called k-regular.
(iv) Let e_{1}, \ldots, e_{n} be edges of Γ. If for $1 \leq i \leq n-1$ it holds $t\left(e_{i}\right)=o\left(e_{i+1}\right)$, then $c=\left(e_{1}, \ldots, e_{n}\right)$ is called an edge-path. We denote $o(c):=e_{1}$ and $t(c)=e_{n}$.
(v) An edge path $c=\left(c_{1}, \ldots, c_{n}\right)$ with $o\left(e_{1}\right)=t\left(e_{n}\right)$ is called a cycle.
(vi) If for any vertices x_{1} and x_{2} of Γ there is an edge path c with $o(c)=x_{1}$ and $t(c)=x_{2}$, then Γ is called path-connected.

In the following, we aim at defining a morphism of graphs to make the class of graphs into a category. For a sensible concept of a morphism, we'd need two
maps f_{V} and f_{E} that rendered the diagrams

commutative. Indeed, this turns out to be the "correct" definition.
Definition I.1.9: Let $\Gamma=(V, E, \delta, \iota)$ and $\Gamma^{\prime}=\left(V^{\prime}, E^{\prime}, \delta^{\prime}, \iota^{\prime}\right)$ be two graphs and let $f_{V}: V \rightarrow V^{\prime}$ and $f_{E}: E \rightarrow E^{\prime}$ be two maps. If it holds that $\delta^{\prime} \circ f_{E}=$ $\left(f_{V} \times f_{V}\right) \circ \delta$, i.e. $o^{\prime} \circ f_{E}=f_{V} \circ \circ$ and $t^{\prime} \circ f_{E}=f_{V} \circ \circ$, and if $\iota^{\prime} \circ f_{E}=f_{E} \circ \iota$, i.e. if for any edge e of Γ it holds $\overline{\left(f_{E}(e)\right)}=f_{E}(\bar{e})$, then the pair $f=\left(f_{V}, f_{E}\right)$ is called a morphism of graphs. In this case, we write $f: \Gamma \rightarrow \Gamma^{\prime}$ to indicate the categorical nature of this definition. We denote $\operatorname{Mor}\left(\Gamma, \Gamma^{\prime}\right):=\left\{f: \Gamma \rightarrow \Gamma^{\prime}\right.$ is a morphism $\}$.

Remark I.1.10: We obtain a category called Graphs as follows: The objects are all graphs, for two graphs Γ_{1} and Γ_{2}, the set of morphisms $\operatorname{Mor}\left(\Gamma_{1}, \Gamma_{2}\right)$ is as defined above, for three graphs Γ_{1}, Γ_{2} and Γ_{3}, we define a composition

$$
\begin{aligned}
\circ: \operatorname{Mor}\left(\Gamma_{2}, \Gamma_{3}\right) & \times \operatorname{Mor}\left(\Gamma_{1}, \Gamma_{2}\right) \longrightarrow \operatorname{Mor}\left(\Gamma_{1}, \Gamma_{3}\right), \\
& \left(g=\left(g_{V}, g_{E}\right), f=\left(f_{V}, f_{E}\right)\right) \longmapsto g \circ f:=\left(g_{V} \circ f_{V}, g_{E} \circ f_{E}\right)
\end{aligned}
$$

and for each graph Γ, we define its identity morphism $\operatorname{id}_{\Gamma}$ in $\operatorname{Mor}(\Gamma, \Gamma)$ to be $\mathrm{id}_{\Gamma}:=\left(\mathrm{id}_{V}, \mathrm{id}_{E}\right)$.

To show that the graphs indeed form a category in this way, we have to check that the composition of graph morphisms indeed yields a new morphism of graphs. Then, one has to check associativity for the composition of morphisms, which follows immediately from the associativity for composition of maps on vertices and edges. Finally, one has to check that the identity morphism acts trivially.

Reminder I.1.11: Let Γ_{1}, Γ_{2} and Γ be graphs.
(i) Let $f: \Gamma_{1} \rightarrow \Gamma_{2}$ be a morphism of graphs. If there is a morphism $g: \Gamma_{2} \rightarrow \Gamma_{1}$ such that $g \circ f=\operatorname{id}_{\Gamma_{1}}$ and $f \circ g=\operatorname{id}_{\Gamma_{2}}$, then f is called an isomorphism. Note that in this case, g is unique and usually denoted f^{-1}.
(ii) The set of automorphisms $\operatorname{Aut}(\Gamma):=\{f: \Gamma \rightarrow \Gamma$ is an isomorphism $\}$ turns into a group with composition of morphisms as law of composition.

Proposition I.1.12 (Isomorphism via Bijectivity): Let Γ_{1} and Γ_{2} be graphs and let $f=\left(f_{V}, f_{E}\right): \Gamma_{1} \rightarrow \Gamma_{2}$ be a morphism of graphs. The maps f_{V} and f_{E} are bijective if and only if f is an isomorphism.

Definition I.1.13 (Subgraphs): Let $\Gamma=(V, E, \delta, \iota)$ be a graph and let $\Gamma^{\prime}=$ $\left(V^{\prime}, E^{\prime}, \delta^{\prime}, \iota^{\prime}\right)$ be a quadruple of two sets V^{\prime} and E^{\prime} and two maps $\delta^{\prime}: V^{\prime} \rightarrow V^{\prime}$, $\iota^{\prime}: E^{\prime} \rightarrow E^{\prime}$. If V^{\prime} is a subset of V, if E^{\prime} is a subset on E, if δ^{\prime} is the restriction $\left.\delta\right|_{V^{\prime}}$ and if the restriction $\left.\iota\right|_{E^{\prime}}$ equals ι^{\prime}, then Γ^{\prime} is called a subgraph of Γ.

Remark I.1.14: Let $\Gamma=(V, E, \delta, \iota)$ and $\Gamma^{\prime}=\left(V^{\prime}, E^{\prime}, \delta^{\prime}, \iota^{\prime}\right)$ be combinatorial graphs and let $f_{V}: V \rightarrow V^{\prime}$ be a map.
(i) The map f_{V} uniquely determines a morphism of graphs $f=\left(f_{V}, f_{E}\right.$ with $f_{E}((a, b))=\left(f_{V}(a), f_{V}(b)\right.$ if and only if for any neighbouring vertices x and y in Γ, their images $f_{V}(x)$ and $f_{V}(y)$ are neighbouring vertices in Γ^{\prime}.
(ii) The map f_{V} determines an isomorphism of graphs if and only if f_{V} is bijective and if for any neighbouring vertices $f_{V}(x)$ and $f_{V}(y)$, their preimages x and y are neighbouring vertices in Γ.

2 Cayley Graphs

In this section, we want to relate properties of a tuple (G, S) of a group G and a set of generators S to properties of its Cayley graph $\Gamma=(G, S)$. Furthermore, we want to see how G acts on $\Gamma(G, S)$ and we try to find criteria to decide if a given graph is a Cayley graph.

Remark I.2.1: Let G be a group. Two elements g and h of G are neighbours in $\Gamma(G, S)$ if and only if $g^{-1} h$ belongs to $S \cup S^{-1}$.

Example I.2.2 (Generalised Cayley Graphs): (i) Consider the trivial group $G=\{1\}$ and the sets of generators S and \varnothing. Those lead to the generalised Cayley graphs

(ii) Consider the group $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$ and the subset $S=\{(1,0),(0,1)\}$. Then we obtain the generalised Cayley graph

$$
\binom{0}{2} \longleftrightarrow\binom{1}{2}
$$

$$
\left(\begin{array}{ccc}
\uparrow & \uparrow \\
\binom{0}{1} \\
\uparrow & \sim \\
\uparrow & \binom{1}{1}
\end{array}\right)
$$

$$
\binom{0}{0} \longrightarrow\binom{1}{0}
$$

Proposition I.2.3 (First Properties of Cayley Graphs): Let G be a group, let S be a subset of G and let $\Gamma=\Gamma(G, S)$ be the corresponding generalised Cayley graph.
(i) There are loops in Γ if and only if the identity belongs to S.
(ii) There are multiple edges in Γ if and only if there is some element s in S, whose inverse also belongs to S.
(iii) The graph Γ is combinatorial if and only if $S \cap S^{-1}=\varnothing$.
(iv) The graph Γ is connected if and only if S generates $G .{ }_{\square}^{\top}$

Proof: The statements in (i)-(iii) are clear.
" \Longrightarrow ": Assume Γ is connected. For any element g in G there is a path $c=\left(e_{1}, \ldots, e_{n}\right)$ in Γ such that $o\left(e_{1}\right)=1$ and $t\left(e_{n}\right)=g$. Let $h_{E}: E \rightarrow S \cup S^{-1}$ be the natrual edge-labelling of Γ defined in Remark I.1.5. Define $s_{i}:=h_{E}\left(e_{i}\right)$. Then $t\left(e_{i}\right)=o\left(e_{i}\right) s_{i}$ and thus $g=1 s_{1} \cdots s_{n}$ for s_{i} in $S \cup S^{-1}$, i.e. $G=\langle S\rangle$.
" ": Assume that S generates G. We have to show that for any distinct elements g and h in G, there is an edge-path from h to g. Since G is generated by S, there are some elements s_{1}, \ldots, s_{n} in S such that $h^{-1} g=s_{1} \cdots s_{n}$. Recursively, we now define

$$
e_{i}:= \begin{cases}\left(h \cdot s_{1} \cdots s_{i-1}, s_{i}\right), & \text { if } s_{i} \in S, \\ \iota\left(h \cdot s_{1} \cdots s_{i}, s_{i}^{-1}\right), & \text { if } s_{i} \in S^{-1} .\end{cases}
$$

Remark I.2.4: Let S be a generating system for the group G. Then $\Gamma=\Gamma(G, S)$ is called Cayley graph.

[^0]Definition I.2.5: Let G be a group, let C be a category, let X be an object in C and let $\operatorname{Aut}(X)$ be the group of automorphisms of X.
(i) A group homomorphism $\rho: G \rightarrow \operatorname{Aut}(X)$ is called an action of G on X.
(ii) Let $\rho_{1}: G \rightarrow \operatorname{Aut}\left(X_{1}\right)$ and $\rho_{2}: G \rightarrow \operatorname{Aut}\left(X_{2}\right)$ be two actions. If there is an isomorphism $f: X_{1} \rightarrow X_{2}$ with $\kappa_{f} \circ \rho_{1}=\rho_{2}$, then ρ_{1} and ρ_{2} are called equivalent.

Here, $\kappa_{f}: \operatorname{Aut}\left(X_{1}\right) \rightarrow \operatorname{Aut}\left(X_{2}\right)$ denotes conjugation with f, i.e. $h \mapsto f \circ h \circ f^{-1}$.
Example I.2.6: For the category $\mathrm{C}=$ Graphs, an action ρ of a group G on a graph $\Gamma=(V, E, \delta, \iota)$ can equivalently be described as a pair of group homomorphisms $\rho_{V}: G \rightarrow \operatorname{Perm}(V)$ and $\rho_{E}: G \rightarrow \operatorname{Perm}(E)$ such that for any g in G and e in E it holds $o\left(\rho_{E}(g)(e)\right)=\rho_{V}(g)(o(e)), t\left(\rho_{E}(g)(e)\right)=\rho_{V}(g)(t(e))$ and $\overline{\rho_{E}(g)(e)}=\rho_{E}(g)(\bar{e})$.

Remark I.2.7 (Action on the Cayley Graph): A group G acts on a Cayley graph $\Gamma=\Gamma(G, S)$ of the group via left-multiplication. Namely, we have an action described by $\left(\rho_{V}, \rho_{E}\right)$ with

$$
\begin{aligned}
& \rho_{V}: G \longrightarrow \operatorname{Perm}(V), \quad g \longmapsto(h \mapsto g h), \\
& g_{E}: G \longrightarrow \operatorname{Perm}(E), \quad g \longmapsto((h, s) \mapsto(g h, s), \overline{(h, s)} \mapsto \overline{(g h, s)}) .
\end{aligned}
$$

Reminder I.2.8: Let G be a group and let M be a set. For an action $\rho: G \rightarrow$ $\operatorname{Perm}(M)$ of G on M and some element x of M, we denote
(i) $g \cdot x:=\rho(g)(x)$,
(ii) $\operatorname{Stab}_{G}(x):=\{g \in G \mid g \cdot x=x\}$, called stabiliser of x,
(iii) $G x:=\operatorname{orb}_{G}(x):=\{g \cdot x \mid g \in G\}$, called orbit of x,
(iv) If it holds $G \cdot x=M$, then the action is called transitive,
(v) If for any x in X it holds that $\operatorname{Stab}_{G}(x)=\{1\}$, then ρ is called free or fixed-point free,
(vi) If ρ is injective, the action is called faithful.

Proposition I.2.9 (Properties of Actions by Left-Multiplication): Let G be a group and let S be a set of generators for G. The action $\rho=\left(\rho_{V}, \rho_{S}\right)$ of G on $\Gamma(G, S)$ by left-multiplication defined in Remark 2.6 we have the following:
(i) The action ρ is free, i.e. ρ_{V} and ρ_{E} are free.
(ii) The action ρ is vertex-transitive, i.e. ρ_{V} is transitive.
(iii) The action ρ acts without inversions, i.e. for any g in $G-\{1\}$ and for any edge e it holds $\rho_{E}(g)(e) \neq \bar{e}$. In particular, ρ_{E} acts free on geometric edges.

Proof: (i) Suppose g and h are group elements such that g belongs to $\operatorname{Stab}_{G}(h)$. Since $g \cdot h=h, g$ must be the identity, i.e. ρ_{V} is free.

Suppose g is an element of G and e is an edge of such that g belongs to $\operatorname{Stab}_{G}(e)$. Then $g \cdot o(e)=o(e)$, which means that g also belongs to $\operatorname{Stab}_{G}(o(e))$ and hence, g must be the identity. Thus, ρ_{E} is free.
(ii) For group elements h_{1} and h_{2}, choose $h=h_{2} h_{1}^{-1}$. Then $g \cdot h_{1}=h_{2}$, thus h_{1} and h_{2} are in the same orbit. Because h_{1} and h_{2} were arbitrary, the action ρ_{V} is transitive.
(iii) By definition of ρ_{E} we have that an edge e belongs to E_{+}if and only if $\rho_{E}(g)(e)$ belongs to E_{+}. But this implies that $\rho_{E}(g)(e) \neq \bar{e}$.

Theorem 1: Let $\Gamma=(V, E, \delta, \iota)$ be a combinatorial graph.
(i) An action $\rho: G \rightarrow \operatorname{Aut}(\Gamma)$ is equivalent to the action via left-multiplication if and only if ρ is free, vertex-transitive and without inversions.
(ii) The graph Γ is the Cayley graph for some group if and only if $\operatorname{Aut}(\Gamma)$ contains a subgroup which acts freely, vertex-transitively and without inversions.

Proof: (i) " \Longrightarrow ": This was shown in Proposition I.2.9.
" ": Suppose $\rho=\left(\rho_{V}, \rho_{E}\right)$ has the stated properties. As the first step, we aim to find a suitable set of generators S. Let x be any vertex and let $\widehat{S}:=\{g \in G \mid g x$ is a neighbour of $x\}$.

This set \widehat{S} is closed under inversion, as for some s in \widehat{S}, there is an edge e in E such that $o(e)=x$ and $t(e)=s x$. For the edge $s^{-1} x$ we obtain $o\left(s^{-1} e\right)=s^{-1} x$ and $t\left(s^{-1} e\right)=x$, such that x and $s^{-1} x$ are neighbours.
Furthermore, no element in \widehat{S} is not self-inverse. For an e as above, we get $s^{-1} e \neq \bar{e}$, since ρ acts without inversions. If s were equal to s^{-1}, there were two geometric edges between x and $s x$, which cant be, since Γ is combinatorial.

Because \widehat{S} is closed under inverses, but does not contain self-inverse element, there is a subset S of \widehat{S} such that $\widehat{S}=S \cup S^{-1}$.

As the second step, we aim to find a morphism $f: \Gamma^{\prime}:=\Gamma(G, S) \rightarrow \Gamma$. As usual, we denote $\Gamma^{\prime}=\left(V^{\prime}, E^{\prime}, \delta^{\prime}, \iota^{\prime}\right)$. Note that, by choice of S, the graph Γ^{\prime} is combinatorial.

We define $f_{V}: V^{\prime}=G \rightarrow V, h \mapsto h \cdot x$. To check that f_{V} indeed defines a graph homomorphism, one has to check that neighbouring vertices are mapped to neighbouring vertices. Suppose h_{1} and h_{2} are neighbours in Γ^{\prime}. Then $s=h_{1}^{-1} h_{2}$ belongs to $S \cup S^{-1}$ and thus x and $s x$ are neighbours in Γ. Applying h_{1} yields that $h_{1} x$ and $h_{1} s x=h_{2} x$ are neighbours in Γ. The other direction, i.e. going from neighbours in Γ to Γ^{\prime}, works just the same way.

As the third step, we want to show that f is an isomorphism. For this, it remains to show that f_{V} is bijective.

For the injectivity, suppose that $h_{1} x=h_{2} x$. Then $h_{2}^{-1} h_{1} x=x$, i.e. $h_{2}^{-1} h_{1}$ belongs to $\operatorname{Stab}_{G}(x)$. Since ρ_{V} is free, $h_{2}^{-1} h_{1}=1$ and thus $h_{1}=h_{2}$.

For the surjectivity, suppose y is a vertex. Because ρ_{V} is transitive, there is some h in G with $h x=y$, which is another way of writing $f_{V}(h)=y$.

As the fourth step, we have to show that f induces an equivalence between the actions of G on Γ_{1} and Γ_{2}. For this, we have to show that for any g in G it holds $\rho(g) \circ f=f \circ \rho^{\prime}(g)$. On vertices it holds

$$
\rho(g)\left(f_{v}(h)\right)=g \cdot f_{V}(h)=g \cdot h \cdot x=f_{V}(g \cdot h)=f_{V}\left(\rho^{\prime}(g)(h)\right) .
$$

Since Γ and Γ^{\prime} are combinatorial, we obtain the analogue statement for f_{E}.
(ii) " \Longrightarrow ": Suppose Γ is a Cayley graph. Then the action $\rho: G \rightarrow \operatorname{Aut}(\Gamma)$ by left-multiplication is free and thus, in particular, ρ is injective. The image of ρ is a subgroup of the automorphism group with the desired properties by Proposition I.2.9. " \Longleftarrow ": This follows from (i).

3 Topological Realisation of Graphs

So far, graphs are combinatorial objects. Now, we want to consider geometric spaces, on which a group acts. For this, we "glue" edges between vertices.

Reminder I.3.1 (Topological Space): Let X be a set.
(i) The system $\mathfrak{T}:=\mathfrak{P}(X)$ is called discrete topology on X.
(ii) If \mathfrak{T} is a topology on X and Y is a subset of X, then $\mathfrak{T}^{\prime}:=\{U \cap Y \mid U \in \mathfrak{T}\}$ yields a topology on Y, called trace topology or subset topology or relative topology or induced topology. We have the following characteristic property: If $(Z, \widehat{\mathfrak{T}})$ is any other topological space, and if $i: Y \hookrightarrow X$ denotes the inclusion map, a map $f: Z \rightarrow Y$ is continuous if and only if $i \circ f$ is continuous.
(iii) Suppose that (X, \mathfrak{T}) is a topological space and let $q: X \rightarrow Y$ be surjective. Then $\overline{\mathfrak{T}}=\left\{U \subseteq Y \mid q^{-1}(U) \in \mathfrak{T}\right\}$ defines a topology on Y, called quotient topology. If $(Z, \widehat{\mathfrak{T}})$ is another topological space, and if $f: Y \rightarrow Z$ is a map, then f is continuous if and only if $f \circ q$ is continuous.
(iv) Let $\left(X_{i}, T_{i}\right)_{i \in I}$ be a family of topological spaces. On the disjoint union $\bigcup_{i \in I} X_{i}$, the set

$$
\mathfrak{T}:=\left\{U \in \mathfrak{P}\left(\bigcup_{i \in I} X_{i}\right): \text { For all } i \in I: U \cap X_{i} \in \mathfrak{T}_{i}\right\}
$$

is a topology. The space $\left(\cup_{i \in I} X_{i}, \mathfrak{T}\right)$ is called topological sum of the $\left(X_{i}, \mathfrak{T}_{i}\right)_{i \in I}$.
(v) We consider intervals $[a, b]$ with the trace topology of the Euclidean topology on \mathbb{R}.

Definition I.3.2 (Topological Realisation): Let $\Gamma=(V, E, \delta, \iota)$ be a graph.
(i) For an edge e, we define $X_{e}:=[0,1] \times\{e\}$ as a copy of $[0,1]$. We define $X:=\bigcup_{e \in E} X_{e} \cup V / \sim$, where \sim is the equivalence relation generated by the following requirements: For any edge e and any t from $[0,1]$, $X_{e} \ni(t, e) \sim(1-t, \bar{e}) \in X_{\bar{e}}$, for any edge $e, X_{e} \ni(0, e) \sim o(e)$ and for any edge $X_{e} \ni(1, e) \sim t(e)$.
(ii) The set $\Gamma^{\text {top }}:=X$ turns into a topological space as follows: Take the discrete topology on V and the topology as segment on each X_{e}, then take the topology as topological sum on $\bigcup_{e \in E} X_{e} \cup V$, then take the quotient topology for the surjective map $q: \cup_{e \in E} X_{e} \cup V \rightarrow \cup_{e \in E} X_{e} \cup V / \sim$.
(iii) Consider the maps $i_{V}: V \rightarrow \Gamma^{\mathrm{top}}, v \mapsto[v]_{\sim} ; \chi_{e}:[0,1] \rightarrow \Gamma^{\mathrm{top}}, t \mapsto[(t, e)]_{\sim}$. They are continuous, i_{V} is surjective and $\left.\chi_{e}\right|_{[0,1)}$ is injective. We write v for $[v]_{\sim} \in \Gamma^{\text {top }}$ and e for $\chi_{e}([0,1]) \subseteq \Gamma^{\mathrm{top}}$ and (t, e) for $[(t, e)] \in \Gamma^{\text {top }}$ and call them vertices respectively edges of $\Gamma^{\text {top }}$.

The topological space $\Gamma^{\text {top }}$ is called topological realisation of Γ.
Remark I.3.3: (i) Every morphism $f=\left(f_{V}, f_{E}\right)$ between two graphs Γ_{1} and Γ_{2} defines a continuous map $f^{\text {top }}: \Gamma_{1}^{\text {top }} \rightarrow \Gamma_{2}^{\text {top }}$ that maps a vertex $f_{V}(v)$ and (t, e) to $\left(t, f_{E}(e)\right)$.
(ii) We have $(f \circ g)^{\text {top }}=f^{\text {top }} \circ g^{\text {top }}$ and $\left(\mathrm{id}_{\Gamma}\right)^{\text {top }}=\mathrm{id}_{\Gamma}^{\text {top }}$.

Proof: We only show the first assertion. To show that $f^{\text {top }}$ is well-defined, one has to check that the map respects the gluing from Definition I.3.2. For example, we have

$$
f^{\mathrm{top}}(1-t, i)=\left(1-t, f_{E}(\bar{e})\right)=\left(1-t, \overline{f_{E}(e)}\right)=\left(t, f_{E}(e)\right)=f^{\mathrm{top}}(t, e)
$$

Similarly for the other statements. For the continuity of $f^{\text {top }}$, consider the following commutative diagram,

where on the top row, v is mapped to v and (t, e) is mapped to $\left(t, f_{E}(e)\right)$, which yields a continuous map. Now $f^{\text {top }}$ is continuous due to the characteristic property of the quotient maps.

Corollary I.3.4: We have a functor Graphs \rightarrow TopSpaces defined on objects by $\Gamma \mapsto \Gamma^{\text {top }}$ and on morphisms by $\left(f: \Gamma_{1} \rightarrow \Gamma_{2}\right) \mapsto \bar{f}=f^{\text {top }}:\left(\Gamma_{1}^{\text {top }} \rightarrow \Gamma_{2}^{\text {top }}\right.$. This functor is covariant. We say that $\bar{f}=f^{\text {top }}$ is the topological realisation of f.

This follows immediately from Remark I.3.3.

4 Graphs as Metric Spaces

In this section, we want to define a metric on the topological realisation Γ^{\top} of a graph Γ. As an idea for this, we want to assign length 1 to each edge.
Reminder I.4.1: Let X be a set. A map $d: X \times X \rightarrow \mathbb{R}$, which for any elements x, y and z of X satisfies that $d(x, y) \geq 0, d(x, y)=d(y, x)$ and $d(x, z) \leq d(x, y)+d(y, z)$ is called a pseudo-metric. If in addition it holds for any x and y from X that $d(x, y)=0$ if and only if $x=y$, then d is called a metric.

If d is a metric on the set X, then d induces a topology on X, whose basis are the open balls with respect to d. More precisely, a subset U of X is open with respect to this induced topology if and only if for every x in U there is an $\varepsilon>0$ such that $B(x, \varepsilon):=\{y \in X \mid d(x, y)<\varepsilon\} \subseteq U$.

