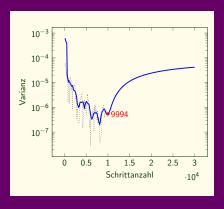
Saarbrücken, 28.09.2013

(Einige Folien werden z.B. im Adobe Reader animiert dargestellt.)



Some Statistics

Some Statistics

Some Statistics

Phase 1

Einfachheit

- Anfangszustand: Komplett einfarbige Ebene
- Bildung einfacher, meist symmetrische Muster
- ► Gedanke: ,,Einfache Regel
 - → Einfache Muster"
- ▶ Dauer: 1 ca. 300

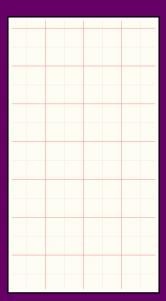
Phase 2

Chaos

- Erzeugung eines großen unregelmäßigen Flickenteppiches
- ► Gedanke: ,,Ameise vollführt zufällige Bewegung."
- ▶ Dauer: 300 ca. 10000

Phase 3

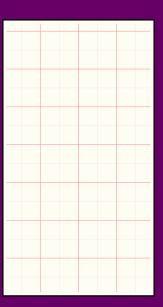
Hervortretende Ordnung


- Erzeugung einer Straße in südöstlicher Richtung.
- Durchlauf eines Zyklus' von 104 Schritten.
- ► Gedanke: ,,Ameise bewegt sich gemäß einer bestimmten Regel"
- ▶ Dauer: ab ca. 10000

Technischer Hintergrund

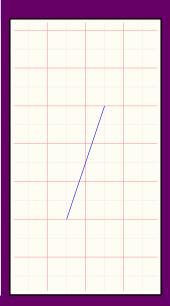
- ► Vollständig realisiert mit LuaLTEX
- Klasse beamer Erstellung der Folien
- Paket animate Erstellung von Animationen
- Paket pgfplots Erstellung des Funktionsplots
- Paket tikz Erstellung der Kacheln und Balken
- Lua Generieren des Ameisenmodells

- ► TikZ: ,,TikZ ist kein Zeichenprogramm"
- Entwickelt von Till Tantau (Universität Lübeck)
- ► Idee: Erstellung von Grafiken mit Hilfe von Anweisungen
- z.B. http://www.texample.net/tikz/examples/


Grundlegender Aufbau

Grundlegender Aufbau

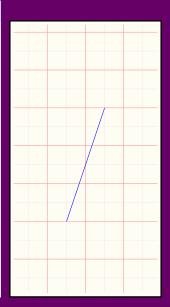
Anweisung:


 $\draw[color=blue](0.5,-1)--(53:2.5);$

Grundlegender Aufbau

Anweisung:

 $\draw[color=blue](0.5,-1)--(53:2.5);$

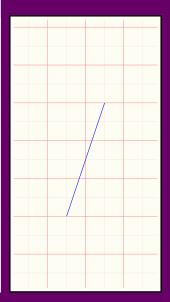

Grundlegender Aufbau

Anweisung:

\draw[color=blue](0.5,-1)--(53:2.5);

▶ Befehle

\draw, \fill, \clip, \node, ...

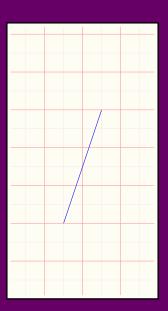


Grundlegender Aufbau

Anweisung:

\draw[color=blue](0.5,-1)--(53:2.5);

- ► Befehle \draw, \fill, \clip, \node, ...
- Attribute color, line width, opacity, ...



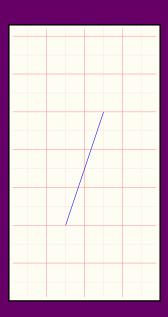
Grundlegender Aufbau

Anweisung:

 $\frac{(0.5,-1)-(53:2.5)}{}$

- ► Befehle \draw, \fill, \clip, \node, ...
- Attribute color, line width, opacity, ...
- ► Koordinaten absolut: (x,y), auch polar $(\alpha:r)$ relativ: $++(\Delta x, \Delta y)$

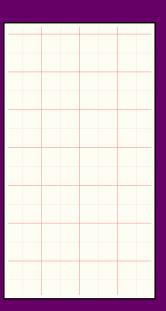
Grundlegender Aufbau


Anweisung:

 $\draw[color=blue](0.5,-1)--(53:2.5);$

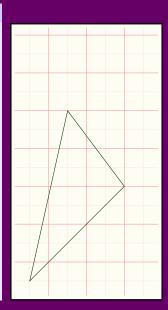
- ► Befehle \draw, \fill, \clip, \node, ...
- Attribute color, line width, opacity, ...
- ► Koordinaten absolut: (x,y), auch polar $(\alpha:r)$ relativ: $++(\Delta x, \Delta y)$

