4. Übung Analysis 2 SS 2001

Aufgabe 1: Löse folgende inhomogene lineare Differentialgleichungen durch *Variation der Konstanten*, ausgehend von der Lösung der zugehörigen homogenen Gleichung.

a)
$$f'(x) - f(x) = e^x$$
, $f(0) = 1$,

b)
$$f'(x) + f(x) = \sinh(x), f(0) = 1.$$

Aufgabe 2: Erzwungene Schwingung. Sei $\omega > 0$ und $a \cdot (b - \omega^2) \neq 0$. Finde eine Lösung der Differentialgleichung

$$f''(x) + 2af'(x) + bf(x) = \cos(\omega x)$$

durch den Ansatz $f(x) = A\cos(\omega x - \varphi)$.

Aufgabe 3: Integrale rationaler Funktionen, Teil 2.

- 3. Schritt: Integration der Partialbrüche.
 - (a) Gib eine Stammfunktion von $\frac{a}{(x-\alpha)^k}$ an für k=1 und k>1.
 - (b) Partialbrüche der Form $\frac{bx+c}{(x^2+\beta x+\gamma)^l}$ bringt man durch quadratische Ergänzung im Nenner auf die Form $\frac{bx+c}{((x-x_0)^2+a)^l}$ mit a>0 (Warum a>0?) Durch Substitution $x=\sqrt{a}\cdot y+x_0$ gelangt man zu Integralen der Form $\int \frac{ky}{(y^2+1)^l}\,dy$ und $\int \frac{k\,dy}{(y^2+1)^l}$.

Beispiel: Finde eine Stammfunktion zu $\frac{x+1}{x^2+2x+5}$.

(c) Gib eine Stammfunktion von $\frac{y}{(y^2+1)^l}$ an.

Aufgabe 4: Integrale rationaler Funktionen, Teil 3.

- (d) Bestimmung von $\int \frac{dy}{(y^2+1)^l}$:
 - i. Gib eine Stammfunktion von $\frac{1}{(y^2+1)}$ an.
 - ii. Sei l > 1. Setze $I_l = \int \frac{dy}{(y^2+1)^l}$. Es ist $I_l = \int \frac{y^2+1}{(y^2+1)^l} \, dy \int y \cdot \frac{y}{(y^2+1)^l} \, dy$. Der erste Term ist I_{l-1} , der zweite wird durch partielle Integration ebenfalls auf I_{l-1} zurückgeführt. Führe die Rechnung aus! Nach endlich vielen Schritten ist man bei I_1 .

Beispiel: Berechne $\int \frac{4x^2}{(1+x)(1+x^2)^2} dx$. (Vgl. 3. Übung, Aufgabe 4.)

Aufgabe 5: Bestimme $\int \sinh(\sqrt{x}) dx$.

Abgabe: Montag, 07. 05. 2001, vor der Vorlesung.