Remark I.4.2: Suppose that we are given a connected topological space X (i.e. X cannot be decomposed into two non-empty disjoint open subsets), an open cover $\left(U_{i}\right)_{i \in I}$ of X (i.e. for any i in I, the set U_{i} is an open subset of X and $\left.X=\bigcup_{i \in I} U_{i}\right)$ and for each i in I a metric $d_{i}: U_{i} \times U_{i} \rightarrow \mathbb{R}$ such that for any indices i and j and any x and y from $U_{i} \cap U_{j}$ it holds $d_{i}(x, y)=d_{j}(x, y)$. Then

$$
d(x, y):=\inf \left\{\sum_{k=0}^{n-1} d_{i_{k}}\left(x_{k}, x_{k+1}\right): n \in \mathbb{N}, x_{0}=x, x_{n}=y, x_{k}, x_{k+1} \in U_{i_{k}}\right\}
$$

defines a pseudo-metric on X.

Proof: Let x and y be points of X. Define the set

$$
\begin{aligned}
S(x, y):=\left\{\left(x_{0}, \ldots, x_{n}\right) \mid n \in \mathbb{N},\right. & x=x_{0}, y=x_{n} \\
& \left.\forall k \in\{0, \ldots, n-1\} \exists i_{k}: x_{k}, x_{k+1} \in U_{i_{k}}\right\}
\end{aligned}
$$

and for $\omega=\left(x_{0}, \ldots, x_{n}\right)$ in S, denote $\ell(\omega):=\sum_{k=0}^{n-1} d_{i_{k}}\left(x_{k}, x_{k+1}\right)$. Evidently, $d(x, y) \geq 0$ and $d(x, y)=d(y, x)$. Suppose now x, y and z are points of X and let $\omega_{1}=\left(x=x_{0}, x_{1}, \ldots, x_{n}=y\right) \in S(x, y), \omega_{2}=\left(y=y_{0}, y_{1}, \ldots, y_{m}=z\right) \in$ $S(y, z)$. Then $\omega_{3}=\left(x=x_{0}, \ldots, x_{n}=y_{0}, y_{1}, \ldots, y_{m}=z\right)$ belongs to $S(x, z)$ and $\ell\left(\omega_{3}\right)=\ell\left(\omega_{1}\right)+\ell\left(\omega_{2}\right)$. Hence, $d(x, z) \leq d(x, y)+d(y, z)$, which establishes the triangular inequality.
It remains to show that d is well-defined, i.e. $S(x, y) \neq \varnothing$. Consider the sets $V_{x}:=\{y \in X \mid S(x, y) \neq \varnothing\}$ and $W_{x}:=\{y \in X \mid S(x, y)=\varnothing\}$. For any i in I we have that $U_{i} \subseteq V_{x}$ or $U_{i} \subseteq W_{x}$, thus

$$
V_{x}=\bigcup_{i \in I} V_{x} \cap U_{i}=\bigcup_{i \in I^{\prime}} U_{i}
$$

for $I^{\prime}=\left\{i \in I \mid V_{x} \cap U_{i} \neq \varnothing\right\}$ and similarly $W_{x}=\bigcup_{i \in I-I^{\prime}} U_{i}$. Thus V_{x} and W_{x} are open, disjoint and they satisfy $X=V_{x} \uplus W_{x}$. Because X is connected, we must have that $X=V_{x}$ or $X=W_{x}$. As x belongs to V_{x}, V_{x} is non-empty, which enforces $X=V_{x}$.

Remark I.4.3 (Graph Metric): Let $\Gamma=(V, E, \delta, \iota)$ be a connected graph and let $\Gamma^{\text {top }}$ be its topological realisation. For fixed $r<1 / 2$, choose the following open subset of X : For each e in E, let $U_{e}=\chi_{e}((0,1))$, for each v in V let $U_{v, r}:=\bigcup\left(\chi_{e}([0, r)) \mid e \in E, o(e)=v\right)$. Define on them the following metrics. On U_{e} define the metric d_{e} via $d_{e}\left(\left(t_{1}, e\right),\left(t_{2}, e\right)\right):=\left|t_{1}-t_{2}\right|$, and on $U_{v, r}$ define $d_{v, r}$ via

$$
d_{v, r}\left(\left(t_{1}, e_{1}\right),\left(t_{2}, e_{2}\right)\right):= \begin{cases}\left|t_{1}-t_{2}\right|, & \text { if } e_{1}=e_{2} \\ t_{1}+t_{2}, & \text { if } e_{1} \neq e_{2},\end{cases}
$$

where $o\left(e_{1}\right)=o\left(e_{2}\right)$. Observe that for $e_{1}=\bar{e}_{2}$ we obtain $d_{e_{1}}=d_{e_{2}}$ on $U_{e_{1}}=U_{e_{2}}$ and that if $U_{e} \cap U_{v, r}$ is non-empty, we have $o(e)=v$ or $t(e)=v$ and the metric coincide and finally that $U_{v_{1}, r} \cap U_{v_{2}, r}$ is empty. Hence, we can glue the metric by Remark I.4.2. This yields a pseudo-metric on $X=\Gamma^{\text {top }}$.

Proposition I.4.4: Let $\Gamma=(V, E, \delta, \iota)$ be a connected graph. Then, the pseudometric from Remark I.4.3 is in fact a metric, called the Graph metric for Γ.

Proof: We have to show that for any x, y in $X=\Gamma^{\text {top }}$ with $d(x, y)=0$ it holds that $x=y$. Let $\omega=\left(x=x_{0}, x_{1}, \ldots, x_{n}=y\right)$ be an element of $S(x, y)$. If $x_{0}, x_{1}, \ldots, x_{n}$ lie in the same U_{e}, then

$$
\ell(\omega)=d_{e}\left(x_{0}, x_{1}\right)+\cdots+d_{e}\left(x_{n-1}, x_{n}\right) \geq d_{e}\left(x_{0}, x_{n}\right)>0 .
$$

In the same way, we obtain that if all the x_{0}, \ldots, x_{n} are contained in the same $U_{v, r}$, then $\ell(\omega) \geq d_{U_{v, r}}(x, y)$.

If not all x_{0}, \ldots, x_{n} are contained in the same U_{e} or $U_{v, r}$, then there is some index i in $\{0, \ldots, n-2\}$ such that for some edge e and some vertex v we have that x_{i}, x_{i+1} in $U_{e} x_{i+1}, x_{i+2}$ in $U_{v, r}$ and $x_{i} \notin U_{v, r}$ or that x_{i}, x_{i+1} in $U_{v, r}, x_{i+1}, x_{i+2}$ in U_{e} and $x_{i+2} \notin U_{v, r}$. Without loss of generality, we may assume the first. We denote $x_{i}=\left(t_{1}, e\right), x_{i+1}=\left(t_{2}, e\right)$ and $x_{i+2}=\left(t_{3}, \tilde{e}\right)$ with $o(e)=o(\tilde{e})=: v$. Then $t_{1}>r$, since x_{i} doesn't belong to $U_{v, r}$ and thus
$\ell(\omega) \geq d_{e}\left(x_{i}, x_{i+1}\right)+d_{V, r}\left(x_{i+1}, x_{i+2}\right)=\left|t_{1}-t_{2}\right|+t_{2}+t_{3} \geq t_{1}-t_{2}+t_{2}+t_{3} \geq t_{1}>r$.
In all three cases, the lengths of the sequences are bounded below be positive constants, hence $d(x, y)>0$.

Remark I.4.5 (First Properties of the Graph Metric): Let Γ be a connected graph, let $X=\Gamma^{\text {top }}$ be its topological realisation and let d be the graph metric on X. For any x and y from X it holds:
(i) If $x, y \in \chi_{e}([0,1])$, i.e. if $x=\left(t_{1}, e\right)$ and $y=\left(t_{2}, e\right)$, then $d(x, y)=\left|t_{2}-t_{1}\right|$.
(ii) If x and y are vertices, then

$$
d(x, y)=\min \left\{n \in \mathbb{N} \mid \text { There is an edge path } \omega=\left(x_{0}=x, \ldots, x_{n}=y\right)\right\} .
$$

(iii) If $x=\left(t_{1}, e_{1}\right)$ and $y=\left(t_{2}, e_{2}\right)$ with $e_{1} \neq e_{2}$ and $e_{1} \neq \bar{e}_{2}$, then

$$
\begin{aligned}
d(x, y) & =\min \left\{t_{1}+t_{2}+d\left(o\left(e_{1}\right), o\left(e_{2}\right)\right), t_{1}+1-t_{2}+d\left(o\left(e_{1}\right), t\left(e_{2}\right)\right),\right. \\
& \left.1-t_{1}+t_{2}+d\left(t\left(e_{1}\right), o\left(e_{2}\right)\right), 1-t_{1}+1-t_{2}+d\left(t\left(e_{1}\right), t\left(e_{2}\right)\right)\right\} .
\end{aligned}
$$

This can be shown with arguments similar to those used to show Proposition I.4.4.

Remark I.4.6 (Graph Metric for Graphs with Edge-Weights): Suppose Γ is a connected graph, E_{+}the choice of an orientation and $\omega: E_{+} \rightarrow \mathbb{R}_{>0}$ an edge-labelling. If there is a positive constant C such that for all edges e in E_{+} it holds $\omega(e) \geq C$, then we obtain, in a similar fashion to Proposition I.4.4, a metric on $X=\Gamma^{\mathrm{top}}$ such that the length of the geometric edge $\{e, \bar{e}\}$ is $\omega(e)$ for any e in E_{+}.

Example I.4.7: The constant C in Remark I.4.6 is needed. Consider the graph

with $V=\{A, B\}, E_{+}=\mathbb{N}, o(e)=A$ and $t(e)=B$ for any e in E_{+}and $\omega: E_{+} \rightarrow \mathbb{R}_{>0}, n \mapsto 1 / n$. Then $d(A, B)=0$, even though $A \neq B$. Hence, in this case we end up with a pseudo-metric.

Example I.4.8:

Remark I.4.9 (Two Different Topologies): If Γ has a vertex x with valency $\operatorname{val}(x)=\infty$, then the topology on $X=\Gamma^{\text {top }}$ defined by the graph metric is different to the original topology.

Proposition I.4.10 (Graph Morphisms are Contractions): Let Γ_{1} and Γ_{2} be graphs and let X_{1} and X_{2} be their topological realisations equipped with the corresponding graph metrics d_{1} respectively d_{2}. Furthermore, let $f=\left(f_{V}, f_{E}\right): \Gamma_{1} \rightarrow$ Γ_{2} be a graph morphism and let $\bar{f}: X_{1} \rightarrow X_{2}$ be its topological realisation. Then \bar{f} is a contraction, i.e. for any points x and y of X_{1} it holds that $d(f(x), f(y)) \leq d(x, y)$.

Proof: Recall that $\bar{f}(t, e)=\left(t, f_{E}(e)\right)$. Observe the following:
(i) If e belongs to E_{1} and v belongs to V_{1}, then $\bar{f}\left(U_{e}\right)=U_{f_{E}(e)}$ and $\bar{f}\left(U_{v, r}\right) \subseteq$ $U_{f_{V}(v), r}$.
(ii) For $x=\left(t_{1}, e\right)$ and $y=\left(t_{2}, e\right)$ in the same open edge U_{e} it holds $d_{2}(f(x), f(y))=d_{2}\left(\left(t_{1}, f_{E}(e)\right),\left(t_{2}, f_{E}(e)\right)\right)=\left|t_{1}-t_{2}\right|=d_{1}(x, y)$. Similarly, if x and y belong to the same open star $U_{v, r}$, then $d_{2}(f(x), f(y)) \leq d_{1}(x, y)$.

For arbitrary points x and y in X_{1}, let $\omega=\left(x=x_{0}, x_{1}, \ldots, x_{n}=y\right)$ be a chain in $S(x, y)$. Then also $\bar{f}(\omega)=\left(f(x)=f\left(x_{0}\right), f\left(x_{1}\right), \ldots, f\left(x_{n}\right)=f(y)\right)$ is a chain going from $f(x)$ to $f(y)$. For the distance $d_{2}(f(x), f(y))$ we find

$$
d_{2}(f(x), f(y)) \leq \ell(\bar{f}(\omega))=\sum_{i=1}^{n} d_{2}\left(f\left(x_{i-1}\right), f\left(x_{i}\right)\right) \leq \sum_{i=1}^{n} d_{1}\left(x_{i-1}, x_{i}\right)=\ell(\omega)
$$

By taking the infimum, we obtain that $d_{2}(f(x), f(y)) \leq d_{1}(x, y)$.

Notation I.4.11: Let Γ be a graph, let Γ^{\top} be its topological realisation. If we consider the topological realisation equipped with the topology induced by the graph metric, we will denote this space $\Gamma^{\text {geom }}$. In this case, we write $f^{\text {geom }}$ for the topological realisation \bar{f} of a graph morphism and call it its geometric realisation.

Corollary I.4.12 (of Proposition I.4.10): Let Γ_{1}, Γ_{2} be graphs and let $f: \Gamma_{1} \rightarrow$ Γ_{2} be a graph morphism. Then, its geometric realisation $\bar{f}=f^{\text {geom }}: \Gamma_{1}^{\text {geom }} \rightarrow$ $\Gamma_{2}^{\text {geom }}$ is continuous.
Proof: This follows from Proposition I.4.10, since \bar{f} is a contraction.
Corollary I.4.13: Let Γ_{1}, Γ_{2} be graphs and let $f: \Gamma_{1} \rightarrow \Gamma_{2}$ be an isomorphism of graphs. Then, $f^{\text {geom }}:\left(\Gamma_{1}^{\text {geom }}, d_{1}\right) \rightarrow\left(\Gamma_{2}^{\text {geom }}, d_{2}\right)$ is an isometry.

Here, of course, d_{1} and d_{2} denote the respective graph metrics.

5 Isometry Group and Quotient Graphs

In this section, we want to see that the isometry group of the geometric realisation of a graph equals the isomorphism group of said group. Further, we want to study objects that result of quotients by subgroups of the isomorphism group.

In this section, $\Gamma=(V, E, \delta, \iota)$ will denote a graph with geometric realisation $X=\Gamma^{\text {geom }}$ and graph metric d. Similarly for graphs Γ_{1} and Γ_{2}. Furthermore, we want to assume for this section that all graphs are connected.

Proposition I.5.1 (Isomorphism and Isometries):

(i) Suppose that Γ_{1} has a vertex v of valency $\operatorname{val}(v) \neq 2$. Then for each isometry $\bar{h}: X=\Gamma_{1}^{\text {geom }} \rightarrow Y=\Gamma_{2}^{\text {geom }}$ there is a graph isomorphism $h: \Gamma_{1} \rightarrow \Gamma_{2}$ such that $\bar{h}=h^{\text {geom }}$.
(ii) Γ_{1} and Γ_{2} are isomorphic if and only if $\left.\Gamma_{1}^{\text {geom }}, d_{1}\right)$ and $\left(\Gamma_{2}^{\text {geom }}, d_{2}\right)$ are isometric.

Note that if \bar{h} doesn't preserve vertices, then we don't stand a chance.
Reminder I.5.2 (Connected Components): Let (X, \mathfrak{T}) be a topological space and let x be a point in X. Then the union of all connected sets in X containing x is called the connected component of X. It is equivalently described as the unique largest connected subset of X containing x. Here, "largest" is to be understood with resepct to inclusion.

Example I.5.3 (Connected Components of Punctures Neighbourhoods):

Let x be a vertex of the graph Γ with $\operatorname{val}(x)=n$, let $\varepsilon \in(0,1 / 4)$ and let $U=B(x, \varepsilon)-\{x\}$. Then U has n connected components.
(ii) Let $x=(t, e)$ for some t in $(0,1)$ and some edge e of Γ, let $\varepsilon \in$ $(0, \min \{1,1-t\})$ and let $U=B(x, \varepsilon)-\{x\}$. Then U has two connected components.

Lemma I.5.4 (Isometries Preserve Valencies): Suppose that $\bar{h}: X=\Gamma_{1}^{\text {geom }} \rightarrow$ $Y=\Gamma_{2}^{\text {geom }}$ is an isometry and $x=v$ is a vertex in V_{1} with valency $\operatorname{val}(x) \neq 2$. Then $y=\bar{h}(x)$ is a vertex w in V_{2} with the same valency.

Proof: The number of connected components of the punctured balls $B(x, \varepsilon)-$ $\{x\}$ and of $B(\bar{h}(x), \varepsilon)-\{\bar{h}(x)\}$ has to be equal.

Proof: (i) We are given an isometry $\bar{h}: X \rightarrow Y$ and we know there is a point $x_{0}=v$ in V_{1} with valency $\operatorname{val}(x) \neq 2$. By Lemma I.5.4, $y_{0}=\bar{h}\left(x_{0}\right)$ is again a vertex w in V_{2}. Observe that x in X is a vertex if and only if $d\left(x_{0}, x\right)$ is a natural number; same for a vertex y in Y. Hence \bar{h} preserves vertices, i.e. $\bar{h}\left(V_{1}\right)=V_{2}$. But this means in particular that \bar{h} preserves open edges. More precisely, for any e in E_{1} and $U_{e}=\{(t, e) \mid t \in(0,1)\}$ we have $\bar{h}\left(U_{e}\right)=U_{\tilde{e}}$ for some \tilde{e} in E_{2}.
Defining $h_{V}:=\left.\bar{h}\right|_{V_{1}}: V_{1} \rightarrow V_{2}$ and $h_{E}: E_{1} \rightarrow E_{2}, e \mapsto \tilde{e}$, where \tilde{e} is chosen such that $\tilde{h}(t, e)=(\tilde{t}, \tilde{e})$ yields a graph morphism, as \bar{h} being an isometry ensures that $\tilde{t}=t$.

This means in total that \bar{h} is the geometric realisation of the graph isomorphism $h=\left(h_{V}, h_{E}\right)$.
(ii) " \Longrightarrow ": This follows from Proposition I.4.10.
" \Longleftarrow ": Let $\bar{h}: X \rightarrow Y$ be an isometry. If Γ_{1} or Γ_{2} has a vertex of valency different from 2, then \bar{h} is the geometric realisation of some graph isomorphism, and thus $\Gamma_{1} \cong \Gamma_{2}$.
If not, then $\Gamma_{1} \cong \operatorname{Circ}_{n}$ for $n \in \mathbb{N}_{0} \cup\{\infty\}$. Observe that

$$
\operatorname{diam}\left(\operatorname{Cirg}_{n}^{\text {geom }}\right)=\sup \left\{d(x, y) \mid x, y \in \operatorname{Cirg}_{n}^{\text {geom }}\right\}= \begin{cases}n / 2, & \text { if } n \in \mathbb{N} \\ \infty, & \text { if } n=\infty\end{cases}
$$

which has to be preserved by the isometry \bar{h}. Hence Γ_{1} and Γ_{2} are isomorphic. Do be careful however. In the latter case, \bar{h} does not have to be an isomorphism.

Example I.5.5 (Graphs whose valencies are all two): The only connected possible offenders, i.e. graphs whose vertices all have vertices 2 , are the following:
(i) Circ_{n}, a circle with n vertices, where n is a natural number.
(ii) $\operatorname{Circ}_{\infty}=\operatorname{Cay}(\mathbb{Z},\{1\})$.

Definition I.5.6 (Isometry Group): The set

$$
\operatorname{Isom}(\Gamma)=\left\{\bar{h}:\left(\Gamma^{\text {geom }}, d\right) \rightarrow\left(\Gamma^{\text {geom }}, d\right) \text { isometry }\right\}
$$

is the isometry group of Γ. Here, d denotes the graph metric.
Corollary I.5.7 (of Proposition I.5.1, Automorphisms via Isometries): If Γ is not isomorphic to Circ_{n} for $n \in \mathbb{N} \cup\{\infty\}$, then $\operatorname{Aut}(\Gamma) \cong \operatorname{Isom}(\Gamma)$.

Reminder I.5.8 (Quotients of Sets by Group Actions): (i) Let X be a set and let " \sim " be an equivalence relation. Then $X / \sim=\{[x] \mid x \in X\}$ is the set of equivalence classes with respect to " \sim " and $q: X \rightarrow X / \sim, x \mapsto[x]$ is the canonical projection. Let Y be any set and let $f: X \rightarrow Y$ be a map. If for any x_{1} and x_{2} in X with $x_{1} \sim x_{2}$ it holds that $f\left(x_{1}\right)=f\left(x_{2}\right)$, we say that f equivariant with respect to " \sim ".

Observe that $X / \sim, q$ has the following universal property: For any map $f: X \rightarrow Y$ being equivariant with respect to " \sim ", there is one and only one map $\bar{f}: X / \sim \rightarrow Y$ such that $f=\bar{f} \circ q$. We say that f factors through X / \sim.

A fancy way of saying this is that X / \sim is a universal object. With respect to what functor?
(ii) Let now X be a set and let $\rho: G \rightarrow \operatorname{Perm}(X)$ be a group action. Then "If $G x=G y$, then $x \sim y$ " declares an equivalence relation on X and we denote $X / \sim:=G \backslash X=\{G x \mid x \in X\}$. Again, we have the canonical projection $q: X \rightarrow G \backslash X, x \mapsto G x$. A map $f: X \rightarrow Y$ which for all x in X and g in G satisfies that $f(g x)=f(x)$ is called G-invariant.
(iii) If X is a topological space and $\rho: G \rightarrow \operatorname{Perm}(X)$ is a group action, then $G \backslash X$ comes with the quotient topology and we have everything as in (i) just with continuous maps.
Definition I.5.9 (Quotients of Graphs by Group Actions): Let $\Gamma=(V, E, \delta, \iota)$ be a graph, let G be a group and let $\rho: G \rightarrow \operatorname{Aut}(\Gamma)$ be a group action without inversions. Then, the data $\bar{V}:=G \backslash V=\{G v \mid v \in V\}, \bar{E}:=G \backslash E=\{G e \mid$ $e \in E\}, \bar{o}(G e)=G o(e), \bar{t}(G e)=G t(e), \bar{\iota}(G e)=G \iota(e)$ makes up the quotient graph, denoted $G \backslash \Gamma:=\rho \backslash \Gamma:=\bar{\Gamma}=(\bar{V}, \bar{E}, \bar{\delta}=\bar{o} \times \bar{t}, \bar{\iota})$.

Here, we use the following notations: $\rho=\left(\rho_{V}, \rho_{E}\right)$ with $g v:=\rho_{V}(g)(v)$, $g e:=\rho_{E}(g)(v)$.

Remark I.5.10 (Well-definednes): Observe the following:
(i) For any g in G, the map $\rho(g)=\left(\rho_{V}(g), \rho_{E}(g)\right)$ is a graph morphism, thus $o(g e)=g o(e), t(g e)=g t(e)$ and $\iota(g e)=g \iota(e)$. This shows precisely that $\bar{o}, \bar{t}, \bar{\iota}$ from Definition I.5.9 are well-defined.
(ii) The quotient graph $\bar{\Gamma}$ is indeed a graph. This is seen as follows: For any edge e of Γ we have $\bar{o}(G e)=G o(e)=G t(\iota(e))=\bar{t}(G \iota(e))=\bar{t}(\bar{\iota}(G e))$ and $\bar{\iota}(\bar{\iota}(G e))=G e$ by similar arguments.
(iii) Since G acts without inversions, it holds $\iota G e \neq G e$ for any edge e.

Example I.5.11 (Some Quotient Graphs): (i) Let $\Gamma=\operatorname{Cay}(\mathbb{Z},\{1\})=\operatorname{Circ}_{\infty}$ and consider the action ρ_{1} given by $\rho_{1, v}: \mathbb{Z} \rightarrow \operatorname{Perm}(\mathbb{Z}), 1 \mapsto(z \mapsto z+1)$. Its quotient graph by ρ_{1} is a graph with one vertex and one edge. The quotient by the action ρ_{3} declared via $\rho_{3, v}: \mathbb{Z} \rightarrow \operatorname{Perm}(\mathbb{Z}), 1 \mapsto(z \mapsto z+3)$ is a graph with three vertices and three edges.
(ii) Let $\Gamma=\operatorname{Cay}(G, S)$ be the Cayley graph of some group with finite set of generators S and let $\rho: G \rightarrow \operatorname{Aut}(\Gamma)$ be the action by left multiplication. Then the quotient graph $G \backslash \Gamma$ again has only one vertex, since G acts transitively on G by the cancellation law. For each generator, we obtain an edge. Hence, $G \backslash \Gamma$ is a rose with $\# S$ many leaves.
(iii) Sketch missing. Consider the action $\rho: \mathbb{Z} / 3 \mathbb{Z} \rightarrow \operatorname{Aut}(\Gamma)$, given by $\rho_{E}(1)=\left(e_{1} e_{2} e_{3}\right)$. Then $G \backslash \Gamma$ is Sketch missing.
Remark I.5.12 (Quotient Group): Let G be a group, let $\Gamma=(V, E, \delta, \iota)$ be a graph and let $\rho: G \rightarrow \operatorname{Aut}(\Gamma)$ be a group action. Then we have the following:
(i) The maps $q_{V}: V \rightarrow G \backslash V, v \mapsto G v$ and $q_{E}: E \rightarrow G \backslash E, e \mapsto G e$ make up a graph homomorphism $q=\left(q_{V}, q_{E}\right): \Gamma \rightarrow G \backslash \Gamma$.
(ii) The graph morphism q is G-invariant, i.e. for any group element g, $q \circ \rho(g)=q$.
(iii) The graph morphism q has the universal property. More precisely: For each G-invariant graph morphism $f: \Gamma \rightarrow \Gamma^{\prime}$, there is a unique graph morphism $\bar{g}: G \backslash V \rightarrow \Gamma^{\prime}$ with $\bar{f} \circ q=f$.
(iv) The geometric realisation $q^{\text {geom }}$ is continuous, open and G-invariant.
(v) For the geometric realisations it holds $(G \backslash \Gamma)^{\text {geom }} \cong G \backslash \Gamma^{\text {geom }}$. To be more precise we have the commutative diagram

Proof: The first two statements are clear. As for the third statement, $\bar{f}_{V}: G v \mapsto$ $f(v)$ and $\bar{f}_{E}: G e \mapsto f e$ give rise to a well-defined graph morphism and it is the only possible map.

