3. Übung Analysis 1 WS 2000-2001

Aufgabe 3.2 a) Für eine Abbildung $f: M \to N$ zeige man: f ist genau dann injektiv wenn eine Abbildung $\ell: N \to M$ existiert, so daß $\ell \circ f = I$ gilt, wobei I die identische Abbildung auf M ist. ℓ heißt eine Linksinverse von f. Welche Abbildungen f haben eine eindeutige Linksinverse?

Aufgabe 3.3 Es seien $f, g : \mathbb{R} \to \mathbb{R}$ beschränkte (bzw. monoton wachsende) Funktionen. Sind dann auch die Funktionen $f + g, f \cdot g$ und $f \circ g$ beschränkt (bzw. monoton wachsend)?

Aufgabe 3.4 Man finde eine injektive, nicht monotone Funktion $f:[0,1]\to\mathbb{R}$.

Aufgabe 3.6 Für Mengen A, M, N und Abbildungen $f: A \to M, g: A \to N$ definieren wir eine Abbildung $h: A \to M \times N$ von A in das kartesische Produkt von M und N durch h(x) := (f(x), g(x)) für $x \in A$. Man beweise oder widerlege die folgenden Aussagen:

```
\begin{array}{cccc} f,\,g \text{ injektiv} & \Rightarrow & h \text{ injektiv} \\ h \text{ injektiv} & \Rightarrow & f,\,g \text{ injektiv} \\ f,\,g \text{ surjektiv} & \Rightarrow & h \text{ surjektiv} \\ h \text{ surjektiv} & \Rightarrow & f,\,g \text{ surjektiv} \end{array}
```

Aufgabe 3.8 Für folgende Mengen M gebe man jeweils eine bijektive Abbildung $f:(0,1)\to M$ an: $M=(-3,7), M=(0,\infty), M=\mathbb{R}$.

Wichtig: Alle Lösungen sind zu begründen!

Abgabe: Mo 20.11.2000 in der Vorlesungspause