Universität des Saarlandes Fachbereich 6.1 – Mathematik

Prof. Dr. G. Wittstock Jörg Fischer, Zi. 223

Elementare Wahrscheinlichkeitstheorie und Statistik

10. Übungsblatt

Aufgabe 1: Man zeige, ist P ein diskretes W-Maß auf \mathbb{N}_0 mit der Eigenschaft

$$P(\{n+k\} \mid \{n, n+1, \dots\}) = P(\{k\})$$
 für $k, n \in \mathbb{N}_0$,

so ist P eine geometrische Verteilung \mathfrak{G}_p mit (0 .

D.h. eine im folgenden Sinne " $qed\ddot{a}chtnislose$ " Zufallsvariable X mit Werten in N_0 :

$$P(X = n + k \mid X \ge n) = P(X = k)$$
 für $k, n \in \mathbb{N}_0$,

ist geometrisch verteilt. Man interpretiere die Bedingung "gedächtnislos" am Beispiel des Würfelns einer 6.

Aufgabe 2 (Binomalapproximation der hypergeometrischen Verteilung): Es sei $(K_N)_{N\in\mathbb{N}}$ eine Folge in \mathbb{N} mit $\lim_{N\to\infty} K_N/N = p \in]0,1[$. Dann strebt die hypergeometrische Verteilung $\mathcal{H}_{N,K_N,n}$ gegen die Binomialverteilung $\mathcal{B}_{n,p}$.

Hinweis: Man untersuche für $0 \le k \le n$ den Grenzwert

$$\lim_{N\to\infty}\frac{(K_N)_k\cdot(N-K_N)_k}{N_n}.$$

Aufgabe 3: Das Genom der Taufliege Drosophila melanogaster gliedert sich in etwa m=7000 Abschnitte (die anhand der Färbungsmuster der in den Speicheldrüsen befindlichen Riesenchromosomen erkennbar sind). Zur Vereinfachung sei angenommen, dass sich in jedem Abschnitt gleichviele, nämlich n=2300 Basenpaare befinden. Das Genom umfasst also $1,61\cdot 10^7$ Basenpaare. Durch hochenergetische Bestrahlung werden K=1000 rein zufällig verteilte Basenpaare zerstört. Finden Sie ein stochastisches Modell für die Anzahl der zerstörten Basenpaare in einem Genomabschnitt. Berechnen Sie für den i-ten Abschnitt die Verteilung der Anzahl Z_i der zerstörten Basenpaare im i-ten Abschnitt und begründen Sie, dass Z_i approximativ \mathcal{P}_{λ} (Poisson-verteilt) ist. Was ist λ ? Hinweis: Aufgabe 2.

Aufgabe 4: Erfahrungsgemäß fallen in einer Vordiplomsklausur 5% der Studierenden durch. In diesem Jahr nehmen 100 Studierende an der Klausur teil. Bestimmen Sie die Wahrscheinlichkeiten, dass $0, 1, \ldots, 10$ Studierende durchfallen. Berechnen sie jeweils den exakten Wert und die Poisson-Approximation.

Aufgabe 5: Es seien P und Q W-Maße auf \mathbb{N}_0 . Man setze $p_n := P\{n\}, q_n := Q\{n\}$ und definiere eine Folge durch

$$(p*q)_n := \sum_{k=0}^n p_k q_{n-k}$$
 für $n \in \mathbb{N}_0$.

Man nennt diese Folge die Faltung der Folgen $(p_n)_n$ und $(q_n)_n$. Man zeige

- a) Die Folge $((p*q)_n)_{n\in\mathbb{N}_0}$ definiert ein diskretes W-Maß auf \mathbb{N}_0 . Dieses W-Maß heißt die Faltung von P und Q und wird mit P*Q bezeichnet.
- b) Es seien $X,Y:(\Omega,P)\to\mathbb{N}_0$ unabhängige Zufallsvariable und P_X,P_Y ihre Bildverteilungen. Dann ist $P_X*P_Y=P_{X+Y}$.
- c) Für die Poisson-Verteilung gilt $P_{\lambda}*P_{\mu}=P_{\lambda+\mu}.$
- d) Es seien $X,Y:(\Omega,P)\to\mathbb{N}_0$ unabhängige Zufallsvariable. Ist X Poisson-verteilt mit dem Parameter λ und Y Poisson-verteilt mit dem Parameter μ , dann ist X+Y Poisson-verteilt mit dem Parameter $\lambda+\mu$.

Abgabetermin: Mittwoch, 2. Juli 2003, vor Beginn der Vorlesung.