As for (iv), we already know that $q^{\text {geom }}$ is continuous by (Corollary I.4.13) and G-invariant by definition. It remains to show that $q^{\text {geom }}$ is open. Let thus U be open in $\Gamma^{\text {geom }}$ and let $y=f(x)$ be a point in $f(U)$. Now we distinguish cases for x.

If $x=(t, e)$ for some edge e and some t in $(0,1), y$ is the point $y=(t, G e)$. In this case, choose $\varepsilon<\delta_{x}:=\min \{t, 1-t\}$ such that $B(x, \varepsilon) \subseteq U$. Then $B(f(x), \varepsilon)$ is contained in $f(U)$.

If x is a vertex, then $y=G v$. Choose $\varepsilon<\delta_{x}:=1 / 4$ such that $B(x, \varepsilon)$ is contained in U. Then, for any t^{\prime} in $(0, \varepsilon)$ and e in E with $o(e)=v$ we have that $x^{\prime}=\left(t^{\prime}, e\right)$ belongs to U, and thus $f\left(x^{\prime}\right)=(t, G e)$ belongs to $f(U)$. Hence, for any t^{\prime} in $(0, \varepsilon)$ and $G e$ with $\bar{o}(G e)=G v$ it holds $\left(t^{\prime}, G e\right) \in f(U)$. This means that $B(f(x), \varepsilon)$ is contained in $f(U)$.

As for (v), we have to show that the pair $\left.(G \backslash \Gamma)^{\text {geom }}, q^{\text {geom }}\right)$ satisfies the universal property, i.e. for any other topological space Y and a G-invariant map $f: \Gamma^{\text {geom }} \rightarrow Y$, there is a unique map $\bar{f}:(G \backslash \Gamma)^{\text {geom }} \rightarrow Y$ such that $f=\bar{f} \circ q^{\text {geom }}$.

Let thus $f: \Gamma^{\text {geom }} \rightarrow Y$ be a continuous and G-invariant map. Then

$$
\bar{f}:(G \backslash \Gamma)^{\text {geom }} \longrightarrow Y, \quad(t, G e) \longmapsto f((t, e))
$$

is our candidate. It remains to show that \bar{f} is continuous. For an open subset U of Y it holds $\bar{f}^{-1}(U)=q^{\text {geom }}\left(f^{-1}(U)\right)$ by the surjectivity of $q^{\text {geom }}$ and by the openness of $q^{\text {geom }}$, the preimage of U under \bar{f} is open, which shows that \bar{f} is continuous.

6 Trees

In this section, we want to show that a graph is a tree if and only if that graph is contractible. For this section, let $\Gamma=(V, E, \delta, \iota)$ be a graph, let $\omega=\left(e_{1}, \ldots, e_{n}\right)$ be an edge-path and for each vertex v, denote by ω_{v} the constant edge-path with origin and terminus v.

Definition I.6.1 (Basic Definitions):

(i) If for the edge-path ω it holds $o(\omega)=t(\omega)$, then ω is called closed.
(ii) If for all indices $i \in\{1, \ldots, n\}$ it holds $e_{i} \neq \bar{e}_{i+1}$, then ω has no backtracking.
(iii) If the edge-path ω has no backtracking and if for any distinct indices i and j it holds that $o\left(e_{i}\right) \neq o\left(e_{j}\right)$ and $t\left(e_{i}\right) \neq t\left(e_{j}\right)$, then ω is called simple.
(iv) The edge-path $\bar{\omega}=\left(\bar{e}_{n}, \ldots, \bar{e}_{1}\right)$ is called inverse edge-path.
(v) For the additional edge-path $\omega^{\prime}=\left(f_{1}, \ldots, f_{m}\right)$ with $o\left(f_{1}\right)=t\left(e_{1}\right)$, the path $\omega \omega^{\prime}=\left(e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{m}\right)$ is called product or concatenation.
(vi) For the edge-path ω, the number $\ell(\omega)=n$ is called combinatorial length or briefly length of ω.
(vii) If the edge-path ω is closed and has no backtracking, then ω is called a cycle.

Note that some authors require cycles to be simple as well.
Definition I.6.2 (Tree): Let $\Gamma=(V, E, \delta, \iota)$ be a graph. If V is non-empty, if Γ is connected and if Γ has no simply cycle ω of length greater then zero, then Γ is called a tree.

Proposition I.6.3 (Basic Properties):

(i) Let $\omega=\left(e_{1}, \ldots, e_{n}\right)$ be a cycle of length $\ell(\omega) \geq 1$. Then ω contains a simple cycle.
(ii) A graph Γ is a tree if and only if V is non-empty and if for any two vertices u and v there is a unique edge-path without backtracking from u to v.

Proof: Statement (i) is clear. For (ii), there are two assertions. " \Longrightarrow ": By assumption, V is non-empty, and it is easy to see that V is connected. Remains to show that V doesn't contain simple cycles of positive length.

Suppose Γ contained a simple cycle $\omega=\left(e_{1}, \ldots, e_{n}\right)$ with origin e_{1} and end e_{1}. Then both ω and the constant edge-path ω_{v} were both without backtracking, contradicting the assumption.
" $\Longleftarrow ":$ The existence of a path $\omega_{u, v}$ from u to v follows from the connectedness of Γ, as we can remove backtracking inductively. Assume now there were two paths $\omega_{u, v}=\left(e_{1}, \ldots, e_{n}\right)$ and $\omega_{u, v}^{\prime}=\left(f_{1}, \ldots, f_{m}\right)$ without backtracking from u to v. Denote $\omega:=\omega_{u, v} \bar{\omega}_{u, v}^{\prime}$. If the length of ω were zero, then both $\omega_{u, v}$ and $\bar{\omega}_{u, v}$ were empty.

If not, then we inductively rempte backtracking to obtain a simple cycle.
Reminder I.6.4: Let $\left(X_{1}, \mathfrak{T}_{1}\right)$ and $\left(X_{2}, \mathfrak{T}_{2}\right)$ be topological spaces and denote by p_{i} the projection $p_{i}: X_{1} \times X_{2} \rightarrow X_{i}$.
(i) The sets of the form $\left\{p_{i}^{-1}(U) \mid U \in \mathfrak{T}_{i}\right\}$ make up a subbasis for a topology on ($X_{1} \times X_{2}$). It is the coarsest topology rendering continuous the projections p_{1} and p_{2}, called product topology.

A sequence $\left(x_{n}, y_{n}\right)_{n \in \mathbb{N}}$ converges to (x, y) in $X \times Y$ with respect to the product topology if and only if x_{n} converges to x in X and y_{n} converges to y in Y.

We have the following universal property: If Y is another topological space and if there are continuous maps $f_{i}: Y \rightarrow X_{i}$, then there is one and only one continuous map $f: Y \rightarrow X$ such that $p_{i} \circ f=f_{i}$. This is captured by the following diagram:

(ii) Denote by I the closed unit interval and let $f_{1}, f_{2}: X \rightarrow Y$ be continuous maps. If there is a continuous map $H: X \times I \rightarrow Y$ such that for any x it holds $H(x, 0)=f_{1}(x)$ and $H(x, 1)=f_{2}(x)$, then f_{1} and f_{2} are called homotopic.

Let $f: X \rightarrow Y$ be a continuous map. If there is a continuous map $g: Y \rightarrow X$ such that $g \circ f$ is homotopic to id_{X} and $f \circ g$ is homotopic to id_{Y}, then f is called a homotopy equivalence.

If f is homotopic to a contant map, i.e. if there are y in Y and a continuous map $H: X \times I \rightarrow Y$ such that for any x in H it holds $H(x, 0)=f(x)$ and $H(x, 1)=y$, then f is called null-homotopic.
(iii) Let (X, \mathfrak{T}) be a topological space. If id_{X} is null-homotopic, i.e. if there are a point x_{0} in X and a continuous map $H: X \times I \rightarrow X$ such that for any x in X it holds $H(x, 0)=x$ and $H(x, 1)=x_{0}$, then the space is called contractible.

Let T denote a tree, let X be its geometric realisation $X=T^{\text {geom }}$ and let x_{0} be a point in X. For any point x in X there is a unique geodesic c_{x} from x_{0} to x. Denote $d_{x}:=d\left(x_{0}, x\right)$ and define

$$
H: X \times I \longrightarrow X, \quad(x, t) \longmapsto c_{x}\left(d_{x} t\right)
$$

Then, for any x in X it holds $H(x, 0)=x$ and $H(x, 1)=x_{0}$. It remains to show that H is indeed continuous. Instead of verifying continuity in this special situation, we will move to a more general statement.
Definition I.6.5 (Geodesics and Friends): Let (X, d) be a metric space.
(i) A continuous map $\alpha:[a, b] \rightarrow X$ is called a path $\cdot{ }^{2}$

[^1](ii) Let $c:[a, b] \rightarrow X$ be a map. If c is isometric, i.e. if for any t_{1}, t_{2} in $[a, b]$ it holds $d\left(c\left(t_{1}\right), c\left(t_{2}\right)\right)=\left|t_{1}-t_{2}\right|$, then c is called a geodesic $]^{3}$ The image $c[a, b]$ is called a geodesic segment. Observe that in this case $b-a=d\left(c\left(t_{1}, c\left(t_{2}\right)\right)\right.$.
(iii) Let $c:[a, b] \rightarrow X$ be a geodesic. If there is a constant $\lambda>0$ such that for any t_{1}, t_{2} in $[a, b]$ it holds $d\left(c\left(t_{1}\right), c\left(t_{2}\right)\right)=\lambda\left|t_{1}-t_{2}\right|$, then c is called a constant speed geodesic. Its image is again a geodesic segment.
(iv) Let $c:[a, b] \rightarrow X$ be a map. If for any point t in $[a, b]$ there is an open neighbourhood U of t such that $\left.c\right|_{U}$ is a geodesic, then c is called a local geodesic.

Do be warned. Sometimes local geodesics are called geodesics, e.g. in the context of translation surfaces or differential geometry in general.

Definition I.6.6 (Geodesic Spaces): Let (X, d) be a metric space.
(i) If for any two points x and y in X there is a geodesic segment between them, then the space is called a geodesic space.
(ii) If for any two points x and y in X there is a unique geodesic segment between then, then the space is called uniquely geodesic space.
(iii) Let x_{1}, x_{2} and x_{3} be points in X and let $\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right]$ and $\left[x_{3}, x_{1}\right]$ be geodesic segments between the respective points. Their union $\Delta:=$ $\left[x_{1}, x_{2}\right] \cup\left[x_{2}, x_{3}\right] \cup\left[x_{3}, x_{1}\right]$ is called a geodesic triangle with vertices x_{1}, x_{2} and x_{3}.

Example I.6.7: (i) The plane $\left(\mathbb{R}^{2}, d_{E}\right)$, equipped with the Euclidean metric d_{E}, is a uniquely geodesic space. In this space, geodesics are precisely lines, geodesic triangles are ordinary triangles as known from elementary geometry.
(ii) Trees are uniquely geodesic spaces. This was shown on Exercise Sheet 2.

Definition I.6.8 (Comparison Triangle): Let (X, d) be a metric space and let $\Delta=\left[x_{1}, x_{2}\right] \cup\left[x_{2}, x_{3}\right] \cup\left[x_{3}, x_{1}\right]$ be a geodesic triangle. Choose in $\left(\mathbb{R}^{2}, d_{E}\right)$ a geodesic triangle $\bar{\Delta}=\left[\bar{x}_{1}, \bar{x}_{2}\right] \cup\left[\bar{x}_{2}, \bar{x}_{3}\right] \cup\left[\bar{x}_{3}, \bar{x}_{1}\right]$ with vertices \bar{x}_{1}, \bar{x}_{2} and \bar{x}_{3} such that $d\left(x_{i}, x_{j}\right)=d\left(\bar{x}_{i}, \bar{x}_{j}\right)$. Then Δ is called comparison triangle for Δ.

For each p in $\left[x_{1}, x_{2}\right]$ denote by $\bar{p} \in\left[\bar{x}_{1}, \bar{x}_{2}\right]$ the unique point with $d\left(\bar{x}_{1}, p\right)=$ $d\left(x_{1}, p\right)$ which is equivalent to $d\left(\bar{x}_{2}, \bar{p}\right)=d\left(x_{2}, p\right)$. Similarly for p in $\left[x_{2}, x_{3}\right]$ and p in $\left[x_{3}, x_{1}\right]$.

[^2]Definition I.6.9 (CAT0 Space): Let (X, d) be a geodesic space. If for all geodesic triangles $\Delta=\left[x_{1}, x_{2}\right] \cup\left[x_{2}, x_{3}\right] \cup\left[x_{3}, x_{1}\right]$ and for all p and q in Δ it holds that $d(p, q) \leq d(\bar{p}, \bar{q})$, where \bar{p} and \bar{q} are corresponding points in the comparison triangle Δ, the space (X, d) is called $\operatorname{CAT}(0)$.

Example I.6.10: The plane $\left(\mathbb{R}^{2}, d_{E}\right)$ is a $\operatorname{CAT}(0)$ space.
In the following, we will show that Trees are CAT(0) spaces, and then we will show that CAT(0) spaces are contractible.

Proposition I.6.11: Let T be a tree and let $X:=T^{\text {geom }}$ with graph metric d. Then, we have the following: For any points x_{1}, x_{2} and x_{3} in X and the geodesic segments $\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right]$ with $\left[x_{1}, x_{2}\right] \cap\left[x_{2}, x_{3}\right]=\left\{x_{2}\right\}$, it holds $\left[x_{1}, x_{2}\right] \cup\left[x_{2}, x_{3}\right] \cup\left[x_{3}, x_{1}\right]$.

Proof: It follows from Proposition I.6.3 that the geodesic between two points is the unique path without backtracking.

Proposition I.6.12 (Trees are CAT0): Let (X, d) be a geodesic space such that (X, d) is uniquely geodesic and such that it holds "For any x_{1}, x_{2} and x_{3} in X with $\left[x_{1}, x_{2}\right] \cap\left[x_{2}, x_{3}\right]=\left\{x_{2}\right\},\left[x_{1}, x_{2}\right] \cup\left[x_{2}, x_{3}\right]=\left[x_{1}, x_{3}\right]$ ". Then we have:
(i) Any geodesic triangle $\Delta=\left[x_{1}, x_{2}\right] \cup\left[x_{2}, x_{3}\right] \cup\left[x_{3}, x_{1}\right]$ has a triple point, i.e. there is some point m in Δ with $\left[x_{1}, x_{2}\right]=\left[x_{1}, m\right] \cup\left[m, x_{2}\right],\left[x_{2}, x_{3}\right]=$ $\left[x_{2}, m\right] \cup\left[m, x_{3}\right]$ and $\left[x_{3}, x_{1}\right]=\left[x_{3}, m\right] \cup\left[m, x_{1}\right]$.
(ii) (X, d) is CATO.

Proof: (i) We show that $\left[x_{1}, x_{2}\right] \cap\left[x_{2}, x_{3}\right] \cap\left[x_{1}, x_{3}\right]=\{m\}$ for some point m in X. Denote $d_{1}:=d\left(x_{2}, x_{3}\right), d_{2}=d\left(x_{1}, x_{3}\right)$ and $d_{3}=d\left(x_{1}, x_{2}\right)$. Furthermore, let $c_{3}:\left[0, d_{3}\right] \rightarrow X$ and $c_{2}:\left[0, d_{2}\right] \rightarrow X$ be geodesics with $c_{3}(0)=x_{1}=c_{2}(0)$ and $c_{3}\left(d_{3}\right)=x_{2}$ and $c_{2}\left(d_{2}\right)=x_{3}$.

Let $t_{0}:=\max \left\{t \in\left[0, d_{3}\right] \mid c_{3}(t) \in\left[x_{1}, x_{3}\right]\right\}=\max \left\{t \in[0,1] \mid c_{3}(t)=c_{2}(t)\right\}$. We claim that $m:=c_{3}(t)=c_{2}(t)$ does the trick.

Firstly, observe that for $t \leq t_{0}$ we have $c_{1}(t)=c_{2}(t)$, as $\left.c_{2}\right|_{\left[t, t_{0}\right]}=[x, m]=$ $\left.c_{1}\right|_{\left[t, t_{0}\right]}$. If on the other hand $t>t_{0}$, then $c_{3}(t)$ doesn't belong to $\left[x_{1}, x_{3}\right]$ and thus $\left[x_{1}, x_{2}\right] \cap\left[x_{1}, x_{3}\right]=c_{3}\left(\left[0, t_{0}\right]\right)=c_{2}\left(\left[0, t_{0}\right]\right)$.

Secondly, observe that $\left[x_{2}, m\right]=c_{3}\left(\left[t_{0}, d_{3}\right]\right) \cap c_{2}\left(\left[t, d_{2}\right]\right)=\left[m, x_{3}\right]=\{m\}$. Hence, $\left[x_{2}, m\right] \cup\left[m, x_{3}\right]=\left[x_{2}, x_{3}\right]$ and $\left[x_{1}, x_{2}\right] \cap\left[x_{1}, x_{3}\right] \cap\left[x_{2}, x_{3}\right]=\{m\}$ as $\left[x_{1}, x_{2}\right] \cap\left[x_{1}, x_{3}\right]=c_{3}\left(\left[0, t_{0}\right]\right)=c_{2}\left(\left[0, t_{0}\right]\right.$ and $\left[x_{2}, x_{3}\right]=c_{3}\left(\left[t_{0}, d_{3}\right) \cup c_{2}\left(\left[t_{0}, d_{2}\right]\right)\right.$.
(ii) Let $\Delta=\left[x_{1}, x_{2}\right] \cup\left[x_{2}, x_{3}\right] \cup\left[x_{3}, x_{1}\right]$ be a geodesic triangle and let m be the triple point of this triangle. Let $\bar{\Delta}=\left[\bar{x}_{1}, \bar{x}_{2}\right] \cup\left[\bar{x}_{2}, \bar{x}_{3}\right] \cup\left[\bar{x}_{3}, \bar{x}_{1}\right]$ be the comparison triangle in $\left(\mathbb{R}^{2}, d_{E}\right)$. Finally, let p, q be two points on different sides of Δ and let \bar{p}, \bar{q} be the corresponding points on $\bar{\Delta}$. We will now distinguish cases.

Case 1: Assume p and q lie on the same leg of Δ, without loss of generality we may assume that they lie on $\left[x_{1}, m\right]$. Furthermore, without loss of generality we may assume that $d\left(x_{0}, p\right) \leq d\left(x_{1}, q\right)$. Choose \bar{q}^{\prime} on $\left[\bar{x}_{1}, \bar{x}_{2}\right]$ such that $d\left(\bar{x}_{1}, \bar{q}^{\prime}\right)=d\left(x_{1}, q\right)=d\left(\bar{x}_{1}, \bar{q}\right)$. Then

$$
d(p, q)-d_{E}\left(\bar{p}, \bar{q}^{\prime}\right) \leq d_{E}(\bar{p}, \bar{q})
$$

since \bar{q} and \bar{q}^{\prime} describe an equilateral triangle in our comparison triangle, and then elementary arguments do the trick.

Case 2: Assume p and q lie on different legs. Without loss of generality, we may assume that p lies on $\left[m, x_{2}\right]$ and that q lies on $\left[m, x_{3}\right]$. As we are in a unique geodesic space, we know that
$d\left(x_{2}, m\right)+d\left(x_{3}, m\right)=d\left(x_{2}, x_{3}\right)=d_{E}\left(\bar{x}_{2}, \bar{x}_{3}\right) \leq d_{E}\left(\bar{x}_{2}, \bar{p}\right)+d_{E}(\bar{p}, \bar{q})+d_{E}\left(\bar{p}, \bar{x}_{3}\right)$.
Because $d_{E}\left(\bar{x}_{2}, p\right)=d\left(x_{2}, m\right)-d(m, p)$ and $d_{E}\left(p, x_{3}\right)=d\left(x_{3}, m\right)-d(m, q)$, we obtain by plugging in and cancelling that

$$
d(p, q)=d(m, p)+d(m, q) \leq d_{E}(\bar{p}, \bar{q})
$$

Therefore, (X, d) is a $\operatorname{CAT}(0)$-space.

Definition I.6.13 (R-Tree): Let (X, d) be a geodesic space. If (X, d) is uniquely geodesic and if for any x_{1}, x_{2}, x_{3} in X with $\left[x_{1}, x_{2}\right] \cap\left[x_{2}, x_{3}\right]=\left\{x_{2}\right\}$ it holds that $\left[x_{1}, x_{2}\right] \cup\left[x_{2}, x_{3}\right]=\left[x_{1}, x_{3}\right]$, then (X, d) is called an \mathbb{R}-tree.

In particular, the previous proposition shows that \mathbb{R}-trees are $\operatorname{CAT}(0)$.
Proposition I.6.14 (CAT(0)-Spaces are Convex): Every CAT(0)-space (X, d) is convex, i.e. for any pair of constant speed geodesics $c, c^{\prime}:[0,1] \rightarrow X$ the point-wise distance function $t \mapsto c(t)-c^{\prime}(t)$ is a convex function, which means that for any $t \in[0,1]$ it holds $d\left(c(t), c^{\prime}(t)\right) \leq(1-t) d\left(c(0), c^{\prime}(0)\right)+t d\left(c(1), c^{\prime}(1)\right)$.

Proof: We establish our claim in two steps. First, assume that c and c^{\prime} share the same starting point, that is $c(0)=c^{\prime}(0)$. We consider the triangle with edges $c(0), c(1)$ and $c^{\prime}(1)$ and its comparison triangle with edges \bar{x}_{1}, \bar{x}_{2} and \bar{x}_{3},
where the length of the side from \bar{x}_{1} to \bar{x}_{2} is $d_{3}=d(c(0), c(1))$ and where the length of the side from x_{1} to x_{3} is $d_{2}=d\left(c^{\prime}(0), c^{\prime}(1)\right)$. Then it holds

$$
d\left(\bar{c}^{\prime}(t), \bar{c}(t)\right)=t d\left(\bar{x}_{2}, \bar{x}_{3}\right)=t d\left(x_{2}, x_{3}\right)=t\left(c(1), c^{\prime}(1)\right) .
$$

As our space is $\operatorname{CAT}(0)$, it follows $d\left(c(t), c^{\prime}(t)\right) \leq d\left(\bar{c}(t), \overline{c^{\prime}}(t)\right) \leq t d\left(c(1), c^{\prime}(1)\right)$.
Secondly, we allow $c(0)$ to be distinct from $c^{\prime}(0)$. Denoting by $c^{\prime \prime}$ the the geodesic from $c(0)$ to $c^{\prime}(1)$, we obtain from the first consideration that $d\left(c(t), c^{\prime \prime}(t)\right) \leq t s\left(c(1), c^{\prime \prime}(1)\right)$ and for applied to the inverse path $\bar{c}^{\prime \prime}$ to $c^{\prime \prime}$, we get $d\left(c^{\prime \prime}(1-t), c^{\prime}(1-t)\right) \leq t d\left(c(0), c^{\prime}(0)\right)$. By triangular inequality it holds

$$
\begin{aligned}
d\left(c(t), c^{\prime}(t)\right) & \leq d\left(c(t), c^{\prime \prime}(t)\right)+d\left(c^{\prime \prime}(t), c^{\prime}(t)\right) \\
& \leq t d\left(c(1), c^{\prime \prime}(1)\right) \leq t d\left(c(1), c^{\prime \prime}(1)\right)+(1-t) d\left(c(0), c^{\prime}(0)\right)
\end{aligned}
$$

which we wanted to show.

Remark I.6.15: On an exercise sheet, you will show that if (X, d) is $\operatorname{CAT}(0)$, then (X, d) is uniquely geodesic.

