5. Übung Analysis 1 WS 2000-2001

Aufgabe 5.1 Man untersuche die angegebenen Folgen (a_n) auf Konvergenz und bestimme ggf. die Grenzwerte:

a)
$$a_n = \frac{4n^3 - (-1)^n n^2}{5n + 2n^3}$$
 d) $a_n = \frac{(n^3 - 5n)^4 - n^{12}}{n^{11}}$
b) $a_n = \frac{3n^4 + n^n}{5^n + 4^n n!}$ e) $a_n = \frac{1}{h_n} \text{ mit } h_n = \sum_{k=1}^n \frac{1}{k}$
c) $a_n = \frac{2^{n^3}}{n!5^{n^2} + n^n}$

d)
$$a_n = \frac{(n^3 - 5n)^4 - n^{12}}{n^{11}}$$

b)
$$a_n = \frac{3n^4 + n^7}{5^n + 4^n n!}$$

e)
$$a_n = \frac{1}{h_n} \text{ mit } h_n = \sum_{k=1}^n \frac{1}{k}$$

c)
$$a_n = \frac{2^{n^3}}{n!5^{n^2} + n^n}$$

Aufgabe 5.2 Für festes $k \in \mathbb{N}$ zeige man $\lim_{n \to \infty} 2^{-n} \binom{n}{k} = 0$.

Aufgabe 5.7 Man berechne die Grenzwerte $\lim_{n\to\infty} n^{-2} \sum_{k=1}^n k$ und $\lim_{n\to\infty} n^{-3} \sum_{k=1}^n k^2$.

Aufgabe 5.3 Es seien (a_n) eine Nullfolge und (b_n) eine beschränkte Folge. Man zeige, daß auch (a_nb_n) eine Nullfolge ist.

Aufgabe 5.9 Es sei (b_n) eine streng monoton wachsende Folge mit $(b_n) \to \infty$. Es sei (a_n) eine weitere Folge mit

$$\lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = \ell.$$

Man beweise, daß dann auch

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \ell$$

gilt. (Beachten Sie dazu auch den Hinweis in Kaballo auf S. 47.)

Wichtig: Alle Lösungen sind zu begründen!

Abgabe: Mo 4.12.2000 in der Vorlesungspause