Universität des Saarlandes

FACHRICHTUNG 6.1 — MATHEMATIK

Prof. Dr. Gerd Wittstock

Benedikt Betz

2. Übung Funktionalanalysis WS 2003/04

Aufgabe 5 Auf dem Raum $C^{\infty}([0,1])$ der unendlich oft differenzierbaren Funktionen auf [0,1] setzen wir

$$d(f,g) = \sum_{k=0}^{\infty} 2^{-k} \frac{\|f^{(k)} - g^{(k)}\|_{\infty}}{1 + \|f^{(k)} - g^{(k)}\|_{\infty}}.$$

Zeige:

- a) d ist eine Metrik auf $C^{\infty}([0,1])$.
- b) Eine Folge $(f_n)_n \in \mathbb{N}$ von Funktionen in $C^{\infty}([0,1])$ konvergiert genau dann bezüglich dieser Metrik gegen f, wenn für jedes $k \ge 0$ die Folge der Ableitungen $(f_n^{(k)})$ gleichmäßig gegen $f^{(k)}$ konvergiert.
- c) $(C^{\infty}([0,1]),d)$ ist vollständig.

Aufgabe 6 Auf C([0,1]) seien die Normen $\| \|_1$ und $\| \|_{\infty}$ wie in Aufgabe 2 erklärt. Weiter sei $g \in C([0,1])$ und $n \in \mathbb{N}$. Zeige, dass die folgenden Abbildungen linear und stetig sind, und berechne ihre Norm.

- **a)** $S: (C([0,1]), || ||_1) \to (C([0,1]), || ||_1); f \mapsto [t \mapsto \int_1^t f(s) \, ds],$
- **b)** $T_g: (C([0,1]), || ||_{\infty}) \to (C([0,1]), || ||_{\infty}); f \mapsto gf,$
- c) $U_n: (C([0,1]), || ||_{\infty}) \to \mathbb{C}; f \mapsto \int_0^1 f(t) dt \sum_{k=1}^n \frac{1}{n} f(k/n).$

Zeige weiter: Für alle $f \in C([0,1])$ ist $\lim_{n \to \infty} U_n(f) = 0$. Gilt auch $||U_n|| \to 0$?

Aufgabe 7 Beweise den Satz von DINI:

Es sei (X,d) ein kompakter metrischer (oder allgemeiner: topologischer) Raum. Konvergiert eine monoton wachsende (oder fallende) Folge reellwertiger stetiger Funktionen auf X punktweise gegen eine stetige Funktion, so ist die Konvergenz sogar gleichmäßig.

Aufgabe 8 Es sei $1 \le p \le \infty$. Wir definieren die Abbildungen

$$S: l_p \to l_p; (x_n)_n \mapsto (x_{n+1})_n$$
 und

$$T: l_p \to l_p; (x_n)_n \mapsto (x_{n-1})_n \quad \text{mit } x_{-1} = 0.$$

Zeige: S und T sind linear und stetig. Berechne die Operatornormen.

Abgabe: Montag, 10. 11. 2003, vor der Vorlesung.