Definition I.6.16 (Geodesics Vary Continuously With Their Endpoints): Let (X, d) be a uniquely geodesic space. If for any constant speed geodesic $c:[0,1] \rightarrow X$ from x to y and any sequence $\left(c_{n}:[0,1] \rightarrow X\right)_{n \in \mathbb{N}}$ of constant speed geodesics with $\lim _{n \rightarrow \infty} c_{n}(0)=c(0)=x$ and $\lim _{n \rightarrow \infty} c_{n}(1)=c(1)=y$ it holds $\lim _{n \rightarrow \infty}\left\|c_{n}-c\right\|_{\infty}=0$, then we say that in (X, d), geodesics vary continuously with their endpoints.

Proposition I.6.17: In any CAT(0)-space (X, d), geodesics vary continuously with their endpoints.

Proof: Let $c:[0,1] \rightarrow X$ and $\left(c_{n}:[0,1] \rightarrow X\right)_{n \in \mathbb{N}}$ be constant speed geodesics, let $x=c(0)$ and $y=c(1)$ and assume that $c_{n}(0) \rightarrow c(0)$ as well as $c_{n}(1) \rightarrow c(1)$. By convexity, for any $t \in[0,1]$ it holds
$d(c(t), c n(t)) \leq(1-t) d\left(c(0), c_{n}(0)\right)+t d\left(c(1), c_{n}(1)\right) \leq d\left(x, c_{n}(0)\right)+d\left(y, c_{n}(1)\right)$
which, by assumption, implies uniform convergence.

Theorem 2 (CAT(0)-Spaces are Contractible): Any CAT(0)-space (X,d) is contractible.

Proof: Fix a point x_{0} in X and let $c_{x}:[0,1] \rightarrow X$ be the unique constant speed geodesic from x to x_{0}. Define

$$
H: X \times[0,1] \longrightarrow X, \quad(x, t) \longmapsto c_{x}(t)
$$

By Proposition I.6.17 this map H is continuous. Suppose $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a sequence in X converging to x and suppose $\left(t_{n}\right)_{n \in \mathbb{N}}$ is a sequence in $[0,1]$ converging to t. For $c_{n}:=c_{x_{n}}$ we obtain by Proposition I.6.17 that c_{n} converges to c uniformly, i.e. in particular $c_{n}\left(t_{n}\right) \rightarrow c(t)$.

Corollary I.6.18 (Trees are Contractible): The geometric realisation of a tree is contractible.

In the following, we want to show that also the converse is true, i.e. contractible graphs are trees.

Proposition I.6.19: Let Γ be a graph, let T be a subtree of Γ and let Γ / T be the graph obtained by collapsing T with collapse map $p: \Gamma \rightarrow \Gamma / T$. Then p is an homotopy equivalence.

Proof: This will be an exercise on Exercise Sheet 5.
Proposition I.6.20 (Contractible Graphs are Trees): Let X be the geometric realisation of a graph Γ. If X is contractible, then Γ is a tree.

Lemma I.6.21 (Topological Basics): Let $f_{1}, f_{2}: X \rightarrow Y$ be continuous maps between topological spaces. If f_{1} and f_{2} are homotopic, we write $f_{1} \sim f_{2}$.
(i) Being homotopic is an equivalence relation. If $f_{1}, f_{2}: X \rightarrow Y$ are continuous and homotopic and $g_{1}, g_{2}: Y \rightarrow Z$ are continuous and homotopic, then $g_{1} \circ f_{1}$ and $g_{2} \circ f_{2}$ are homotopic.
(ii) Let $f: X \rightarrow Y$ be a homotopy equivalence. Then X is contractible if and only if Y is contractible.
(iii) If X is a contractible space and if $\gamma:[0,1] \rightarrow X$ is a closed path, i.e. $\gamma(0)=\gamma(1)$, then γ is null-homotopic.

Proof: Statements (i) and (ii) will be on exercise sheets. As for assertion (iii), suppose X is contractible. Then there is some point x_{0} in X such that $\mathrm{id}_{X} \sim \mathbf{x}_{0}$, where \mathbf{x}_{0} denotes the path that is constantly x_{0}. Hence, by (i) for the path γ it holds $\mathbf{x}_{0} \circ \gamma \sim \mathrm{id}{ }_{X} \circ \gamma=\gamma$, i.e. γ is null-homotopic.

[^3]To show the above proposition, we will export the main argument into a lemma.

Lemma I.6.22 (Cycles in Graphs): Let $c=\left(c_{1}, \ldots, c_{n}\right)$ be a simple cycle in the graph Γ of length $n \geq 1$ and let $\gamma_{c}:[0, n] \rightarrow \Gamma^{\text {geom }}=: X, k+s \mapsto\left(s, e_{e_{k+1}}\right)$, where $k \in\{0, \ldots, n-1\}$ and $s \in[0,1]$ a path realising the cycle c. Then γ_{c} is not null-homotopic.

Proof: In the arguments, we will leave a gap to be filled later. As first step, we show that we may assume that $n=1$. Suppose $n \geq 2$ and consider the tree spanned by the edges e_{1}, \ldots, e_{n-1}. By Proposition I.6.20, the projection map $p: \Gamma^{\text {geom }} \rightarrow(\Gamma / T)^{\text {geom }}$ is a homotopy equivalence. In particular the path γ_{c} is null-homotopic if and only if $p \circ \gamma_{c}$ is null-homotopic, but $p \circ \gamma_{c}$ is the realisation (up to reparametrisation) of a loop.

As second step, we show the statement for $n=1$, i.e. for a cycle $c=\left(e_{1}\right)$ with $o\left(e_{1}\right)=t\left(e_{1}\right)=v_{0}$. Suppose there were a homotopy $H:[0,1] \times[0,1] \rightarrow X$ with $H(1, s)=\gamma_{c}(s)$ and $H(0, s)=x$ for some point x in X. We may assume that $x=v_{0}$. Define $\tilde{H}:[0,1] \times[0,1] \rightarrow e_{1}^{\text {geom }}=\left\{\left(t, e_{1}\right) \mid t \in[0,1]\right\}$ with

$$
(t, s) \longmapsto \begin{cases}H(t, s), & \text { if } H(t, s) \in e_{1}^{\text {geom }} \\ v_{0}, & \text { otherwise }\end{cases}
$$

This is continuous, since of an open subset U of $e_{1}^{\text {geom }}$ it holds

$$
\tilde{H}^{-1}(U)= \begin{cases}H^{-1}(U), & \text { if } v_{0} \notin U, \\ H^{-1}(U) \cup H^{-1}\left(\Gamma^{\text {geom }}-e_{1}^{\text {geom }}\right), & \text { if } v_{0} \in U .\end{cases}
$$

Therefore, \tilde{H} is a homotopy in $e^{\text {geom }}$, which yields that $e^{\text {geom }}$ is contractible. But $e^{\text {geom }}$ is homeomorphic to \mathbb{S}^{1}, which is not contractible as we will see later. \square

Proof (of Proposition I.6.21): Assume $X=\Gamma^{\text {geom }}$ were contractible. Then there were x_{0} in X and a homotopy map $H:[0,1] \times X \rightarrow X$ between id_{X} and \mathbf{x}_{0}. Thus, firstly X were non-empty and X were connected due to the maps $H_{x}:[0,1] \rightarrow X, t \mapsto H(t, x)$. Furthermore, Γ had no simply cycle, due to Lemma I.6.23 (cycles in graphs are not null-homotopic) and Lemma I.6.21 (loops on contractible spaces are null-homotopic).

Theorem 3: A graph is a tree if and only if its geometric realisation is contractible.

7 Free Groups

Consider the set $X=\{x, y\}$ and let $W(X)$ be the set of all words with letters in X. For two words w_{1} and w_{2} in W, the concatenation gives a new word in W. For example, $w_{1}=x y x$ and $w_{2}=y x x y$, their concatenation is $w_{1} \star w_{2}:=x y x y x x y$. If we now add to our alphabet the corresponding inverse letters $X^{\prime}=\left\{x^{-1}, y^{-1}\right\}$, then $W\left(X \cup X^{\prime}\right)$ turns into a group with concatenation of words.

For this section, the letter X will always denote some set.

Definition I.7.1 (The Monoid of Words):

(i) The set $W(X):=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid n \in \mathbb{N}, a_{1}, \ldots, a_{n} \in X\right\} \cup\{\varepsilon\}$ denotes the set of words with letters in X and ε denotes the empty word.

For a word $w=\left(a_{1}, \ldots, a_{n}\right)$, the number n is called length of w, denoted $\operatorname{len}(w)$. For ε, we define $\operatorname{len}(\varepsilon)=0$.

We write

$$
\begin{aligned}
\star: W(X) \times W(X) & \longrightarrow W(X) \\
\left(\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{m}\right)\right. & \longmapsto\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)
\end{aligned}
$$

for the concatenation of words and define $\star\left(\left(a_{1}, \ldots, a_{n}\right), \varepsilon\right):=\left(a_{1}, \ldots, a_{n}\right)$ as well as $\star\left(\varepsilon,\left(b_{1}, \ldots, b_{m}\right)\right):=\left(b_{1}, \ldots, b_{m}\right)$. Observe that " \star " is associative and ε is a neutral element, i.e. $(W(X), \star)$ carries the structure of a monoid.
(ii) Identify X with the set $X \times\{1\}$ and define $X^{\prime}:=X \times\{-1\}$. For an element x of X we write $x=(a, 1)$ and we call $x^{-1}:=(a,-1)$ in X^{\prime} the inverse. Similarly, for an element $x=(a,-1)$ of X^{\prime}, we denote $x^{-1}:=(a, 1)$.

If a word $w \in W\left(X \cup X^{\prime}\right)$ does not contain a subword of the form $x x^{-1}$ for $x \in X \cup X^{\prime}$, we call the word w reduced.

We write $w \xrightarrow{(1)} w^{\prime}$ if w^{\prime} is obtained from w by a single cancellation of a subword $x x^{-1}$. Similarly, we write $w \rightarrow w^{\prime}$, if there is a finite sequence w_{1}, \ldots, w_{k} such that $w \xrightarrow{(1)} w_{1} \xrightarrow{(1)} \ldots \xrightarrow{(1)} w_{k}=w^{\prime}$.

Observe that for every word w in $W\left(X \cup X^{\prime}\right)$, there is a word w^{\prime} in $W\left(X \cup X^{\prime}\right)$ such that w^{\prime} is reduced and $w \rightarrow w^{\prime}$.
Example I.7.2: Consider the word $b a b b^{-1} a^{-1} c^{-1} c a$. By cancellation, we could obtain $b a a^{-1} c^{-1} a$ and then $b c c^{-1} a$ and then $b a$. But we could also have proceeded in a different way, e.g. we could come to $b a b b^{-1} a a$, then $b a b b^{-1}$ and then $b a$.

It is thus obvious that "reducing sequences" are not unique, but their outcomes better be!

Proposition I.7.3 (Uniqueness of the Reduced Form): Let w in $W\left(X \cup X^{\prime}\right)$ be a word. Then w has a unique reduced form.

Proof: We show the statement via induction on the length $n=\operatorname{len}(w)$.
If $n=0$, then $w=\varepsilon$, where there is nothing to be done.
Suppose now the claim held for words of the length n and assume w had length $n+1$. If w were reduced, then the claim held. If w were not reduced, there were a subword $x x^{-1}$ for some x from our alphabet. By cancelling this subword $x x^{-1}$ from w, we could obtain the word w_{1}. We show that any reduced form \hat{w} of w is also a reduced form of w_{1}. This then yields the claim by induction.

Let $\hat{\omega}$ be a reduced form of w. If at some point in the cancellation sequence we cancel this pair $x x^{-1}$, then we can change the order of cancellation and start with this cancellation, i.e. \hat{w} is also a reduced form of w_{1}.

If the subword $x x^{-1}$ we started with is never cancelled, then at least one of the individual letters has to be cancelled "from the left" respectively "from the right", because \hat{w} is reduced. In both cases, we obtain the same word if we cancel the initial pair. Hence we obtain the claim by the first case.

Definition I.7.4 (Equivalence):

(i) Let w be a word in $W\left(X \cup X^{\prime}\right)$. Then $w^{\text {red }}$ denotes the reduced form of w.
(ii) If two words w_{1}, w_{2} in $W\left(X \cup X^{\prime}\right)$ have the same reduced form $w_{1}^{\text {red }}=w_{2}^{\text {red }}$, we call both words equivalent. This declares an equivalence relation " \sim " and by $[w]$ we denote the equivalence class of w with respect to " \sim ".

Proposition I.7.5: Let $w_{1}, w_{1}^{\prime}, w_{2}, w_{2}^{\prime}$ be words in $W\left(X \cup X^{\prime}\right)$ such that $w_{1} \sim w_{1}^{\prime}$ and $w_{2} \sim w_{2}^{\prime}$. Then $w_{1} \star w_{2}$ is equivalent to $w_{1}^{\prime} \star w_{2}^{\prime}$.

Proof: Denote $\hat{w}=\left(w_{1} \star w_{2}\right)^{\text {red }}$ and $\hat{w}^{\prime}:=\left(w_{1}^{\prime} \star w_{2}^{\prime}\right)^{\text {red }}$. To obtain $\left(w_{1} \star w_{2}\right)^{\text {red }}$, proceed as follows: First, cancel as much as possible in w_{1}. Then, cancel as much as possible in w_{2}. Then cancel in the result what can be cancelled. Hence

$$
\hat{w}=\left(w_{1}^{\mathrm{red}} \star w_{2}^{\mathrm{red}}\right)^{\mathrm{red}}=\left(w_{1}^{\prime \mathrm{red}} \star w_{2}^{\prime \mathrm{red}}\right)^{\mathrm{red}}=\hat{w}^{\prime} .
$$

Theorem 4 (Free Group): Let X be a set and let X^{\prime} be the corresponding disjoint copy.
(i) The set $F(X):=W\left(X \cup X^{\prime}\right) / \sim$ with the operation "." defined by $\left[w_{1}\right]$. $\left[w_{2}\right]=\left[w_{1} \star w_{2}\right]$ is a group called free group.
(ii) The map $\iota: X \mapsto F(X), x \mapsto[x]$ is an embedding and we have the following universal property: For any group G and a map of set $f: X \rightarrow$ G, there is one and only one group homomorphism $\varphi: F(X) \rightarrow G$ such that $\varphi \circ \iota=f$, i.e. for any group G and any map of sets f, we have the following commutative diagram:

(iii) If $\left(H, \iota^{\prime}\right)$ is a group H together with a map $\iota^{\prime}: X \rightarrow H$ with the same property as $(F(X), \iota)$, there is a unique group isomorphism $\theta: F(X) \rightarrow H$ such that $\theta \circ \iota=\iota^{\prime}$.

Proof: (i) We have already shown that "." is well-defined. Furthermore, it is associative as " \star " is and $1=[\varepsilon]$ is a neutral element for this law of composition on $F(X)$. For a word $w=\left(x_{1}, \ldots, x_{n}\right)$ for $x_{i} \in X \cup X^{\prime}$, the word $w^{\prime}=\left(x_{1}^{-1}, \ldots, x_{n}^{-1}\right)$ is its inverse.
(ii) We define a map $\varphi^{\prime}: W\left(X \cup X^{\prime}\right) \rightarrow G$ as follows: If $w=\left(x_{1}, \ldots, x_{n}\right)$ is a word with len $(w) \geq 1$, send w to $f\left(x_{1}\right) \cdots f\left(x_{n}\right)$ and if len $(w)=0$, w must be the empty word and we should send w to 1_{G}. Here, for $x=a^{-1} \in X^{\prime}$ we denote $f(x)=(f(a))^{-1}$. In particular, we have $f(x) f\left(x^{-1}\right)=1_{G}$.
Then clearly $\varphi^{\prime}\left(w_{1} \star w_{2}\right)=\varphi^{\prime}\left(w_{1}\right) \cdot \varphi^{\prime}\left(w_{2}\right)$ and for equivalent words w_{1} and w_{2} it holds $\varphi^{\prime}\left(w_{1}\right)=\varphi^{\prime}\left(w_{2}\right)$, because φ^{\prime} plays nicely with inverses. Now defining $\varphi: F(X) \rightarrow G,[w] \mapsto\left[\varphi^{\prime}(w)\right]$ does the trick. Because of the way X is embedded in $F(X)$, there is no other choice for φ^{\prime}.
(iii) This is shown as usually.

Notation I.7.6: In the following, we will confound w with its equivalence class $[w]$ and by abuse of notation, we write $w_{1}=w_{2}$ if indeed $w_{1} \sim w_{2}$. In particular, $w_{1} x x^{-1} w_{2}=w_{1} w_{2}^{-1}$ for any x in $X \cup X^{\prime}$. One can identify $[w]$ with $w^{\text {red }}$. If X is the finite set $\left\{x_{1}, \ldots, x_{n}\right\}$, one usually writes $F\left(x_{1}, \ldots, x_{n}\right)$ for $F\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$ and calls this group the free group on n generators.

Example I.7.7: For the empty set X, the free group $F(X)$ is the trivial group. If X is a singleton $\{x\}$, then $F(X)=\left\{x^{k} \mid k \in \mathbb{Z}\right\}$ is isomorphic to $(\mathbb{Z},+)$. If X is the set $\{x, y\}$, then $F(X)=\left\{1, x, y, x^{-1}, y^{-1}, x x, x y, x y^{-1}, y x, y y, \ldots\right\}$. The Cayley graph of $F(X)$ with $S=\{x, y\}$ is the four-valent tree.

Proposition I.7.8: Let G be a group and let S be a subset of G. The free group $F(S)$ is isomorphic to G if and only if the Cayley graph of G is a tree.

Proposition I.7.9 (Groups as Quotients of Free Groups): Each group G is a quotient group of a free group. That is $G \cong F(X) / N$ for some set X and some normal subgroup N of $F(X)$.

Proof: Let S be a generating system of G. If everything else fails, we can always pick S to be G itself. Let $f: S \hookrightarrow G$ be the embedding. By the universal property of $F(S)$ there is one and only one group homomorphism $\varphi: F(S) \rightarrow G$ such that for the embedding $\iota: S \rightarrow F(S)$ it holds $\varphi \circ \iota=f$. Since S is a generating set of G, the homomorphism φ is surjective and by the homomorphism theorem, $G \cong F(S) / \operatorname{ker}(\varphi)$.

Definition I.7.10: Let G be a group and let R be some subset of G. Then

$$
\langle\langle R\rangle\rangle:=\bigcap(N \mid N \triangleleft G \text { with } R \subseteq N)=\left\{\prod_{i=1}^{n} g_{i} r_{i} g_{i}^{-1}: g_{i} \in G, r_{i} \in R \cup R^{-1}\right\}
$$

is called the normal subgroup normally generated by R.
Let now X be a set, let R be a subgroup of $F(X)$ and let $G=F(X) /\langle\langle R\rangle\rangle$. Then we call $\langle X \mid R\rangle$ a presentation of G. If both $R=\left\{r_{1}, \ldots, r_{k}\right\}$ and $X=$ $\left\{x_{1}, \ldots, x_{n}\right\}$ is finite, then we also write $\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{k}\right\rangle$ instead of $\langle X \mid R\rangle$.

We further write $\left\langle X \mid r_{1}=r_{1}^{\prime}, \ldots, r_{k}=r_{k}^{\prime}\right\rangle$ for the presentation $\langle X \mid R\rangle$ where $R=\left\{r_{1}^{\prime}, r_{1}^{\prime-1}, \ldots, r_{k}^{\prime}, r_{k}^{\prime-1}\right\}$.

We also write $G=\langle X \mid R\rangle$ to mean $G=F(X) /\langle\langle R\rangle\rangle$.
Example I.7.11: Consider the group $G=\langle x, y \mid x y=y x\rangle$, i.e. $R=\left\{x y x^{-1} y\right\}$. Then one can show that $G=\mathbb{Z}^{2}$.

Definition I.7.12 (Commutator Subgroup, Abelianisation): Let G be a group. Then the set $[G, G]:=\left\langle\left\{\left[g_{1}, g_{2}\right]=g_{1} g_{2} g_{1}^{-1} g_{2} \mid g_{1}, g_{2} \in G\right\}\right\rangle$ is called the commutator subgroup of G and is indeed a subgroup. It has the following properties:
(i) The commutator subgroup is a normal subgroup of G, and $G /[G, G]$ is abelian.
(ii) The quotient $G /[G, G]$ is the "biggest abelian image of G ", more precisely: $G /[G, G]$ together with the quotient $\operatorname{map} q: G \rightarrow G /[G, G]$ has the following universal property. For any abelian group A and any homomorphism $\varphi: G \rightarrow A$ the is one and only one homomorphism $\bar{\varphi}: Q \rightarrow A$ such that $\bar{\varphi} \circ q=\varphi$.

A pair (Q, q) consisting of an abelian group Q and a morphism $q: G \rightarrow Q$ such that the property (ii) holds is called abelianisation of G. Any two abelianisations $\left(Q_{1}, q_{1}\right)$ and $\left(Q_{2}, q_{2}\right)$ are uniquely isomorphic to each other, i.e. there is a unique isomorphism $\varphi: Q_{1} \rightarrow Q_{2}$ such that $\varphi \circ q_{1}=q_{2}$. In this case, we thus denote by $G^{\text {ab }}$ "the" abelianisation of G.

Proof: (i) Let g be an element of G and let a commutator [g_{1}, g_{2}] be given. Then a quick calculation shows that $\left[g g_{1} g^{-1}, g g_{2} g^{-1}\right]=g\left[g_{1}, g_{2}\right] g^{-1}$, thus $[G, G]$ is a normal subgroup, hence we can form $G /[G, G]$. For elements \bar{a} and \bar{b} in $G /[G, G]$ it holds $\bar{a} \bar{b}=\bar{b} \bar{a} \Leftrightarrow a b a^{-1} b^{-1} \in[G, G]$, i.e. $G /[G, G]$ is abelian.
(ii) By the Fundamental Theorem on Homomorphisms, the map φ descends to the quotient if and only if $[G, G]$ is contained in $\operatorname{ker} \varphi$. As for any g_{1}, g_{2} in G it holds

$$
\varphi\left(\left[g_{1}, g_{2}\right]\right)=\varphi\left(g_{1}\right) \varphi\left(g_{2}\right) \varphi\left(g_{1}\right)^{-1} \varphi\left(g_{2}\right)^{-1}=1_{A},
$$

we obtain the desired universal property.
(iii) This is the same argument as always.

Corollary I.7.13 (Properties of Commutator): Let G be a group.
(i) The commutator $[G, G]$ is the smallest normal subgroup of G such that the quotient is abelian. More precisely: For any normal subgroup N of G, whose quotient G / N is abelian, contains $[G, G]$.
(ii) If S is a generating system of G, then $[S, S]:=\left\{\left[s_{1}, s_{2}\right] \mid s_{1}, s_{2} \in S\right\}$ generates $[G, G]$ as a normal subgroup, i.e. $[G, G]=\langle\langle[S, S]\rangle\rangle$.

Proof: Statement (i) follows directly from Definition I.7.12(ii). As for (ii): We have that $N:=\langle\langle[S, S]\rangle\rangle$ is a subgroup of $[G, G]$. Furthermore, in $A:=G / N$ for two elements \bar{a} and \bar{b} of A, we may write $\bar{a}=\bar{s}_{1} \cdots \bar{s}_{k}, \bar{b}=\bar{s}_{k+1}, \ldots, \bar{s}_{k+\ell}$ with suitable $s_{1}, \ldots, s_{k+\ell}$ in $S \cup S^{-1}$. By definition of N the elements \bar{s}_{i}, \bar{s}_{j} commute, i.e. $\bar{a} \bar{b}=\bar{b} \bar{a}$. Hence $[G, G] \subseteq N=\langle\langle[S, S]\rangle\rangle$ by Definition I.7.12(ii).

Proposition I.7.14 (Presentation of \mathbb{Z}^{n}):

(i) For the free group $G=F\left(x_{1}, \ldots, x_{n}\right)$, it holds $G^{\mathrm{ab}} \cong \mathbb{Z}^{n}$.
(ii) $F\left(x_{1}, \ldots, x_{n}\right) /\left\langle\left\langle x_{i} x_{j} x_{i}^{-1} x_{j}^{-1} \mid i, j \in\{1, \ldots, n\}\right\rangle\right\rangle \cong \mathbb{Z}^{n}$.

In particular, $G=\left\langle x_{1}, \ldots, x_{n} \mid x_{i} x_{j}=x_{j} x_{i}, i, j \in\{1, \ldots, n\}\right\rangle$ is a presentation of \mathbb{Z}^{n}.

Definition I.7.15 (Free Product): Let $G_{1}=\left\langle X_{1} \mid R_{1}\right\rangle$ and $G_{2}=\left\langle X_{2} \mid R_{2}\right\rangle$ be two group presentations. Then $G_{1} \star G_{2}:=\left\langle X_{1} \cup X_{2} \mid R_{1} \cup R_{2}\right\rangle$ is called free product of G_{1} and G_{2}.

Proposition I.7.16 (Universal Property of Free Product): Let G_{1} and G_{2} be two group presentations. Then $G_{1} \star G_{2}$ has the following properties:
(i) $G_{1} \star G_{2}$ depends on the chosen representations only up to unique isomorphism.
(ii) The free product $G_{1} \star G_{2}$ comes with natural embeddings $\iota_{1}: G_{1} \hookrightarrow G_{1} \star G_{2}$ and $\iota_{2}: G_{2} \hookrightarrow G_{2}$ such that we have the following universal property: For any group H together with morphisms $\psi_{1}: G_{1} \rightarrow H$ and $\psi_{2}: G_{2} \rightarrow H$, there is one and only one morphism $\psi: G_{1} \star G_{2} \rightarrow H$ such that $\psi_{i}=\psi \circ \iota_{i}$.
Proof: As for assertion (ii): We define a map

$$
\hat{\iota}_{1}: F\left(X_{1}\right) \longrightarrow F\left(X_{1} \cup X_{2}\right) /\left\langle\left\langle R_{1} \cup R_{2}\right\rangle\right\rangle=G_{1} \star G_{2}
$$

via $x \mapsto[x]$. In particular, for some r in R_{1} we have that $\hat{\iota}_{1}(r)=[r]=1_{G_{1} * G_{2}}$. This means that $\left\langle\left\langle R_{1}\right\rangle\right\rangle$ is contained in $\operatorname{ker}\left(\hat{\iota}_{1}\right)$, i.e. $\hat{\iota}_{1}$ descends to a map $\iota_{1}: G_{1} \rightarrow G_{1} \star G_{2}$. We do the same for G_{2}. Given morphisms ψ_{1} and ψ_{2} as described above, we define a map

$$
\hat{\psi}: F\left(X_{1} \cup X_{2}\right) \longrightarrow H, \quad x \longmapsto \begin{cases}\psi_{1}([x]), & \text { if } x \in X_{1} \\ \psi_{2}([x]), & \text { if } x \in X_{2}\end{cases}
$$

By the same argument as for the $\hat{\iota_{i}}$, i.e. $R_{1} \cup R_{2} \subseteq \operatorname{ker} \hat{\psi}, \hat{\psi}$ descends to a map $\psi: G_{1} \star G_{2} \rightarrow H$. A short calculation shows that this map ψ has the desired properties.

Now the uniqueness-party in the first assertion follows from the universal property in (ii). More precisely, if ($H, \iota_{1}^{\prime}, \iota_{2}^{\prime}$) also has the universal property in (ii), then there exists a unique isomorphism $h: G_{1} \star G_{2} \rightarrow G^{\prime}$ such that $h \circ \iota_{1}=\iota_{1}^{\prime}$ and $h \circ \iota_{2}=\iota_{2}^{\prime}$.
Definition I.7.17 (Amalgamated Product): Suppose we are given group presentations $G_{1}=\left\langle X_{1} \mid R_{1}\right\rangle$ and $G_{2}=\left\langle X_{2} \mid R_{2}\right\rangle$ and another group presentation $U=\left\langle X_{3} \mid R_{3}\right\rangle$ together with group homomorphisms $\alpha_{1}: U \rightarrow G_{1}$ and $\alpha_{2}: U \rightarrow G_{2}$. Let $R_{3}^{\prime}:=\left\{\widehat{\alpha}_{1}(u)=\widehat{\alpha}_{2}(u) \mid u \in U\right\}$, where $\widehat{\alpha}_{i}(u)$ is a preimage of $\alpha_{1}(u)$ in $F\left(X_{i}\right) \subseteq F\left(X_{1} \cup X_{2}\right)$. Then

$$
\left.\left.G_{1} \star_{U} G_{2}:=\left\langle X_{1} \cup X_{2}\right| R_{1} \cup R_{2} \cup R_{3}^{\prime}\right\}\right\rangle
$$

is called the amalgamated product of G_{1} and G_{2} over U with respect to α_{1} and α_{2}.

Proposition I.7.18 (Universal Property of Amalgamated Product): In the situation of Definition I.7.12 it holds:
(i) $G_{1} \star_{U} G_{2}$ does not depend on the chosen representation.
(ii) There are natural morphisms $\varphi_{1}: G_{1} \rightarrow G_{1} \star_{U} G_{2}$ and $\varphi_{2}: G_{2} \rightarrow G_{1} \star_{U} G_{2}$ such that $\varphi_{1} \circ \alpha_{1}=\varphi_{2} \circ \alpha_{2}$ with the following universal property: For any other group H with morphisms $\psi_{1}: G_{1} \rightarrow H$ and $\psi_{2}: G_{2} \rightarrow H$ with $\psi_{1} \circ \alpha_{1}=\psi_{2} \circ \alpha_{2}$, there is one and only one morphism $\psi: G_{1} \star_{U} G_{2} \rightarrow H$ such that $\psi_{1}=\psi \circ \varphi_{1}$ and $\psi_{2}=\psi \circ \varphi_{2}$.

Proof: As for the second assertion, consider the free product $G_{1} \star G_{2}$ together with the embeddings $\iota_{i}: G_{i} \hookrightarrow G_{1} \star G_{2}$ and let $p: G_{1} \star G_{2} \rightarrow G_{1} \star_{U} G_{2}$ be the quotient map. Define $\varphi_{1}:=p \circ \iota_{1}$ and $\varphi_{2}:=p \circ \iota_{2}$. Then we obtain that $\varphi_{1} \circ \alpha_{1}=\varphi_{2} \circ \alpha_{2}$, since for all u in U it holds that

$$
\varphi_{1}\left(\alpha_{1}(u)\right)=p\left(\iota_{1}\left(\alpha_{1}(u)\right)\right)=p\left(\iota_{2}\left(\alpha_{2}(u)\right)\right)=\varphi_{2}\left(\alpha_{2}(u)\right)
$$

by the additional relations used for passing from $G_{1} \star G_{2}$ to $G_{1} \star_{U} G_{2}$.
If we are now given the group H with the stated homomorphisms, Proposition I.7.16 yields the existence of homomorphisms $\hat{\psi}: G_{1} \star G_{2} \rightarrow H$ such that $\hat{\psi} \circ \iota_{1}=\hat{\psi} \circ \iota_{2}$. It remains to show that $\hat{\psi}$ descends to our wanted map ψ. It holds

$$
\hat{\psi}\left(\iota_{1}\left(\alpha_{1}(u)\right)\right)=\psi_{1}\left(\alpha_{1}(u)\right)=\psi_{2}\left(\alpha_{2}(u)\right)=\hat{\psi}\left(\iota_{2}\left(\alpha_{2}(u)\right)\right),
$$

which establishes the claim. The first claim follows from (ii) as usual.

Chapter II

A Topological Crash Course

1 Fundamental Groups

In this section, X, X_{1}, X_{2} and Y always denote topological spaces with points $\star \in X, \star_{1} \in X_{1}$ and $\star_{2} \in X_{2}$.

Definition II.1.1:

(i) Let X be a topological space and let \star be a point of X. Then, the tuple (X, \star) is called a punctured topological space. Let $\left(X_{1}, \star_{1}\right)$ and $\left(X_{2}, \star_{2}\right)$ be punctured topological spaces and let $f: X_{1} \rightarrow X_{2}$ be a map. If f is continuous with $f\left(\star_{1}\right)=\star_{2}$, then f is called a morphism of punctured spaces.
(ii) Let E be a subset of some topological space X and let $f, g: X \rightarrow Y$ be continuous maps between topological spaces such that $\left.f\right|_{E}=\left.g\right|_{E}$. A continuous map $H: X \times I \rightarrow Y$ that for any x in X satisfies that $H(x, 0)=f(x), H(x, 1)=g(x)$ and which fulfils $H(x, t)=f(x)=g(x)$ for any x in E and any t in $[0,1]$ is called a homotopy between f and g relative to E. In this case we write $f \sim_{E} g$.
(iii) The set

$$
\pi_{1}(X, \star):=\{\gamma:[0,1] \rightarrow X \mid \gamma(0)=\gamma(1)\} / \sim_{[0,1]}
$$

is called fundamental group of X at \star.
Example II.1.2 (Composition, Reparametrisation): Let $\varphi:[0,1] \rightarrow[0,1]$ be a continuous map with $\varphi(0)=0$ and $\varphi(1)=1$. Then $\varphi \sim_{E} \operatorname{id}_{[0,1]}$.
If $f, f^{\prime}: X_{1} \rightarrow X_{2}$ and $g, g^{\prime}: X_{2} \rightarrow X_{3}$ are continuous maps such that $f \sim_{E} f^{\prime}$ and $g \sim_{f(E)} g^{\prime}$, then $g \circ f \sim_{E} g^{\prime} \circ f^{\prime}$.

Let $\gamma:[0,1] \rightarrow X$ be a path and let $\varphi:[0,1] \rightarrow[0,1]$ be a continuous map with $\varphi(0)=0$ and $\varphi(1)=1$, then $\gamma \circ \varphi \sim_{\{0,1\}} \gamma$.

Proof: We need to give homotopies for the considered maps. For the first statement,

$$
H:[0,1] \times[0,1] \longrightarrow[0,1], \quad(s, t) \longmapsto(1-t) s+t \varphi(s)
$$

does the trick. For the second one, suppose $H_{1}: X_{1} \times[0,1] \rightarrow X_{2}$ is a homotopy from f to f^{\prime} relative to E and suppose $H_{2}: H \times[0,1] \rightarrow X_{3}$ is a homotopy from g to g^{\prime} relative to $f(E)$, then $H: X_{1} \times[0,1] \rightarrow X_{3},(x, t) \mapsto H_{2}\left(H_{1}(x, t), t\right)$ is a homotopy suitable to our claim. The third assertion directly follows from the first and second assertion.

Proposition II.1.3 (Fundamental Group): For two paths $\gamma_{1}, \gamma_{2}:[0,1] \rightarrow X$ with $\gamma_{1}(1)=\gamma_{2}(0)$, the path

$$
\gamma_{1} \cdot \gamma_{2}:[0,1] \longrightarrow X, \quad t \longmapsto \begin{cases}\gamma_{1}(2 t), & \text { if } 0 \leq t<1 / 2 \\ \gamma_{2}(2 t-1), & \text { if } 1 / 2 \leq t \leq 1 .\end{cases}
$$

is called composition of γ_{1} and γ_{2}. If $\gamma_{1}^{\prime}, \gamma_{2}^{\prime}:[0,1] \rightarrow X$ are different paths with $\gamma_{1}(0)=\gamma_{1}^{\prime}(0), \gamma_{1}(1)=\gamma_{1}^{\prime}(1), \gamma_{2}(0)=\gamma_{2}^{\prime}(0)$ and $\gamma_{2}(1)=\gamma_{2}^{\prime}(1)$ and if $\gamma_{1} \sim_{\{0,1\}} \gamma_{1}^{\prime}$ and $\gamma_{2} \sim_{\{0,1\}} \gamma_{2}^{\prime}$, then $\gamma_{1} \cdot \gamma_{2}$ is homotopic to $\gamma_{1}^{\prime} \cdot \gamma_{2}^{\prime}$, i.e. "." is well-defined on homotopy classes.

The set $\pi_{1}(X, \star)$ together with the law of composition defined by composition of paths turns into a group, called fundamental group of X at \star.

Proof: Suppose $H_{1}, H_{2}:[0,1] \times[0,1] \rightarrow X$ are homotopies between γ_{1} and γ_{1}^{\prime} respectively γ_{2} and γ_{2}^{\prime}. Then

$$
H:[0,1] \times[0,1] \longrightarrow X, \quad(s, t) \longmapsto \begin{cases}H_{1}(2 t, s), & \text { if } 0 \leq t \leq 1 / 2, \\ H_{2}(2 t-1, s), & \text { if } 1 / 2 \leq t \leq 1\end{cases}
$$

is the desired homotopy between the path compositions.
Now to the law of composition. First, we check associativity of path composition. Let thus $\gamma_{1}, \gamma_{2}, \gamma_{3}:[0,1] \rightarrow X$ be paths with $\gamma_{1}(1)=\gamma_{2}(0)$ and $\gamma_{2}(1)=\gamma_{3}(0)$. Then

$$
\gamma_{1} \cdot\left(\gamma_{2} \cdot \gamma_{3}\right):[0,1] \longrightarrow X, \quad t \longmapsto \begin{cases}\gamma_{1}(2 t), & \text { if } 0 \leq t<1 / 2 \\ \gamma_{2}(4 t-2), & \text { if } 1 / 2<t \leq 3 / 4 \\ \gamma_{3}(4 t-3), & \text { if } 3 / 4 \leq t \leq 1\end{cases}
$$

and

$$
\left(\gamma_{1} \cdot \gamma_{2}\right) \cdot \gamma_{3}:[0,1] \longrightarrow H, \quad t \longmapsto \begin{cases}\gamma_{1}(4 t), & \text { if } 0 \leq t \leq 1 / 4 \\ \gamma_{2}(4 t-1), & \text { if } 1 / 4 \leq t \leq 1 / 2 \\ \gamma_{3}(2 t-1), & \text { if } 1 / 2 \leq t \leq 1\end{cases}
$$

Using the map

$$
\varphi: I \longrightarrow I, \quad s \longmapsto \begin{cases}1 / 2 s, & \text { if } 0 \leq s \leq 1 / 2 \\ s-1 / 4, & \text { if } 1 / 2 \leq s \leq 3 / 4 \\ 2 s-1 & \text { if } 3 / 4 \leq s \leq 1\end{cases}
$$

it follows from Exercise 1.2 that $\left(\gamma_{1} \cdot \gamma_{2}\right) \cdot \gamma_{3}=\gamma_{1} \cdot\left(\gamma_{2} \cdot \gamma_{3}\right) \circ \varphi$ is homotopic to $\gamma_{1} \cdot\left(\gamma_{2} \cdot \gamma_{3}\right)$ with respect to $E=\{0,1\}$.
Secondly, we verify that $[\star]$ is the identity element. Using arguments similar to those above, one shows that for any path $\gamma:[0,1] \rightarrow X$ with $\gamma(0)=\gamma(1)=\star$ we have $\gamma \cdot \star \sim_{\{0,1\}} \gamma \sim_{\{0,1\}} \star \cdot \gamma$.

Thirdly, we show that for any path $\gamma:[0,1] \rightarrow X$ we have $\gamma \cdot \gamma_{-}=[\star]=\left[\gamma_{-} \cdot \gamma\right]$, where γ_{-}denotes the inverse path declared by $s \mapsto \gamma(1-s)$. A suitable homotopy is given by

$$
H:[0,1] \times[0,1] \longrightarrow X, \quad(s, t) \longmapsto \begin{cases}\gamma(2 t s), & \text { if } 0 \leq s \leq 1 / 2 \\ \gamma(2 t-2 t s), & \text { if } 1 / 2 \leq s \leq 1\end{cases}
$$

In total, we have thus shown that $\left(\pi_{1}(X, \star), \cdot\right)$ is indeed a group.

Proposition II.1.4 (Functoriality):

(i) Every morphism $f:\left(X_{1}, \star_{1}\right) \rightarrow\left(X_{2}, \star_{2}\right)$ between punctured spaces induces a group homomorphism $\pi_{\star}(f):=f_{\star}: \pi_{1}\left(X_{1}, \star_{1}\right) \rightarrow \pi_{1}\left(X_{2}, \star_{2}\right)$ defined by $[\gamma] \mapsto[f \circ \gamma]$.
(ii) Let $f_{1}:\left(X_{1}, \star_{1}\right) \rightarrow\left(X_{2}, \star_{2}\right)$ and $f_{2}:\left(X_{2}, \star_{2}\right) \rightarrow\left(X_{3}, \star_{3}\right)$ be morphisms of punctured spaces. Then it holds $\left(f_{2} \circ f_{1}\right)_{\star}=\left(f_{2}\right)_{\star} \circ\left(f_{1}\right)_{\star}$.
(iii) For the identity $\operatorname{id}_{(X, \star)}$ it holds $\left(\operatorname{id}_{(X, \star)}\right)_{\star}=\operatorname{id}_{\pi_{1}(X, \star)}$.
(iv) If $f, f^{\prime}:\left(X_{1}, \star_{1}\right) \rightarrow\left(X_{2}, \star_{2}\right)$ are morphisms of punctured spaces homotopic relative to $\left\{\star_{1}\right\}$, then $f_{\star}=f_{\star}^{\prime}$.

Proof: As for (i): By Exercise 1.2, the induced morphism f_{\star} is well-defined. For composable paths γ_{1} and γ_{2} we have $f \circ\left(\gamma_{1} \cdot \gamma_{2}\right)=\left(f \circ \gamma_{1}\right) \cdot\left(f \circ \gamma_{2}\right)$ by definitions. The other assertions are immediate.

Corollary II.1.5 (Fundamental Group as Topological Invariant): If the punctured space $\left(X_{1}, \star_{1}\right)$ is isomorphic to $\left(X_{2}, \star_{2}\right)$, then their fundamental groups $\pi_{1}\left(X_{1}, \star_{1}\right)$ and $\pi_{1}\left(X_{2}, \star_{2}\right)$ are isomorphic. Even stronger: If the punctured spaces $\left(X, \star_{1}\right)$ and $\left(X_{2}, \star_{2}\right)$ are merely homotopic, then $\pi_{1}\left(X_{1}, \star_{1}\right)$ is isomorphic to $\left(\pi_{1}\left(X_{2}, \star_{2}\right)\right.$.

Proposition II.1.6 (Independence of Base Point): For points x_{1} and x_{2} of X it holds: If there is a path from x_{1} to x_{2}, then $\pi_{1}\left(X, x_{1}\right) \cong \pi_{1}\left(X, x_{2}\right)$. In particular: If X is path-connected, then any two fundamental groups of X at distinct base-points are isomorphic. In this case, we just write $\pi_{1}(X)$ and call it the fundamental group of X.

Proof: Let $c:[0,1] \rightarrow X$ be a path with $c(0)=x_{1}$ and $c(1)=x_{2}$. The map $\pi_{1}\left(X, x_{1}\right) \rightarrow \pi_{1}\left(X, x_{2}\right),[\gamma] \mapsto\left[c_{-} \cdot \gamma \cdot c\right]$ is an isomorphism with inverse map $[\gamma] \mapsto\left[c \cdot \gamma \cdot c_{-}\right]$.

Definition II.1.7: Let X be a topological space. If X is path-.connected and if $\pi_{1}(X)=\{\mathrm{id}\}$, then X is called simply connected.

Corollary II.1.8: If X is a contractible topological space, then X is simply connected.

Proof: As an exercise, you have already shown that if X is contractible, then there is a homotopy $f: X \rightarrow\{x\}$ to some point x of X, hence there is only one fundamental group $\pi_{1}(X)$, which is isomorphic to $\pi_{1}(X, \star)$, which is trivial.

Example II.1.9: (i) The euclidean space \mathbb{R}^{n} is simply connected.
(ii) Trees are simply connected.

Import II.1.10 (Theorem of Seifert and van Kampen): Suppose we have a topological space X with open and path-connected subsets U and V of X such that $X=U \cup V$ and such that $U \cap V$ is non-empty and path-connected. Let \star be a point in $U \cap V$. Consider the fundamental groups $\pi_{1}(U, \star), \pi_{1}(V, \star)$ and $\pi_{1}(U \cap V, \star)$ and the maps $\alpha_{1}: \pi_{1}(U \cap V, \star) \rightarrow \pi_{1}(U, \star)$ and $\alpha_{2}: \pi_{1}(U \cap V, \star)$ induced by the embeddings $\iota_{1}: U \cap V \hookrightarrow U$ and $\iota_{2}: U \cap V \hookrightarrow V$. Then $\pi_{1}(X) \cong \pi_{1}(U, \star) \star_{\pi_{1}(U \cap V, \star)} \pi_{1}(V, \star)$.

In the following, we will again make use of the fact $\pi_{1}\left(\mathbb{S}^{1}\right) \cong \mathbb{Z}$, which we will show again later.

Example II.1.11: Consider a rose with two leaves. Using Seifert and van Kampen, we may compute its fundamental group from its building blocks. For those, we find $\pi_{1}\left(U_{1}\right) \cong \mathbb{Z}=\langle x\rangle, \pi_{1}\left(U_{2}\right) \cong \mathbb{Z}=\langle y\rangle$ and $\pi_{1}(U \cap V)=\{1\}$. Hence the fundamental group of the whole space is $\pi_{1}(X)=\mathbb{Z} \star \mathbb{Z}=F(x, y)=F_{2}$.

More generally, consider the rose with n petals Γ, i.e. $V=\{\cdot\}$ and $\# E^{+}=n$. We obtain with Seifert and van Kampen and via induction that $\pi_{1}\left(\Gamma^{\text {geom }}\right) \cong F_{n}$.

Corollary II.1.12 (Fundamental Group of Finite Graphs): Let Γ be a connected finite graph with vertex set V and edge set E. Then $\pi_{1}\left(\Gamma^{\text {geom }}\right)=F_{g}$, where g is $\# E-\# V+1$.

Here, g stands for genus of the graph. Note that there is conflict over the "correct" definition of genus of a graph, i.e the notion used here is non-standard.

Proof: Let T be a spanning tree, i.e. a subtree of Γ, which contains all the vertices of Γ (see Exericse 2 on Exercise Sheet 2), thus \#V-1 edges. Then Γ / T (the graph obtained by contracting T) is a rose with n petals, where $n=\# E-\# V+1$. From Exercise 1 on Exercise Sheet 5 it is known that $q: \Gamma^{\text {geom }} \rightarrow(\Gamma / T)^{\text {geom }}$ is a homotopy equivalence and by Corollary II.1.5, also the fundamental groups are isomorphic, which by Example II.1.11 are isomorphic to F_{n}.

Import II.1.13 (Oriented Closed Surfaces): A real two-dimensional manifold X, i.e. a paracompact Hausdorff topological space in which every point has an open neighbourhood which is homeomorphic to an open subset of \mathbb{R}^{2}, is called a surface. If X is a compact topological space, the surface X is called closed. For any natural number g let Σ_{g} denote the surface obtained by gluing the edges with the same labels of a polygon with 4 g edges as follows:

Sketch missing
For $g=0$ define Σ_{g} to be the sphere. The classification of closed oriented surfaces is a well-known result from algebraic topology. It states: Any closed oriented surfaces X is homeomorphic to Σ_{g} for some non-negative integer g. This g is then called genus of X.

If X is a closed surface of genus g together with a decomposition of X into polygons, and if χ denotes the number

$$
\chi=\# \text { vertices }-\# \text { edges }+\# \text { polygons },
$$

then we have the $2 g=2-\chi$. This number χ is called Euler characteristic and it is a topological invariant.

Proposition II.1.14 (Fundamental Group of Closed Oriented Surfaces): Let X be a closed oriented surface of genus g. Then

$$
\pi_{1}(X) \cong\left\langle A_{1}, B_{1}, \ldots, A_{g}, B_{g} \mid \prod_{i=1}^{g}\left[A_{i}, B_{i}\right]=1\right\rangle=: \pi_{g}
$$

This group π_{g} is called the surface group.
Let now D be a closed disk in X and let $X^{*}:=X-D$. Then $\pi_{1}\left(X^{*}\right)$ is isomorphic to $F_{2 g}$.

Proof: For the statement in (ii), consider the following:

Sketch missing

Since X^{*} is homotopic to a rose R with $4 g$ petals, we have that $\pi_{1}\left(X^{*}\right) \cong$ $\pi_{1}\left(R_{4 g}\right)=F_{4 g}$.

For the statement in (i),

Sketch missing

Let D^{\prime} be a disk included in D and let $U_{2}=X-D^{\prime}$. Then $U_{1} \cap U_{2}$ is an annulus and thus homotopic to a circle. Hence $\pi_{1}\left(U_{2}\right) \cong F\left(A_{1}, B_{1}, \ldots, A_{g}, B_{g}\right)$, $\pi_{1}\left(U_{1}\right)=\{1\}$ and $\pi_{1}\left(U_{1} \cap U_{2}\right) \cong \mathbb{Z}=\langle c\rangle$. For Seifert and van Kampen we now still need the morphisms α_{1} and α_{2}. The map $\alpha_{1}: \pi_{1}\left(U_{1} \cap U_{2}\right) \rightarrow \pi_{1}\left(U_{1}\right)=\{1\}$ is clear. And $\alpha_{2}: \pi_{1}\left(U_{1} \cap U_{2}\right) \rightarrow \pi_{1}\left(U_{2}\right)$ is declared via $c \mapsto \prod_{i=1}^{g}\left[A_{i}, B_{i}\right]$. Applying the Theorem of Seifert and van Kampen yields that

$$
\pi_{1}(X) \cong \pi_{1}\left(U_{1}\right) \star_{\pi_{1}\left(U_{1} \cap U_{2}\right)} \pi_{1}\left(U_{2}\right) \cong\left\langle A_{1}, B_{1}, \ldots, A_{g}, B_{g} \mid 1=\prod_{i=1}^{g}\left[A_{i}, B_{i}\right]\right\rangle
$$

which concludes the proof.

2 Covering Theory

Example II.2.1: (i) Let Y be the real line \mathbb{R}, let X be the unit circle line $\mathbb{S}^{1}=\left\{x \in \mathbb{R}^{2} \mid\|x\|_{2}=1\right\}$ and consider the map $p: Y \rightarrow X, t \mapsto(\cos (t), \sin (t))$.
(ii) Let Y be the Euclidean plane \mathbb{R}^{2}, let $X=\mathbb{R}^{2} / \mathbb{Z}^{2}$ be equipped with the quotient topology and let $p: Y \rightarrow X$ be simply the quotient map.
(iii) Let $Y:=\operatorname{Cay}\left(F\left(x_{1}, \ldots, x_{n}\right),\left\{x_{1}, \ldots, x_{n}\right\}\right)$ be the n-valent tree, take $X:=Y / F\left(x_{1}, \ldots, x_{n}\right)$, which gives the Rose with n petals and let $p: Y \rightarrow X$ be the quotient map.

Observe that for all those examples, we have the following: For any point x in X there is an open neighbourhood U such that $p^{-1}(U)=\bigcup_{i \in I}\left(U_{i} \mid i \in I\right)$ for disjoint open subsets U_{i} of X and for any $i \in I$, the restriction $\left.p\right|_{U_{i}}: U_{i} \rightarrow U$ is a homeomorphism. Furthermore, in all cases, Y is simply connected.

In this section, X and Y will always denote topological spaces and $p: Y \rightarrow X$ will always be a continuous map.

Definition II.2.2:

(i) Let X be a topological space. If for x in X and any open neighbourhood V of x there is an open connected resp. path-connected neighbourhood U of x contained in V, then X is called locally connected at x resp. locally path-connected at x. If X is locally connected resp. locally pathconnected at any point, then X is called locally connected resp. locally path-connected.
(ii) If for any point x in X and any open neighbourhood V of x there is an open neighbourhood U of x containted in V such that any closed path in U can be contracted in X to the point x, then X is called semi-locally simply connected.
(iii) For x in X, the pre-image $p^{-1}(\{x\})$ is called fibre of x. We sometimes denote it \mathcal{F}_{x}.

Definition II.2.3: Let $p: Y \rightarrow X$ be a continuous map. If for any point x in X there is an open neighbourhood U such that $p^{-1}(U)=\cup_{i \in I}\left(U_{i} \mid i \in I\right)$ for disjoint open subsets U_{i} of X and for any $i \in I$, the restriction $\left.p\right|_{U_{i}}: U_{i} \rightarrow U$ is a homeomorphism, then p is called a covering.

We write $p:(Y, y) \rightarrow(X, x)$ for a covering with $p(y)=x$ and call it a covering between marked spaces. The neighbourhood U as described above is called elementary neighbourhood.

Example II.2.4: Let T denote g-holed torus, which is a representative of closed surfaces of genus g, and let $T^{*}:=T-\{\infty\}$. A covering of T^{*} is called an origami.

Import II.2.5 (Basic Properties of Coverings): Let X be a connected and locally path-connected topological space, let Y be a non-empty and path-connected topological space and let $p: Y \rightarrow X$ be a covering. Then p is open and surjective and the map

$$
X \longrightarrow \mathbb{N}_{0} \cup\{\infty\}, \quad x \longmapsto \mathcal{F}_{x}=p^{-1}(\{x\})
$$

is constant. The number $\# \mathcal{F}_{x}$, where x is some element of x, is called the degree of p, or number of leaves, and is denoted $\operatorname{deg}(p)$.

From now on, we assume all coverings to be as described in ?? II.2.5.
Theorem 5 (The Lifting Theorem): Let $p:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering of marked spaces and let $f:\left(Z, z_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a continuous map between marked spaces. If Z is connected and locally path-connected, then we have the following:
(i) There is at most one map $\hat{f}:\left(Z, z_{0}\right) \rightarrow\left(X, x_{0}\right)$ of marked spaces such that $p \circ \hat{f}=f$. A map with the property of \hat{f} is called a lift of f to Z.
(ii) If $f_{*}\left(\pi_{1}\left(Z, z_{0}\right)\right)$ is contained in $p_{*}\left(\pi_{1}\left(Y, y_{0}\right)\right)$ then there is one and only one lift $\hat{f}:\left(Z, z_{0}\right) \rightarrow\left(Y, y_{0}\right)$.

As a direct consequence of this theorem, we obtain the following assertion.
Corollary II.2.6 (Lifting Results): Suppose $p:(Y, y) \rightarrow(X, x)$ is a covering.
(i) For any path $c:[0,1] \rightarrow X$, and any point y in Y with $p(y)=c(0)$ there is one and only one lift $\hat{c}:[0,1] \rightarrow Y$ in y, i.e. $\hat{c}(0)=y$ and $p \circ \hat{c}=c$.
(ii) Consider paths $\hat{c}_{1}, \hat{c}_{2}:[0,1] \rightarrow Y$ with $\hat{c}_{1}(0)=\hat{c}_{2}(0)$ and $\hat{c}_{1}(1)=\hat{c}_{2}(1)$. The lift \hat{c}_{1} is homotopic to \hat{c}_{2} relative to $\{0,1\}$ if and only if c_{1} is homotopic to c_{2} relative to $\{0,1\}$.
(iii) Suppose \tilde{X} is simply connected and $u:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ is a morphism of marked topological spaces. Then there is one and only one covering $\tilde{p}:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow\left(Y, y_{0}\right)$ such that $p \circ \tilde{p}=u$.
Definition II.2.7: Let $u:(\tilde{X}, \tilde{x}) \rightarrow(X, x)$ be a covering. If for any covering $p:(Y, y) \rightarrow(X, x)$ there is a unique covering $\tilde{p}:(\tilde{X}, \tilde{x}) \rightarrow(Y, y)$ such that $p \circ \tilde{p}=u$, then u is called a universal covering.

Remark II.2.8: (i) A universal covering $((\tilde{X}, \tilde{x}), u)$ is unique up to unique isomorphy, i.e. for any further universal covering $u^{\prime}:\left(\tilde{X}^{\prime}, \tilde{x}^{\prime}\right) \rightarrow(X, x)$ there is a unique homeomorphism $h:\left(\tilde{X}^{\prime}, \tilde{x}^{\prime}\right) \rightarrow(\tilde{X}, \tilde{x})$ with $u \circ h=u^{\prime}$.
(ii) A map $p:(Y, y) \rightarrow(X, x)$ is a universal cover if and only if Y is simply connected. This follows from (i) and Corollary II.2.6(iii).

Theorem 6 (of the Universal Covering): Let X be a connected, locally pathconnected and simply connected and let x_{0} be a point of X. Then there is a universal cover $u:(\tilde{X}, \tilde{x}) \rightarrow\left(X, x_{0}\right)$.

This universal covering for X may be constructed. We denote

$$
\pi_{1}\left(x_{0}, x\right):=\left.\left\{c:[0,1] \rightarrow X \mid c(0)=x_{0}, c(1)=x\right\}\right|_{\{0,1\}},
$$

define \tilde{X} to be $\left\{\tilde{X}:=\left\{(x,[c]) \mid x \in X,[c] \in \pi_{1}\left(x_{0}, x\right)\right\}\right.$ and define $p: \tilde{X} \rightarrow X$, $(x,[c]) \mapsto x$. What remains to be done, and what requires some effort, is the construction of a topology on \tilde{X}. For a point $\tilde{x}=(x,[c])$ of \tilde{X}, and an open neighbourhood U of x, we want to define

$$
\tilde{U}:=\left\{\left(x^{\prime},\left[c^{\prime}\right]\right) \mid x^{\prime} \in U, c^{\prime}=c d\right\}
$$

where d lies in U, which is supposed to become an open neighbourhood of \tilde{x}. One can show that these \tilde{U} form the basis for some topology on \tilde{X} and that, with respect to this topology, \tilde{X} is path-connected and $p: \tilde{X} \rightarrow X$ is a covering.

To finally show that \tilde{X} is simply connected, suppose $w:[0,1] \rightarrow \tilde{X}$ is a path with $w(0)=w(1)=\tilde{x}_{0}=\left(x_{0}, \mathbf{x}_{0}\right)$ and consider the composition $\bar{w}:=p \circ w$. Then w is a lift of \tilde{w} with $w(0)=\tilde{x}_{0}$. The map $w^{\prime}:[0,1] \rightarrow \tilde{X}, t \mapsto\left(\bar{w}(t),\left.\bar{w}\right|_{[0,1]}\right)$ also is a lift of \bar{w} with $w^{\prime}(0)=\tilde{x}_{0}$ and thus $w=w^{\prime}$ which establishes the claim.

3 From Coverings to Groups and Back

In this section, we assume all coverings to be connected. Recall that a topological space X is said to be Hausdorff, if for any two distinct points x and y of X there are disjoint open neighbourhoods U of x and V of y.

Definition II.3.1 (Deck Group): Let $p: Y \rightarrow X$ be a covering. Then we denote
$\operatorname{Deck}(p):=\operatorname{Deck}(Y / X):=\{h: Y \rightarrow Y$ homeomorphism and $p \circ h=p\}$.
If for any two points y_{1} and y_{2}) with $p\left(y_{1}\right)=p\left(y_{2}\right)$ there is some h in $\operatorname{Deck}(Y / X)$ such that $h\left(y_{1}\right)=y_{2}$, then the covering p is called regular or normal.

Remark II.3.2 (Action of Deck Group): Let $p:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering. Consider the action $\rho: G:=\operatorname{Deck}(Y / X) \rightarrow \operatorname{Homeo}(Y)$ induced by application of homeomorphisms to points of Y. Then we have the following:
(i) The action is free, i.e. all non-trivial elements have no fixed point.
(ii) The action is properly discontinuous. This means that for any point y in Y there is a neighbourhood U such that $\#\{g \in G \mid(\rho(g))(U) \cap U \neq \varnothing\}$ is finite.
(iii) For a point x of X and its fibre $\mathcal{F}_{x}=p^{-1}(\{x\})$, the action ρ induces an action $\hat{\rho}: G=\operatorname{Deck}(Y / X) \rightarrow \operatorname{Perm}\left(\mathcal{F}_{x}\right)$, which is also free and thus in particular an embedding of groups.

Assertion (iii) holds because of the uniqueness of liftings described in Import II.2.5(i), Assertion (i) follows from (iii) and for (ii), we proceed as follows: For a point y of Y we choose a neighbourhood U such that $\left.p\right|_{U}: U \rightarrow p(U)$ is a homeomorphism. Hence, for every map h in $\operatorname{Deck}(p)$, we have $h(U) \cap U=\varnothing$.

Proposition II.3.3 (Proper Discontinuity via Coverings): Let X be a Hausdorff topological space and let $\rho: G \rightarrow \operatorname{Homeo}(X)$. Consider the projection map $p: X \rightarrow X / G=\{G x \mid x \in X\}$, where X / G carries the quotient topology. The covering p is free if and only if ρ is free and properly discontinuous.

The proof of this assertion will be left as an exercise on an upcoming Exercise Sheet.

Remark II.3.4 (... and Back): Let $p: Y \rightarrow X$ be a normal covering. Then there is one and only one homeomorphism $h: Y / \operatorname{Deck}(p) \rightarrow X$, such that $h \circ q=p$, where $q: Y \rightarrow Y / \operatorname{Deck}(p)$ is the quotient map. In this case, we thus have the following commutative diagram:

Proof: By the universal property of quotient space we obtain a continuous map $h: Y / \operatorname{Deck}(p) \rightarrow X$. As p is open and surjective, so is h. If $h\left(q\left(y_{1}\right)\right)=h\left(q\left(y_{2}\right)\right)$, then y_{1} and y_{2} belong to the same orbit under the action of $\operatorname{Deck}(p)$, i.e. they belong to the same equivalence class, which is to say that $\left.q\left(y_{1}\right)=q\left(y_{2}\right)\right)$. Hence, h is injective.

Proposition II.3.5 (Deck Group of Universal Covering): Any universal covering $u:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ is normal. Moreover, $\operatorname{Deck}(u)=\pi_{1}\left(X, x_{0}\right)$.

We give a sketch of a proof. First, we show that the universal covering is normal. Let therefore \tilde{x} and \tilde{x}^{\prime} be points in the fibre of x_{0}. Then the existence of a suitable map $h:(\tilde{X}, \tilde{x}) \rightarrow\left(\tilde{X}, \tilde{x}^{\prime}\right)$ in the diagram

follows more or less directly from the universal property of our universal covering. It can be shown that h is indeed a homeomorphism, as desired.

To compute the Deck group, we make use of the simple connectedness of \tilde{X}. We define a group homomorphism

$$
\alpha_{1}: \operatorname{Deck}(u) \longrightarrow \pi_{1}\left(X, x_{0}\right), \quad h \longmapsto[p(\tilde{c})],
$$

where \tilde{c} is any path from \tilde{x}_{0} to $h\left(\tilde{x}_{0}\right)$. Convince yourself that this yields a well-defined map! To establish an isomorphism, we give an inverse map to α_{1}, namely

$$
\alpha_{2}: \pi_{1}\left(X, x_{0}\right) \longrightarrow \operatorname{Deck}(\tilde{X} / X), \quad[c] \longmapsto h,
$$

where h is the unique Deck transformation (as the Deck group acts freely) which is determined by mapping the starting point of the unique lift $\tilde{c}_{x_{0}}$ of c in x_{0} to its end point. Verification of the homomorphism properties of α_{1} and α_{2} and verification of them being inverse to each other will be the content of Exercise 4 on Exercise Sheet 7.

Theorem 7 (Principal Theorem of Covering Theory): Suppose X is a connected, locally path-connected and semi-locally simply connected and suppose x_{0} is a base point of X. Furthermore, let $u:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a universal covering. Denote

$$
\text { TopCov }:=\left\{p:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right) \mid p \text { covering }, Y \text { connected, } Y \neq \varnothing\right\} / \sim
$$

where p_{1} and p_{2} are related if there is a homeomorphism $h:\left(Y_{1}, y_{0}^{(1)}\right) \rightarrow\left(Y_{2}, y_{0}^{(2)}\right)$ with $p_{2} \circ h=p_{1}$, and let $\operatorname{Sg} \pi:=\{U \leq \operatorname{Deck}(u)\}$.
(i) We have the following bijections, which are inverse to each other:

$$
\psi_{1}: \operatorname{TopCov} \longrightarrow \operatorname{Sg} \pi, \quad\left[p:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)\right] \longmapsto \operatorname{Deck}(\tilde{p})
$$

where $\tilde{p}:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow\left(Y, y_{0}\right)$ with $p \circ \tilde{p}=u$, and

$$
\psi_{2}: \operatorname{Sg} \pi \longrightarrow \text { TopCov, } \quad U \longmapsto[p: \tilde{X} / U \rightarrow X,[\tilde{x}] \mapsto u(\tilde{x})] .
$$

(ii) For two coverings $p_{1}:\left(Y_{1}, y_{0}^{(1)}\right) \rightarrow\left(X, x_{0}\right)$ and $p_{2}:\left(Y_{2}, y_{0}^{(2)}\right) \rightarrow\left(X, x_{0}\right)$ we have the following: There is a unique homeomorphism $h: Y_{1} \rightarrow Y_{2}$ such that $p_{2} \circ h=p_{1}$ if and only if $\operatorname{Deck}\left(\tilde{p}_{1}\right)$ is conjugated to $\operatorname{Deck}\left(\tilde{p}_{2}\right)$.
(iii) A covering $p \in \operatorname{TopCov}$ is normal if and only if $\operatorname{Deck}(p)$ is a normal subgroup of $\operatorname{Deck}(u)$. In this case, $\operatorname{Deck}(p) \cong \operatorname{Deck}(u) / \operatorname{Deck}(\tilde{p})$.

Proof: (i) Check that ψ_{1} is well-defined and that ψ_{1} and ψ_{2} are inverse to each other.
(ii) " $\Longleftarrow "$: Consider the diagram

The map h lifts to $\tilde{h}:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow\left(\tilde{X}, \tilde{x}_{0}\right)$, hence we obtain a group homomorphism $h_{*}: \operatorname{Deck}\left(\tilde{p}_{1}\right) \rightarrow \operatorname{Deck}\left(\tilde{p}_{2}\right)$ defined by $\sigma_{1} \mapsto \tilde{h} \circ \sigma_{1} \circ \tilde{h}^{-1}$. As \tilde{h} is a homeomorphism, h_{*} is an isomorphism.
" ": Consider the same diagram as above. For $\tilde{h} \in \operatorname{Deck}(u)$ is holds $\operatorname{Deck}\left(\tilde{p}_{2}\right)=\tilde{h} \circ \operatorname{Deck}\left(\tilde{p}_{1}\right) \circ \tilde{h}^{-1}$. We claim that \tilde{h} descend to some homeomorphism $h: Y_{1} \rightarrow Y_{2}$ for which then holds $p_{2} \circ h=p_{1}$.

To show that \tilde{h} descends as desired, let a and b be points of \tilde{X} with $\tilde{p}_{1}(a)=$ $\tilde{p}_{1}(b)$. Hence, there is some σ in $\operatorname{Deck}\left(\tilde{p}_{1}\right)$ such that $\sigma(a)=b$. For $\widehat{\sigma}:=\tilde{h} \sigma \tilde{h}^{-1}$ in $\operatorname{Deck}\left(\tilde{p}_{2}\right)$ it holds

$$
\widehat{\sigma}(\tilde{h}(a))=\tilde{h}(\sigma(a))=\tilde{h}(b),
$$

which just means that $\tilde{p}_{2}(h(a))=\tilde{p}_{2}(h(b))$. Therefore, \tilde{h} descends. Observe that \tilde{h} descends to a map from Y_{1} to Y_{2} if and only if $\tilde{h} \circ \operatorname{Deck}\left(\tilde{p}_{1}\right) \circ \tilde{h}^{-1}=\operatorname{Deck}\left(\tilde{p}_{2}\right)$.
(iii) The "if and only if"-part follows directly from (ii). If p is normal, by (ii) we obtain a map $\operatorname{Deck}(u) \rightarrow \operatorname{Deck}(p)$ that maps \tilde{h} to its descend h. This map is a group homomorphism and its kernel is precisely $\operatorname{Deck}((\tilde{p})$. Furthermore, it is surjective since any homeomorphism can be lifted. Thus $\operatorname{Deck}(p) \cong \operatorname{Deck}(u) / \operatorname{Deck}(\tilde{p})$.

Definition II.3.6 (Monodromy Map): Let $p:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a covering of finite degree d and let $\mathcal{F}_{x_{0}}:=p^{-1}\left(x_{0}\right)$. The map

$$
m: \pi_{1}\left(X, x_{0}\right) \longrightarrow \operatorname{Sym}\left(\mathcal{F}_{x_{0}}\right) \leftrightarrow S_{d}, \quad[c] \longmapsto(y \mapsto y \cdot[c]),
$$

where $y \cdot[c]$ is the endpoint of the unique lift \tilde{c}_{y} of c in y in the fibre of $\mathcal{F}_{x_{0}}$, is called monodromy map. It is an anti-grouphomomorphism, i.e. for paths c_{1} and c_{2} it holds $m\left(\left[c_{1}\right] \star\left[c_{2}\right]\right)=m\left(\left[c_{2}\right]\right) \circ m\left(\left[c_{1}\right]\right)$. The image of m in S_{d} is called monodromy group.

Example II.3.7: Let $G=S_{3}$ and consider the following cover:

Sketch missing

Observe that p is a normal covering. The monodromy map $m: \pi_{1}\left(T^{*}\right) \cong$ $F_{2}(x, y) \rightarrow S_{6}$ is determined by $x \mapsto(123)(456)$ and $y \mapsto(14)(26)(35)$. Do be careful; as noted before, m is an anti-homomorphism.

Remark II.3.8 (Normal Coverings): Let $p:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a normal cover and denote $G=\operatorname{Deck}(p)$. We identify elements h of G with elements in the fibre $\mathcal{F}_{x_{0}}$ by $h \mapsto h\left(y_{0}\right)$.
(i) Firstly, we have the natural action of $\operatorname{Deck}(p)$ on $\mathcal{F}_{x_{0}} \leftrightarrow G$, namely $\rho: G \rightarrow \operatorname{Sym}\left(\mathcal{F}_{x}\right)$, which maps h to $(y \mapsto h(y))$. Identifying $\operatorname{Sym}\left(\mathcal{F}_{x_{0}}\right)$ with $\operatorname{Sym}(G)$, this idenfitication looks like $h \mapsto h \circ g$, where we use that if $g\left(y_{0}\right)=y$, then $h \circ g\left(y_{0}\right)=h(y)$. Hence, by this identification, the action of G becomes the action of G by G via leftmultiplication.
(ii) Secondly, we have the right-action $m: \pi_{1}\left(X, x_{0}\right) \rightarrow \operatorname{Sym}(G)$ by monodromy. By Theorem 6 and Theorem 7 (iii), for any universal cover $u:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow$ (X, x_{0}) we obtain

$$
\pi_{1}\left(X, x_{0}\right) \xrightarrow{\sim} \operatorname{Deck}(u) \xrightarrow{\text { quotientmap }} \operatorname{Deck}(p) \cong \operatorname{Deck}(u) / \operatorname{Deck}(\tilde{u})=G
$$

Observe that the following diagram commutes:

where the upwards arrow is the action by right multiplication $h \mapsto(g \mapsto g h)$.

4 The Hyperbolic Plane

We consider the upper half plane $\mathbb{H}:=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$. On this topological space, we want to declare a metric. Originally this space was cooked up as a counter example to the parallel postulate contained in the Euclidean axioms. It turned out to be useful for other purposes, too. The Hyperbolic Plane is biholomorphic to the universal coverings of "almost all" Riemann surfaces. As a literature suggestion, one might consider "Fuchsian Groups" by Svetlana Katch.

Facts II.4.1 (Hyperbolic Metric): Let $c:[a, b] \rightarrow \mathbb{H}$ be a piecewise differentiable curve and for $t \in[a, b]$, write $c(t)=x(t)+\mathrm{i} y(t)$ with suitable real numbers $x(t)$ and $y(t)$. Then

$$
\ell(c):=\int_{a}^{b} \frac{\left|c^{\prime}(t)\right|}{y(t)} d t=\int_{a}^{b} \frac{1}{y(t)} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

is called the hyperbolic length of c.

For points z and w of \mathbb{H}, we call
$d_{\mathbb{H}}(z, w):=\inf \{\ell(c) \mid c:[a, b] \rightarrow \mathbb{H}$ piecewise differentiable, $c(a)=z, c(b)=w\}$
the hyperbolic distance of z and w. The corresponding map $(z, w) \mapsto d_{\mathrm{H}}(z, w)$ is called hyperbolic metric, and indeed is a metric.

Example II.4.2 (Lengths of Special Curves): (i) The curve $c_{b}:[0,1] \rightarrow \mathbb{H}$, $t \mapsto b \mathrm{i}+t$ has derivative $c_{b}^{\prime}: t \mapsto 1$. For this curve, the notation from above and any point t in $[0,1]$, we naturally have $x(t)=t$ and $y(t)=b i$. The length of this curve is

$$
\ell\left(c_{b}\right)=\int_{0}^{1} \frac{\left|c^{\prime}(t)\right|}{y(t)} d t=\int_{0}^{1} \frac{1}{b} d t=\left[\frac{1}{b} t\right]_{0}^{1}=\frac{1}{b} .
$$

Observe that this length tends to zero, when b gets arbitrarily large, and that this length becomes arbitrarily long, when b tends to zero.
(ii) Let a be a real number greater than one and let $c_{a}:[1, a] \rightarrow \mathbb{H}, t \mapsto t$. Then

$$
\ell\left(c_{a}\right)=\int_{1}^{a} \frac{|\mathrm{i}|}{a} d t=\int_{1}^{a} \frac{1}{t} d t=[\ln (t)]_{1}^{a}=\ln (a)
$$

(iii) For an arbitrary differentiable path $\widehat{c}_{a}:[0,1] \rightarrow \mathbb{H}$ with $\widehat{c}_{a}(0)=\mathrm{i}$ and $\widehat{c}_{a}(1)=\mathrm{i} a$, we have

$$
\begin{aligned}
\ell\left(\widehat{c}_{a}\right) & =\int_{0}^{1} \frac{1}{y(t)} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \\
& \geq \int_{0}^{1} \frac{\left|y^{\prime}(t)\right|}{y(t)} d t \geq \int_{0}^{1} \frac{y^{\prime}(t)}{y(t)} d t=[\ln (y(t))]_{0}^{1}=\ln (a)-\ln (1)=\ln (a)
\end{aligned}
$$

From (ii) and (iii) it follows for $a>1$ that $d_{\mathrm{H}}(i, a \mathrm{i})=\ln (a)$. In the same way, $d_{\mathrm{H}}(\mathrm{i}, a \mathrm{i})=\ln (1 / a)$ for $a<1$. In particular, the curve from c_{a} from (ii) is a geodesic.

Without further explanation, we want to raise awareness that the path from (i) is not geodesic.

Example II.4.3 (The Three Graces): Consider the following maps $\gamma: \mathbb{H} \rightarrow \mathbb{H}$:
(i) For a real number r, let $\gamma: z \mapsto z+r$.
(ii) For a positive real number λ, let $\gamma: z \mapsto \lambda z$.
(iii) For an angle θ in $[0,2 \pi]$, let $\gamma: z \mapsto(\sin \theta z+\cos \theta)^{-1}(\cos \theta z-\sin \theta)$.

All three of those maps are isometries, which can easily be verified by computation. Observe that all of these maps are of the form $z \mapsto(c z+d)^{-1}(a z+b)$ for real numbers a, b, c, d, where $\operatorname{det}\left(\begin{array}{c}a \\ c \\ c \\ d\end{array}\right) \neq 0$. To be explicit, the corresponding matirces are

$$
\left(\begin{array}{ll}
1 & r \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
\lambda^{1 / 2} & 0 \\
0 & \lambda^{-1 / 2}
\end{array}\right), \quad\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

Proposition II.4.4 (Möbius Transformations as Isometries): The matrix group $\mathrm{Sl}_{2}(\mathbb{R})$ acts on \mathbb{H} via isometries by

$$
\alpha: \mathrm{Sl}_{2}(\mathbb{R}) \longrightarrow \operatorname{Isom}(\mathbb{H}), \quad A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \longmapsto \gamma_{A}: z \longmapsto \frac{a z+b}{c z+d}
$$

For the group $\mathrm{PSl}_{2}(\mathbb{R}):=\mathrm{Sl}_{2}(\mathbb{R}) /\{ \pm I\}$ the group action α induces an action $\bar{\alpha}: \mathrm{PSl}_{2}(\mathbb{R}) \rightarrow \operatorname{Isom}(\mathbb{H}),[A] \mapsto \gamma_{A}$ and $\bar{\alpha}$ is faithful (i.e. injective).

Proof: Firstly, we have to check that α is indeed a group homomorphism. For this, observe that $\mathrm{Sl}_{2}(\mathbb{R})$ is generated by the special matrices

$$
\left\{\left(\begin{array}{ll}
1 & r \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
\lambda^{1 / 2} & 0 \\
0 & \lambda^{-1 / 2}
\end{array}\right),\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\right\} .
$$

This is essentially seen from Gaussian elimination with extra care for $\mathrm{Sl}_{2}(\mathbb{R})$. Once one has shown that, the claim follows from II.4.3.

Secondly, as γ_{-I} acts trivially, the induced action $\bar{\alpha}$ is well-defined. A complex number z is a fixed point of $\gamma_{A}: z \mapsto(a z+b) /(c z+d)$ if and only if $c z^{2}+d z=a z+b$. If $a=d=1$ and $b=c=0$ or if $a=d=-1$ and $b=c=0$, the equation degenerates and has the whole of \mathbb{C} as solution set. Otherwise, this equation has at most two solutions. From these considerations, one can draw the conclusion that $\bar{\alpha}$ is faithful.

Observe that the proof of (ii) shows that for any $A \neq \pm I$, the corresponding Möbius transform γ_{A} has at most two fixed points.

Facts II.4.5 (Möbius Transforms are Great): The action of $\mathrm{PSl}_{2}(\mathbb{C})$ acts on the Riemann sphere $\mathbb{C} \cup\{\infty\}$, which may be identified with $\mathbb{P}^{1}(\mathbb{C})$.
(i) The group $\mathrm{PSl}_{2}(\mathbb{C})$ acts 3 -transitively on $\mathbb{P}^{1}(\mathbb{C})$, i.e. for 3 different points z_{1}, z_{2}, z_{3} in $\mathbb{P}^{1}(\mathbb{C})=\widehat{\mathbb{C}}$ there is one and only one σ in $\mathrm{PSl}_{2}(\mathbb{C})$ such that $\sigma(0)=z_{1}, \sigma(1)=z_{2}$ and $\sigma(\infty)=z_{3}$.
(ii) Möbius transformations map generalised circles to generalised circles. By generalised circle, we mean an Euclidean circle in \mathbb{R}^{2} or a line in \mathbb{R}^{2}.
(iii) Möbius transformations preserve angles between generalised circles.
(iv) For pairwise distinct points z_{1}, z_{2}, z_{3} and z_{4} on the Riemann sphere, we call

$$
\left(z_{1}, z_{2} ; z_{3}, z_{4}\right):=\frac{\left(z_{1}-z_{4}\right)\left(z_{3}-z_{2}\right)}{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}
$$

the cross ratio of z_{1}, z_{2}, z_{3} and z_{4}. For γ in $\mathrm{PSl}_{2}(\mathbb{C})$ it holds

$$
\left(\gamma\left(z_{1}\right), \gamma\left(z_{2}\right) ; \gamma\left(z_{3}\right), \gamma\left(z_{4}\right)\right)=\left(z_{1}, z_{2} ; z_{3}, z_{4}\right) .
$$

Corollary II.4.6 (Conclusions for $\mathrm{PSl}_{\mathbf{2}}(\mathbb{R})$): (i) If $[A]$ belongs to $\mathrm{PSl}_{2}(\mathbb{R})$, then $\gamma_{A}(\mathbb{R} \cup\{\infty\})=\mathbb{R} \cup\{\infty\}$, hence $\gamma_{A}(\mathbb{H})=\mathbb{H}$.
(ii) The group $\mathrm{PSl}_{2}(\mathbb{R})$ acts 3-transitively on $\mathbb{R} \cup\{\infty\}$, i.e. for any real numbers $r_{1} \leq r_{2} \leq r_{3} \leq \infty$ there is one and only one $[A]$ in $\operatorname{PSl}_{2}(\mathbb{R})$ such that $\gamma_{A}(0)=r_{1}, \gamma_{A}(1)=r_{2}$ and $\gamma_{A}(\infty)=\infty$.

For (i), check that $\operatorname{det}(A)=1$ enforces $\gamma_{A}(\mathrm{i})$ to belong to \mathbb{H}.
Proposition II.4.7 (Geodesics): (i) For distinct points z_{1} and z_{2} in \mathbb{H} there is a unique geodesic through z_{1} and z_{2}.
(ii) Geodesics are of the following form: Type 1: Vertical line, Type 2: Semi-circle through both points with midpoint on real line.
(iii) For any distinct points z_{1} and z_{2} of \mathbb{H}, we can calculate their distance using the cross-ratio using the start point a and the end point b of the unique geodesic joining them:

$$
d_{\mathrm{H}}\left(z_{1}, z_{2}\right)=\left|\ln \left(a, z_{1} ; b, z_{2}\right)\right| .
$$

(iv) For any geodesic g and a point P that does not lie on g, there are infinitely many geodesics h parallel to g through P. Here, parallel means $g \cap h=\varnothing$.

Using II.4.2 and II.4.5 these assertions can be shown.
Proposition II.4.8 (Return of the Three Graces): (i) Let $\gamma_{A}: z \mapsto z+t$, whose matrix is $A=\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$ and let $\langle A\rangle$ act on \mathbb{H}. The fundamental domain of this action is the rectangle above the line from $(-t / 2,0)$ to $(t / 2,0)$. The fixed point of γ_{A} is ∞ and $|\operatorname{tr}(A)|=2$.
(ii) Let $\gamma_{A}: z \mapsto \lambda^{2} z$ with $A=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$. The fixed points of this map are $\{0, \infty\}$ and $|\operatorname{tr}(A)|=\lambda+\lambda^{-1}>2$.
(iii) Let $\gamma_{A}: z \mapsto(\cos \theta z-\sin \theta) /(\sin \theta z+\cos \theta)$. The fixed points of this map are $\{ \pm \mathrm{i}\}$ and $|\operatorname{tr}(A)|=2|\cos \theta|<2$.

Facts II.4.9: Every A in $\mathrm{PSl}_{2}(\mathbb{C})$ is conjugated to one of the three graces.
This follows directly from the properties of the Jordan Normal Form over the reals.

Definition II.4.10 (The Three Types): Let $[A] \in \operatorname{PSl}_{2}(\mathbb{R})-\{ \pm I\}$.
(i) If $[A]$ is conjugated to $\left[\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)\right]$ for some $\lambda>1$, then $[A]$ is called hyperbolic. This is the case if and only if $|\operatorname{tr}(A)|>2$ respectively if and only if there are two fixed points in $\mathbb{R} \cup\{\infty\}$.
(ii) If $[A]$ is conjugated to $\left[\left(\begin{array}{cc}1 & t \\ 0 & 1\end{array}\right)\right]$ for some real number t, then $[A]$ is called parabolic. This is the case if and only if $|\operatorname{tr}(A)|=2$ respectively if and only if there is one fixed point in $\mathbb{R} \cup\{\infty\}$.
(iii) If $[A]$ is conjugated to $\left[\left(\begin{array}{c}\cos \theta-\sin \theta \\ \sin \theta \\ \cos \theta\end{array}\right)\right]$, then $[A]$ is called elliptic. This is the case if and only if $|\operatorname{tr}(A)|<2$ respectively if and only if there is one fixed point in H .

Chapter III

Growth of Groups

Definition III.0.1: Let G be a group and let S be a set of generators. Then the assignment

$$
|g|_{S}:=\min \left\{n \mid g=s_{1} \cdots s_{r}, s_{i} \in S \cup S^{-1}\right\}
$$

defines a norm on G. Using this norm, $\gamma_{G, S}(n):=\left\{\left.g| | g\right|_{S} \leq n\right\}$ declares the so-called growth function and $\Sigma_{G, S}(z)=\sum_{g \in G} z^{|g|} \in \mathbb{Z}[[X]]$ declares the so-called growth series.

Obviously, for the norm it hols $|g|=0$ if and only if $g=1$ as well as $|g|=\left|g^{-1}\right|$ and $|g h| \leq|g|+|h|$. As usual, the norm induces a metric via $d(g, h)=\left|h^{-1} g\right|_{S}$. This metric is invariant under left translation. In fact, this metric is the distance on $\operatorname{Cay}(G, S)$.

For a natural number $n, \gamma_{G, S}(n)$ yields the volume of the radius n-ball in $\operatorname{Cay}(G, S)$.

Using formal manipulations, we may rewrite the growth series as

$$
\Sigma(z)=\sum_{n \geq 0}(\gamma(n)-\gamma(n-1)) z^{n}=(1-z) \sum_{n \geq 0} \gamma(n) z^{n} .
$$

Example III.0.2: (i) Let G be a finite group and let $S=G$. Then firstly $\gamma(0)=1$ and for any natural number n it holds $\gamma(n)=|G|$.
(ii) Let $G=\mathbb{Z} / r \mathbb{Z}$ and let $S=\{1\}$. Then $\gamma(n)=\min \{r, 2 n+1\}$ and we obtain distinct values for $n \in\{0,1, \ldots,\lfloor r / 2\rfloor\}$.
(iii) Let G be a subgroup of S_{54}, which is the symmetry group of the Rubiks cube, together with the generating permutations that are executable on the Rubiks cube. One knows that for any $n \geq 19$ it holds $\gamma(n)=|G|$ and 19 is optimal.
(iv) Let $G=\mathbb{Z}$ and let $S=\{1\}$. For the natural number n, one has as in (ii) that $\gamma(n)=2 n+1$. The corresponding growth series is $\Sigma(z)=(1+z) /(1-z)$.
(v) Let again $G=\mathbb{Z}$ and let $S=\{2,3\}$. Intuitively, we should arrive at something like $\gamma(n) \approx 6 n$. Drawing an instructive picture, one can read off the beginnings of the growth series to be $\Sigma=1+4 z+8 z^{2}+6 z^{3}+6 z^{4}+\ldots$ which equals $\left(1+3 z+4 z^{2}-z^{3}\right) /(1-z)$.
(vi) Let $G=\mathbb{Z}^{2}$ and $S=\left\{ \pm(1,0)^{t}, \pm(0,1)^{t}\right\}$. The corresponding Cayley graph is the standard paper grid. Evaluating the growth function at the natural number n gives $\gamma(n)=\sum_{i=0}^{n} 4 i=1+2 n+n^{2}$. This yields the growth series $\Sigma(z)=(1+z)^{2} /(1-z)^{2}$.

In the following, for a set of generators S that may be embedded into an \mathbb{R}^{d}, we denote by $\operatorname{Conv}(S)$ the convex hull of S in \mathbb{R}^{d}.

Proposition III.0.3: Let G be \mathbb{Z}^{d} together with generating set S. Then for the growth function we have $\gamma(n) \sim n^{d} \operatorname{vol}(\operatorname{Conv}(S))$.

Proof: Up to order n^{d-1} we have

$$
\gamma(n)=\#\left\{x \in \mathbb{Z}^{d} \mid x \in n S\right\} \sim \#\left\{\left.x \in \frac{1}{n} \mathbb{Z}^{d} \right\rvert\, x \in \operatorname{Conv}(S)\right\}
$$

which converges to $n^{d} \operatorname{vol}(\operatorname{Conv}(S))$.
As an exercise, study the example $G=\mathbb{Z}^{2}$ and $S=\{-1,0,1\}^{2}$, i.e. compute growth function and series and check the claim of the above proposition. Additionally, study $G=\mathbb{Z}^{2}$ with the generating set $S=\{(1,0),(0,1),(-1,-1)\}$ without inverses!

Theorem 8: Let G be an abelian group and let S be a finite generating set. Then the growth series $\Sigma_{G, S}$ is a rational function.

Proof: Consider the group ring $\mathbb{C} G$ consisting of elements of the form $\sum_{g \in G} \alpha_{g} g$. Then we may declare a grading on $\mathbb{C} G$ by $\operatorname{deg}(g)=|g|_{S}$, yielding subvectorspaces $F_{n}=\left\{\left.g| | g\right|_{S} \leq n\right\}$. The direct $\operatorname{sum} A=\bigoplus_{n \geq 0} F_{n} / F_{n-1}$ is again a ring with basis G and in A we have

$$
g \cdot h= \begin{cases}g h, & \text { if }|g h|=|g|+|h| \\ 0, & \text { if }<\end{cases}
$$

In summary, A is associative, commutative, graded and generated in degree 1 and finite in degree 1. Opening a book on commutative algebra confronts us
with the following fact: "If A is an associative, commutative, graded algebra generated in degree 1 and finite in degree 1, then its Hilbert series $H_{A}(z)=$ $\sum_{n \geq 0} \operatorname{dim}\left(A_{n}\right) z^{n}$ is rational and more specifically of the form $p(z) /(1-z)^{\alpha}$, where α denotes the number of generators of $A^{\prime \prime}$.

Lets prove the theorem we used in the above proof.
Assume $A=\left\langle x_{1}, \ldots, x_{d}\right\rangle$. We may look more generally at a finitely generated A-module M, which due to the grading of A were graded, i.e. we might decompose $M=\oplus_{n \geq 0} M_{n}$. For this module the same claim $H_{M}(z)=\sum_{n \geq 0} \operatorname{dim}\left(H_{n}\right) z^{n}$ holds, which we will show. In particular, the claim for A follows.

We show the claim via induction on the number of generators. For zero generators, M is clearly finite-dimensional. For the induction step, we consider the sequence

$$
\left\{y \in M \mid x_{d} y=0\right\}=\operatorname{ker}\left(\mu_{x_{d}}\right) \longrightarrow M \xrightarrow{\mu_{x_{d}}} M \longrightarrow \operatorname{coker}\left(\mu_{x_{d}}\right)=M / x_{d} M
$$

Then $\operatorname{ker}\left(\mu_{x_{d}}\right)$ is a finitely generated $\left\langle x_{1}, \ldots, x_{d-1}\right\rangle$-module and $\operatorname{coker}\left(\mu_{x_{d}}\right)$ is a finitely generated $\left\langle x_{1}, \ldots, x_{d-1}\right\rangle$-module, yielding a short exact sequence ... By the fundamental theorem of homomorphisms, this gives the formula $\sum_{n \geq 0}\left(\operatorname{dim} K_{n}-\operatorname{dim} M_{n}+\operatorname{dim} M_{n+1}-\operatorname{dim} C_{n+1}\right)$ for the involved dimensions, so also

$$
\sum_{n \geq 0}\left(\operatorname{dim} K_{n}-\operatorname{dim} M_{n}+\operatorname{dim} M_{n+1}-\operatorname{dim} C_{n+1}\right) z^{n}=0,
$$

and

$$
z H_{K}-z H_{M}+H_{M}-\operatorname{dim} M_{0}-H_{C}-\operatorname{dim} C_{0}
$$

yielding $H_{M}=(1-z)^{-1}\left(H_{C}-z H_{K}-\operatorname{dim} C_{0}+\operatorname{dim} M_{0}\right)$, which is of the desired form.

Theorem 9: If G is virtually abelian, i.e. there is an abelian subgroup of finite index, then for every finite generating set S, the growth series is also rational.

This statement is particularly interesting to crystallography.
Example III.0.4: Let d be a natural number and let G be the free group on d generators F_{d}. The corresponding growth function is given by $\gamma(n)=$ $1+2 d+2 d(2 d-1)+\cdots+2 d(2 d-1)^{n-1}$. By calculating differences, one obtains the growth series

$$
\Sigma=1+2 d z+2 d(2 d-1) z^{2}+\cdots=\frac{1+z}{1-(2 d-1) z}
$$

In fact, if for $G=\mathbb{Z}_{d}, F_{d}$ we don't chose a basis as generating set, we still end up with a rational growth function.

1 Amalgamated Products

In the following, let G be the amalgamated product of the groups A and B over C, i.e. we assume C is embedded in A and B. Further, we assume we have sets of generators S_{A}, S_{B} and S_{C} of A, B and C, respectively.

Definition III.1.1: Let C be a subgroup of A. If there is a subset T_{A} of A that is transversal for C such that for all c in C and t in T_{A} it holds $|c t|=|c|_{S_{C}}+|t|_{S_{A}}$, then the inclusion of C in A is called admissible.

Theorem 10: If the inclusions of C in A and C in B are admissible, then $G=\left\langle S_{G}=S_{A} \cup_{S_{C}} S_{B}\right\rangle$ has growth function

$$
\frac{1}{1 / \Sigma_{A}+1 / \Sigma_{B}-1 / \Sigma_{C}}
$$

Proof: For every element g of G there is a unique expression $g=c t_{1} t_{2} \cdots t_{n}$ for suitable $t_{2 i}$ in T_{A} and $t_{2 i+1}$ in T_{B} and c in C, all non-equal to 1 , except for the first or the last. Furthermore, this expression is geodesic, i.e. a word of shortest length. Hence

$$
\Sigma_{G}=\sum_{i \geq 1} \Sigma_{C} \Sigma_{T_{B}}\left(\left(\Sigma_{T_{A}}-1\right)\left(\Sigma_{T_{B}}-1\right)\right)^{n} \Sigma_{T_{A}} .
$$

Plugging in $\Sigma_{A}=\Sigma_{C} \Sigma_{T_{A}}$ yields the claim.
Consider a surface of genus $g=2$ with the three components X, Y and Z obtained from cutting off half doughnuts at the ends, where Z is the remaining middle part and the cut off pieces are $X-Z$ and $Y-Z$. Then $\pi_{1}(Z)=\pi_{1}\left(\mathbb{S}^{4}-\right.$ 4 discs), which is isomorphic to F_{3}, and which has 4 generators. Furthermore, $\pi_{1}(X), \pi_{1}(Y) \cong F_{3}$ with 5 generators. The growth series is

$$
\Sigma_{A}=\Sigma_{B}=\frac{(1+z)^{2}}{1-8 z+z^{2}} .
$$

We believe that the inclusions of $\pi_{1}(Z)$ in $\pi_{1}(X)$ and $\pi_{1}(Y)$ are admissible.
By induction, one shows that for a surface S_{g} of genus g with the generators chosen as above, one gets

$$
\frac{(1+z)^{2}}{1-(8 g-6) z+z^{2}}
$$

Evaluating the analytic continuation of the growth function at 1 often yields the Euler characteristic of the considered space. This is always the case in our zoo of examples up to now.

2 Heisenberg Group

Definition III.2.1: The set

$$
H=\left\{\left(\begin{array}{lll}
1 & a & b \\
& 1 & c \\
& & 1
\end{array}\right): a, b, c \in \mathbb{Z}\right\}
$$

is called Heisenberg group.
A possible generating set of H is given by

$$
u=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad v=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

and their commutator is

$$
w=[u, v]=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We may write $H=\langle u, v \mid[[u, v], v]=[[u, v], u]=1\rangle$. Every element of H my uniquely be expressed as $g=u^{k} v^{\ell} w^{m}$. This product produces the matrix

$$
u^{k} v^{\ell} w^{m}=\left(\begin{array}{ccc}
1 & k & m \\
0 & 1 & \ell \\
0 & 0 & 1
\end{array}\right)
$$

Theorem 11: For g with entries k, ℓ, m as above it holds $\max \{|k|+|\ell|, \sqrt{|m|}\} \leq$ $|g| \leq|k|+|\ell|+6 \sqrt{|m|}$.

This can be shown using $\left[u^{k}, v^{\ell}\right]=w^{k \ell}$, which implies $\left|w^{m^{2}}\right| \leq 4 m$. This equality is best validated using the following trick: By definition, $[g, h]=$ $g^{-1} h^{-1} g h$, hence
$[g, h]-I=g^{-1} h^{-1} g h-I=g^{-1} h^{-1}(g h-h g)=g^{-1} h^{-1}((g-I)(h-I)-(h-I)(g-I))$
The product on the right is most easily evaluated, especially in our case.
From these simple calculations, we can already see that the growth function γ of H roughly behaves like n^{4}.
For understanding the growth series, we need to understand geodesics.

Theorem 12 (Stoll): Let G be the Heisenberg group H with the standard generators. Then Σ_{G} is rational.

This result has recently been improved by Duchin and Shapiro: In fact, the growth series Σ_{G} is rational for any set of generators of the Heisenberg group.

Let $k \geq 2$ be an integer. Then

$$
H_{k}=\left(\begin{array}{ccccc}
1 & z_{1} & \cdots & z_{k-1} & z_{k} \\
& & & & z_{k+1} \\
& & & & \vdots \\
& & & & z_{2 k} \\
& & & & 1
\end{array}\right)=\left\langle u_{i}, v_{i}\right|\left[u_{i}, v_{i}\right]=w,\left[u_{i}, v_{j}\right]=1,\left[u_{i}, u_{j}\right]=1,\left[v_{i}, v_{j}\right]=1 \forall i
$$

Theorem 13: If $k \geq 3$, then the growth series with respect to the generators u_{i} and v_{i} is rational and with respect to u_{i}, v_{i} and w are transcendental.

3 Growth Functions

For a given group G with set of generators S, we defined the growth function of this group with respect to S to be the function $\gamma: \mathbb{N} \rightarrow \mathbb{N}$ declared via

$$
\gamma_{G, S}(n)=\# B_{G, S}(1, n)=\#\left\{\left.g \in G| | g\right|_{S} \leq n\right\}
$$

Definition III.3.1: Let $\gamma, \delta: \mathbb{N} \rightarrow \mathbb{N}$ be functions. If there is a constant $C>0$ such that for any natural number n it holds $\gamma(n) \leq \delta(C n)$, we write $\gamma \precsim \delta$ and say γ was dominated by δ. If it holds $\gamma \precsim \delta \precsim \gamma$, we say γ and δ were equivalent.

Proposition III.3.2: Let G be a group. If S and S^{\prime} are generating sets for G, then $\gamma_{G, S} \sim \gamma_{G, S^{\prime}}$.

Proof: The finite set S is bounded with respect to the norm generated by S^{\prime}, i.e. there is some constant $C>0$ such that $S \subseteq B_{G, S^{\prime}}(1, C)$. Now we have

$$
\left.\gamma_{G, S}(n)=\#\left(S \cup S^{-1}\right)^{n}\right) \leq \#\left(B_{G, S^{\prime}}(1, C)^{n}\right) \leq \# B_{G, S^{\prime}}(1, C n)=\gamma_{G, S^{\prime}}(C, n)
$$

which means that $\gamma_{G, S} \precsim \gamma_{G, S^{\prime}}$. Switching roles gives the other domination.

Definition III.3.3: Let G be a group. Then we write $\gamma_{G}=\left[\gamma_{G, S}\right]_{\sim}$ for any generating set S for G and call it the growth function of G.

Example III.3.4: We have already seen that $\gamma_{\mathbb{Z}^{d}}=\left[n^{d}\right]$. If $d \neq e$, then $n^{d} \nsim n^{e}$. Also, we have seen that $\gamma_{T_{n}}=\gamma_{F_{d}}=\left[(2 d-1)^{n}\right]$, but unfortunately $\left[(2 d-1)^{n}\right]=\left[2^{n}\right]=\left[e^{n}\right]$. Hence, we lost a lot of information by passing to the growth function independent of generating set. For the Heisenberg group H_{3}, we calculated the growth function $\gamma_{H_{3}}=\left[n^{4}\right]$.

For the remaining weeks, we will concern ourselves with the search of examples of groups with growth function outside of the families constant functions (finite groups), polynomials (powers of \mathbb{Z}) and exponential functions (like free groups).

Furthermore, we will try to answer what it means for a group to have a specific growth function.

Similar questions where posed by Milner in Problem 5603 in American Mathematics Monthly. Groups "between" powers of \mathbb{Z} and free groups are now called groups of intermediate growth, groups that have growth functions n^{d} are said to be of polynomial growth.

He conjectured that if G has polynomial growth, then there is a finite index subgroup G_{0} of G, which is nilpotent. Such groups are called virtually nilpotent and this conjecture has since been shown by Gromov in 1985.
Furthermore, the mathematician Grigorchuk constructed groups of intermediate groups in 1983.

Proposition III.3.5: Let G be a group. If H is a subgroup of G, then $\gamma_{H} \precsim \gamma_{G}$. If N is a normal subgroup of G, then $\gamma_{G / N} \precsim \gamma_{G}$.

Proof: Let S be a generating set for G and let T be a generating set for H. Without loss of generality, we may assume that T is contained in S, which immediately yields $\gamma_{H, T}(n) \leq \gamma_{G, S}(n)$ for any natural number n. Also, $\gamma_{G / N, S / N}(n) \leq \gamma_{G, S}(n)$.

If time permits, we will later show that for an infinite group G and a subgroup H of G with finite index, it holds $\gamma_{G} \sim \gamma_{H}$.

4 Quasi-Isometries

Definition III.4.1: Let X and Y be metric spaces and let $\varphi: X \rightarrow Y$ be a map. If there are positive constants λ and C such that for any x, x^{\prime} in X it hlds

$$
\frac{1}{\lambda}\left|x-x^{\prime}\right|-C \leq|\varphi(x)-\varphi(y)| \leq \lambda\left|x-x^{\prime}\right|+C
$$

then we call it quasi-isometric embedding. If, additionally, there is a positive constant D such that for any y in Y we have $|y-\varphi(X)| \leq D$, then we call φ
an quasi-isometry. If there is a quasi-isometry between X and Y, we call them quasi-isometric and write $X \sim_{Q_{\text {QI }}} Y$.

From the definition it is not entirely clear if quasi-isometry is symmetric. As an exercise, one can show that $\varphi: X \rightarrow Y$ is a quasi-isometry, if there are positive constants λ, C, D and a map $\psi: Y \rightarrow X$ with

$$
\left|\varphi(x)-\varphi\left(x^{\prime}\right)\right| \leq \lambda\left|x-x^{\prime}\right|+C, \quad|\psi(y)-\psi(x)| \leq \lambda\left|y-y^{\prime}\right|
$$

and $|\psi(\varphi(x))-x| \leq D,|\varphi(\psi(y))-y| \leq D$. To be clear: This does require the axiom of choice.

Example III.4.2: (i) If X is a metric space with finite diameter, then X is quasi-isometric to a point.
(ii) Let G be a group with generating set S and metric $|\cdot|_{S}$. We may embed G into its Cayley graph $\operatorname{Cay}(G, S)$ and this embedding is a quasi-isometry.
(iii) The inclusion of the integers into the real numbers is a quasi-isometry.
(iv) Let G be a group with generating sets S and S^{\prime}. Then id: $\left(G,|\cdot|_{S}\right) \rightarrow$ $\left(G,|\cdot|_{S^{\prime}}\right)$ is a quasi-isometry. In fact, the identity is bilipschitz.
(v) Let G be a finitely generated group and let $\alpha: G \rightarrow G$ be an automorphism. Then $\alpha:\left(G,|\cdot|_{S}\right) \rightarrow\left(G,\left.|\cdot|\right|_{S}\right)$ is a quasi-isometry. This can be seen by the same argument which shows (iv).
(vi) Let H be a subgroup of G with generating sets T for H and S for G. Is the inclusion $H \hookrightarrow G$ a quasi-isometry? If H is finite, then we are golden because a point always embeds.

If H is of finite index in G, then G and H will be quasi-isometric. This can be seen from the characterisation of quasi-isometry given in the exercise above. The first inequality follows for $\lambda=1$ and $C=0$, because we may assume that the generating set T is contained in S and thus an S-word is at most as long as the corresponding T-word. For the second inequality, we may find a finite set X in G such that $G=H X$. Then $\psi(g)=\psi(h x)=h$. Now this map ψ does the job.
If G is the Heisenberg group and H is the centre of G, then H does not embed quasi-isometrically. For the element $h:=\sum_{i=1}^{3} E_{i i}+E_{13}$ we had in H that $|h|_{H}=n$, but $|h|_{G} \sim|n|^{1 / 2}$.

Proposition III.4.3: Let G be a finitely generated group. Then G has a unique quasi-isometric class of word metrics.

This was discussed in example (iii) from above.
As an exercise, one can show the following: If N is a finite normal subgroup of G, then $G \rightarrow G / N$ is a quasi-isometry.

Definition III.4.4: Let $\gamma, \delta:[0, \infty) \rightarrow[0, \infty)$ be non-decreasing functions. If there are constants λ and C such that $\gamma(n) \leq \lambda \delta(\lambda n+c)+c$, we say γ is weakly dominated by δ, denotes $\gamma \precsim w \delta$. If it holds $\gamma \precsim w \delta \precsim_{w} \gamma$, we call γ and δ weakly equivalent.

Proposition III.4.5: Let $\varphi:(H,|\cdot|) \rightarrow(G,|\cdot|)$ be a quasi-isometric embedding (which is not necessarily a group homomorphism). Then $\gamma_{H} \precsim w \gamma_{G}$.

Really: H is a metric space, which is uniformly locally finite. This means there is a function $v:[0, \infty) \rightarrow[0, \infty)$ with $\# B_{H}(x, r) \leq v(r)$ for any point x in X.

Proof: We do have constants such that

$$
\frac{1}{\lambda}\left|x-x^{\prime}\right|-C \leq\left|\varphi(x)-\varphi\left(x^{\prime}\right)\right| \leq \lambda\left|x-x^{\prime}\right|+C
$$

Denote $D:=\left|1_{G}-\varphi\left(1_{H}\right)\right|$. Then $\varphi\left(B_{H}\left(1_{H}, R\right)\right)$ will be contained in $B\left(1_{G}, \lambda R+\right.$ $D)$ due to the second inequality in the chain above. For points x and x^{\prime} in H with $\varphi(x)=\varphi\left(x^{\prime}\right)$, then $\left|x-x^{\prime}\right| \leq \lambda C$ by the first inequality in the chain above. Hence $\# \varphi^{-1}(y) \leq \# B_{H}(x, \lambda C) \leq E$ for some constant E. Finally, $\gamma_{H}(R)=$ $\# B_{H}\left(1_{H}, R\right) \leq E \# \varphi\left(B_{H}\left(1_{H}, R\right)\right) \leq \# B_{G}\left(1_{G}, \lambda R+D\right)=E \gamma_{G}(\lambda R+D)$.

Lemma III.4.6: If $\gamma, \delta:[0, \infty) \rightarrow[0, \infty)$ are increasing, if there is $t \geq 0$ such that for all $r \geq t$ it holds $\delta(r) \geq 1$, if there is some argument t_{0} with $\delta\left(t_{0}\right)>0$, and if $\gamma \precsim w$, then there is some ρ such that for all $t \geq t_{0}$ we have $\gamma(t) \leq \rho \delta(\rho t)$.

Lemma III.4.7: Let G be a finitely generated group with generating set S. The group G is infinite if and only if there is a quasi-isometry $\mathbb{Z} \rightarrow G$.

Königs Lemma states that if Γ is an infinite graph of finite degree, then there is an infinite ray. It relies on Tychonoffs Theorem.

Proof: Let S be a finite generating set and consider a ray ρ in $\operatorname{Cay}(G, S)$. Translating this ray ρ by $\rho(n)^{-1}$ yields a sequence of rays ρ_{n}. There is an accumulation point ρ_{∞} of ρ_{n}. This ρ_{∞} is a quasi-isometric embedding $\mathbb{Z} \rightarrow G$. \square

Lemma III.4.8: If G is infinite and finitely generated by the subset S, then for every $\rho \geq 1$ there is some constant K such that $\rho \gamma_{G, S}(\rho n) \leq \gamma(K n)$.

Proof: Let $\left(X_{n}\right)_{n \in \mathbb{Z}}$ be geodesic in $\operatorname{Cay}(G, S)$ with $x_{0}=1$ and $\left|x_{n}\right|=n$. The disjoint union $B\left(x_{-2 n}, n\right) \cup B\left(x_{2 n}, n\right)$ is contained in $B(1,3 n)$. Hence $2 \gamma(n) \leq \gamma(3 n)$. Now there is some natural number k with $2^{k} \geq \rho$, and thus $2^{k} \gamma(n) \leq \gamma\left(3^{k} n\right)$ yields the claim.

Corollary III.4.9: Let G be a finitely generated group. For growth functions γ, δ of G, it holds $\gamma \precsim \delta$ if and onl if $\gamma \precsim w \delta$.

Theorem 14 (Efremovich, Svarć): Let X be a non-empty proper geodesic metric space, let G be a group and let G act properly cocompactly by isometries. Then G and X are quasi-isometric.

What we are going to show is that for every x in X the map $G \rightarrow X$, $g \mapsto g x$ is quasi-isometric. A metric space X is proper, if closed balls are compact. This means that for every x in X the map $X \rightarrow[0, \infty), y \mapsto d(x, y)$ is proper. The action of a group of automorphisms is proper, if the map $G \times X \rightarrow X \times X,(g, x) \mapsto(g x, x)$ is proper. This means for every compact set, the set $\{g \in G \mid g K \cap K \neq \varnothing\}$ is finite. A group G acts cocompactly on X, if $G \backslash X$ is compact and Hausdorff.

Corollary III.4.10: Let X be a non-empty proper geodesic metric space, let G be a group and let G act properly cocompactly by isometries. If, additionally, X is measured, then $r \mapsto \operatorname{vol}\left(B_{X}(x, r)\right) \precsim w \gamma_{G}$.

Proof: Note that $G \backslash X$ is a metric space by defining $d(G x, G y)=\inf \{d(g x, h y) \mid$ $g, h \in G\}=\min d(x, g y) \mid g \in G\}$, where the last equality holds due to the properness of X (take any g and let $K=\operatorname{cl}(B(x, d(x, y)+1)$); now there is a finite subset T of G such that $K \cap g K \neq \varnothing$ and for all $g \notin T$ it holds $d(x, g y) \geq d(x, y)+1$. Hence the infimum is realised in T, which yields the well-definedness of the metric on $G \backslash X$).

Let $R:=\operatorname{diam}(G \backslash X)$. This R is finite by compactness. Let $B:=\operatorname{cl}\left(B\left(x_{0}, R\right)\right)$ and let $S=\{g \in G \mid g B \cap B \neq \varnothing\}=S^{-1}$, which contains 1_{G} and is finite.

Finally, let $r=\inf \{d(B, g B) \mid g \notin S\}$ and $\lambda=\max \left\{d\left(x_{0}, s x_{0}\right) \mid s \in S\right\}$.
By choice of g in the definition of r we made sure that B and $g B$ do not intersect, hence for every $g \in S^{\mathrm{c}}$ we have $d(B, g B)>0$. Now let $g_{0} \in S^{\mathrm{c}}$, let $r_{0}=d\left(B, g_{0} B\right)$ and now only $T=\left\{g \in S^{c} \mid d(B, g B) \leq r_{0}\right\}$ need to be considered. By properness, T is finite. This makes sure that r is indeed greater than zero.

Next, we will show that there is some constant λ such that for every g in G it holds $\lambda^{-1}\left|x_{0}-g x_{0}\right| \leq|g|_{S} \leq r^{-1}\left|x_{0}-g x_{0}\right|+1$.

For the first inequality, consider $g=s_{1} \cdots s_{k}$. Then

$$
\left|x_{0}-g x_{0}\right| \leq\left|x_{0}-s_{k} x_{0}\right|+\left|s_{k} x_{0}-s_{k} s_{k-1} x_{0}\right|+\cdots+\left|s_{k} \cdots s_{1} x_{0}-g x_{0}\right| \leq k \lambda .
$$

For the second inequality, we use that X is geodesic. Hence there is a geodesic from x_{0} to $g x_{0}$. Let k be such that $R+(k-1) r \leq\left|x_{0}-g x_{0}\right|<R+k r$. In the following, we will construct points x_{1}, \ldots, x_{k} on said geodesic, with $x_{k}=g x_{0}$, such that $\left|x_{0}-x_{1}\right|<R$ and $\left|x_{i+1}-x_{i}\right|<r$ for $i \geq 1$. Choose group elements g_{i} such that $x_{i} \in g_{i-1} B$ and $g_{0}=1$. Let $s_{i}=g_{i-1}^{-1} g_{i}$, so $g=s_{1} \cdots s_{k}$. Now

$$
\left|B-s_{i} B\right| \leq\left|g_{i-1}^{-1} x_{i}-s_{i} g_{i}^{-1} x_{i+1}\right|=\left|x_{i}-x_{i+1}\right|<r .
$$

This implies $s_{i} \in S$. In particular, S generates G. We get that $|g|_{S}=k \leq$ $r^{-1}\left|x_{0}-g x_{0}\right|+1-r^{-1} R$. Note that we do need " +1 ".

Finally, using left invariance yields that the translations are quasi-isometries. Due to the definitions, $|g-h|=\left|g^{-1} h\right|_{S}$ and $\left|g x_{0}-h x_{0}\right|=\left|x_{0}-g^{-1} h x_{0}\right|$.

Proof (of the Corollary): Firstly, the balls $B\left(g x_{0}, r / 3\right)$ are disjoint. Hence $\left(\# G_{x_{0}}\right)^{-1} \gamma_{S}(k) \operatorname{vol}(r / 3) \leq \operatorname{vol}(k \lambda+r / 3)$, which immediately shows $\gamma_{S} \precsim w$ vol.

Secondly, choose x in $B\left(x_{0}, K\right)$. There is some g such that x belongs to $g B$ and such that $|g|_{S} \leq r^{-1}\left|x_{0}-g x_{0}\right|+1$. This tells us that $B\left(x_{0}, K\right) \subseteq$ $\bigcup_{|g| \leq r^{-1}(K+R)+1} g B$ and thus $\operatorname{vol}_{X}(K) \leq \operatorname{vol}_{X}(R) \gamma_{S}(K / r+1-R / r)$, which means that $\operatorname{vol}_{X} \precsim w \gamma_{S}$.

5 Solvable Groups

Let G be a group. If there are subgroups $G_{1}, \ldots, G_{s-1}, G_{s}=\left\{1_{G}\right\}$ such that G_{i+1} is normal in G_{i} and G_{i} / G_{i+1} is normal for any legal indices, the group G is called solvable.

For example, groups of upper triangular matrices are solvable, or the wreath product $\mathbb{Z} \imath \mathbb{Z}$. Let A be an invertible 2×2-matrix over \mathbb{Z}. Then the group

$$
\mathbb{Z}^{2} \rtimes_{A} \mathbb{Z}=\left\{f(v)=A^{i} v+b \mid i \in \mathbb{Z}, b \in \mathbb{Z}^{2}\right\}
$$

is solvable.
Definition III.5.1: Let G be a group. If every subgroup of G is finitely generated, then the group G is called Noetherian.

A group G is Noetherian if and only if every non-empty collection of subgroups has a maximal element. This, in turn, is equivalent to every ascending chain of subgroups stabilising.

Proposition III.5.2: Let G be a solvable group. The group G is Noetherian if and only if it is polycyclic, i.e. there is a chain $G=G_{0} \triangleright G_{1} \triangleright \triangleright \cdots \triangleright G_{s}=\{1\}$, such that G_{i} / G_{i+1} is cyclic.

This is essentially shown using Jordan-Hölders-Theorem and the Structure Theorem for Abelian Groups.

Definition III.5.3: Let G be a polycyclic group. The well-defined number of quotients isomorphic to \mathbb{Z} is called the Hirsch length of G.

Theorem 15: Let G be a polycyclic group. Then there is a torsion-free normal subgroup of finite index.

Having a group of finite index induces a permutation of cosets, which gives a map to a finite symmetric group, whose kernel is normal and has finite index again. Hence, adding normal does not cost anything.

Proof: This statement is shown via induction on the Hirsch length. If G_{0} / G_{1} is finite, repeat with G_{1}. If the quotient $G_{0} / G_{1}=\langle t\rangle$ is infinite, there is a torsion-free subgroup K of G_{i}, which has finite index, and $\langle t, K\rangle=H=K \rtimes_{t} \mathbb{Z}$ does the trick.

6 Nilpotent Groups

Let G be a group. If there is a series of subgroups $G_{0} \triangleright G_{1} \triangleright \cdots \triangleright G_{s}=\{1\}$ such that G_{i} / G_{i+1} is central in G / G_{i+1}, then G is nilpotent.

Alternatively, one may characterise nilpotency via the lower central series. For $i=1$ let $\gamma_{1}=G$ and for $i \geq 2$, let $\gamma_{i+1}:=\left[\gamma_{i}, G\right]$. The minimal index c with $\gamma_{c+1}=\{1\}$ is called the class of G.

For the commutator $[x, y]=x^{-1} y^{-1} x y$, there are some useful (but hard to rememeber) formulae: $[x y, z]=[x, z]^{y}[y, z]$ and $[x, y z]=[x, z][x, y]^{z}$. This has the following consequence:

Corollary III.6.1: Let G be a group and let $H=\langle X\rangle_{G}, K=\langle Y\rangle_{G}$ be normal subgroups of G. Then $[H, K]=\langle[x, y] \mid x \in X, y \in Y\rangle_{G}$.

For a natural number n, one defines $\left[x_{1}, \ldots, x_{n}\right]:=\left[\left[x_{1}, \ldots, x_{n-1}\right], x_{n}\right]$. Note that it absolutely matters where the brackets are put in the right side, since taking the commutator is not associative. Expressions like this are called elementary left-normed commutators. For those, one has the identity
$\left[x, y^{-1}, z\right]^{y}\left[y, z^{-1}, x\right]^{z}\left[z, x^{-1}, y^{-1}\right]=1$. As before, one has for normal subgroups H, K and L of G that $[H, K, L] \leq[K, L, H][L, H, K]$.

Furthermore, we can now verify for the terms of the lower central series that $\left[\gamma_{i}, \gamma_{j}\right] \leq \gamma_{i+j}$.

Corollary III.6.2: Let $G=\langle X\rangle$ be a group and for $i \geq 2$ let $\gamma_{i}=\left[\gamma_{i}, G\right]$. Then γ_{i} is normally generated by $\left[x_{1}, \ldots, x_{i}\right]$ for $x_{j} \in X$.

Corollary III.6.3: If G is a finitely generated nilpotent group, then $\gamma_{i} / \gamma_{i+1}$ is finitely generated abelian.

This means that finitely generated nilpotent groups are polycyclic.
Theorem 16: Let G be a nilpotent group. Then its set of torsion elements constitute a subgroup.

This statement is shown by induction on the class of G. Groups of class 1 are abelian, for which this statement is clearly true.

Consider a mimimal counterexample G. Let x be an element of finite order of G and let $G^{\prime}:=\gamma_{2}$. The group $\left\langle x, G^{\prime}\right\rangle$ has the property that the set of its torsion elements forms a subgroup. For any $i \geq 2$, we have $\gamma_{i}\left(\left\langle x, G^{\prime}\right\rangle\right) \subseteq \gamma_{i+1}(G)$ and thus $x y \in\left\langle x, G^{\prime}\right\rangle\left\langle y, G^{\prime}\right\rangle$.

Definition III.6.4: Let G be a group. We write $\left(\delta_{i}\right)_{i \in I}$ for a series of subgroups of G such that δ_{i} / γ_{i} is the torsion subgroup of G / γ_{i}.

We have the characterisation $\delta_{i}=\left\{x \in G \mid x^{n} \in \gamma_{i}\right.$ for some $\left.n \neq 0\right\}$. Note that δ_{i} / γ_{i} has to be interpreted correctly using preimages.

Proposition III.6.5: Let G be a group. The series $\left(\delta_{i}\right)_{i \in I}$ as defined before is in fact a central series with $\left[\delta_{i}, \delta_{j}\right] \subseteq \delta_{i+j}$ and $\delta_{i} / \delta_{i+1}$ is torsion-free abelian.

This can be shown using the following lemma:
Lemma III.6.6: If G is torsion-free nilpotent and if in G it holds $x^{n}=y^{n}$ for some $n \neq 0$, then in fact $x=y$.

For abelian groups, this is clear. Otherweise $1=\left[y, y^{n}\right]=\left[y, x^{n}\right]$, so $x^{n}=$ $y^{-1} x^{n} y=\left(x^{y}\right)^{n}$. By induction $x=x^{y}$ and we conclude using the abelian case.

Proof (of the Proposition): Let x in δ_{i} and y in δ_{j}. Consider the torsion-free quotient G / δ_{i+j}. We have that $x^{m} \in \gamma_{i}$ and $y^{n} \in \gamma_{j}$, such that $\left[x^{m}, y^{n}\right] \in \gamma_{i+j}$. This element is trivial in G / δ_{i+j}, hence $x^{m} \equiv\left(x^{m}\right)^{y^{n}} \equiv\left(x^{y^{n}}\right)^{m}$, which by the lemma implies that $x \equiv x^{y^{n}}$ and thus $y^{n} \equiv\left(y^{n}\right)^{x} \equiv\left(y^{x}\right)^{n}$, i.e. $y \equiv y^{x}$ which means that $[x, y] \in \delta_{i+j}$.

Theorem 17 (Dixmier): Let G be finitely generated virtually nilpotent group. Then there is some d such that $\gamma_{G} \precsim n^{d}$.

A refinement was later given by Guivarćh and Bass:
Theorem 18: If G is a finitely generated virtually nilpotent group, then $\gamma_{G} \sim n^{d}$ for $d=\sum_{i \geq 1} i \operatorname{rank}_{\mathbb{Q}}\left(\gamma_{i} / \gamma_{i+1}\right)$.

Proof: Thanks to previous recitements, we may forget about "virtually" and "torsion". Let $G=\left\langle x_{i, j}\right\rangle$. For $i \geq 1$ we have $\delta_{i} / \delta_{i+1}=\left\langle x_{i, 1}, \ldots, x_{i, r_{i}}\right\rangle \cong \mathbb{Z}^{r_{i}}$. Consider a word w of length n in $\left\{x_{i, j}\right\}$ and put it in the normal form $w=$ $x_{i, 1}^{e_{i, 1}} x_{i, 2}^{e_{i, 2}} \cdots x_{i, r_{i}}^{e_{i, r_{i}}} \cdots$ Bringing $x_{i, j}^{e_{i, j}}$ to the left costs at most n^{2} commutators $\left[x_{i, k}, x_{i, j}\right]$.

Sometimes switch $x_{i j}$ with $\left[x_{k, \ell}, x_{m, n}, x_{r, q} \ldots\right], \ldots$ at most $A \cdot n^{s}$ weight s commutators.

In $\delta_{s} / \delta_{s+1} \cong \mathbb{Z}^{r_{s}}$, which has growth $n^{r_{s}}$, we see at most $A \cdot n^{s}$ generators. Hence the growth is bounded by $\left(A n^{s}\right)^{r_{s}}=n^{s r_{s}}$. Now w is determined by its value v_{1} in $\delta_{1} / \delta_{2}, v_{2}$ in $\delta_{2} / \delta_{3}, \ldots$ Hence the total number of values is $B_{1} n^{1 r_{1}} B_{2} n^{2 r_{2}} \cdots=B n^{1 r_{1}+2 r_{2}+\ldots}=B n^{d}$.

For the lower bound: For every $z \in \gamma_{\ell}$, there is some constant A such that $\left|z^{n}\right| \leq A|n|^{1 / c}$. This can be seen as follows: Without loss of generality, we may assume that $z=[x, y]$ for x in γ_{c-1} and y in G. Let $\left.m=\right\rceil n^{1 / c}\lceil$ and $n=q m^{c-1}+r$. By induction, $x^{m^{c-1}}$ is a word u of length at most B and x^{r} is a word v of length at most B modulo γ_{c}. Now

$$
z^{n}=\left[x^{n}, y\right]=\left[x^{\left.q m^{r-1}+1, y\right]=\left[n, y^{q}\right][v, g] \text { whichhaslengthatmost } 8 m+8}\right.
$$

modulo γ_{c}. Therefore, we can produce all words $x_{1,1}^{e_{1,1}} \cdots x_{c}^{e_{c, 1}} \cdots x_{c, r_{c}}^{e_{c, r_{c}}}$ with $\left|e_{i, j}\right| \leq n^{i}$ in a ball of radius C, which gives $n^{d} \precsim \gamma_{G}$

[^0]: ${ }^{1}$ Recall that a subset S of a group G is said to generate the group, if it holds that $G=\bigcap(H \subseteq G \mid H$ is a subgroup of G with $S \subseteq H)=\left\{s_{1} \cdots s_{k} \mid s_{i} \in S\right.$ or $\left.s_{i} \in S^{-1}\right\}$

[^1]: ${ }^{2}$ For this notion it is sufficient for X to be merely a topological space.

[^2]: ${ }^{3}$ Note that geodesics are in particular paths, because the isometric property implies sequential continuity and thus continuity.

[^3]: ${ }^{4}$ See Exercise 1 on Exercise Sheet 3.