Sonderzeichen


-- : Verbinder: : Abschluss

Dreiecke malen

Anweisung:


▶ Dreieck in absoluten Koordinaten

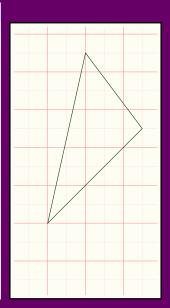
Dreiecke malen

Anweisung:

▶ Dreieck in absoluten Koordinaten

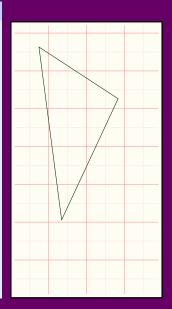
Dreiecke malen

```
\draw (-0.5,-2.5) -- ++(2.5,2.5) -- ++(-1.5,2) -- cycle;
```


- Dreieck in absoluten Koordinaten
- Dreieck in relativen Koordinaten

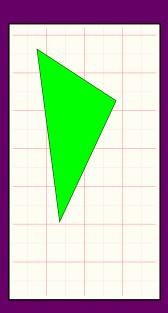
Dreiecke malen

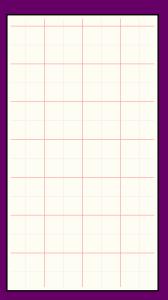
```
\draw (0,-1) -- ++(2.5,2.5) -- ++(-1.5,2) -- cycle;
```


- Dreieck in absoluten Koordinaten
- ▶ Dreieck in relativen Koordinaten
- Verschobenes Dreieck

Dreiecke malen

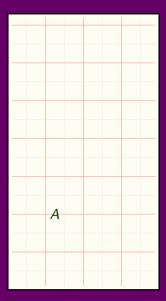
```
\draw[rotate=20] (0,-1) --
++(2.5,2.5) -- ++(-1.5,2) -- cycle;
```


- ▶ Dreieck in absoluten Koordinaten
- ▶ Dreieck in relativen Koordinaten
- Verschobenes Dreieck
- ▶ (Um Ursprung) Gedrehtes Dreick

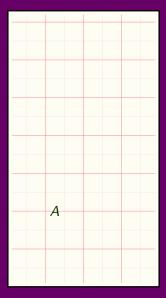

Dreiecke malen

```
\draw[rotate=20,fill=green] (0,-1) --
++(2.5,2.5) -- ++(-1.5,2) -- cycle;
```

- ▶ Dreieck in absoluten Koordinaten
- Dreieck in relativen Koordinaten
- Verschobenes Dreieck
- ▶ (Um Ursprung) Gedrehtes Dreick
- Mit grüner Farbe gefüllt

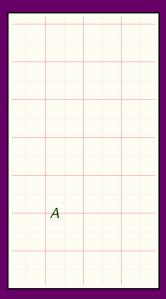

Punkte malen

Punkte malen


Anweisung:

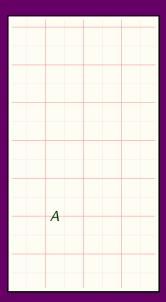
\coordinate[label=left:\$A\$] (A) at
(0.5,-1);

Punkte malen

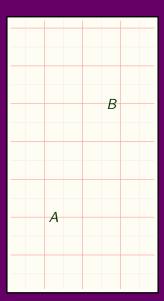

```
\coordinate[label=left:$A$] (A) at
(0.5,-1);
```


Punkte malen

Anweisung:

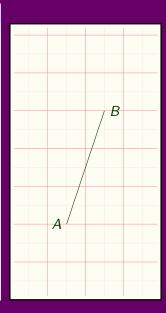

\coordinate[label=left:\$A\$] (A) at
(0.5,-1);

Punkte malen


Anweisung:

\coordinate[label=left:\$A\$] (A) at
(0.5,-1);

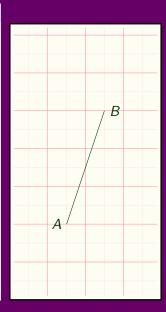
Punkte malen


```
\coordinate[label=left:$A$] (A) at
(0.5,-1);
\coordinate[label=right:$B$] (B) at
(1.5,2);
```


Punkte malen

```
\coordinate[label=left:$A$] (A) at
(0.5,-1);
\coordinate[label=right:$B$] (B) at
(1.5,2);
```

```
\draw (A) -- (B);
```

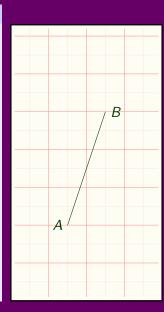


Punkte malen

```
\coordinate[label=left:$A$] (A) at
(0.5,-1);
\coordinate[label=right:$B$] (B) at
(1.5,2);
```

```
\def\Punkt{(0,0) circle (0.7mm)}
```

```
\draw (A) -- (B);
```

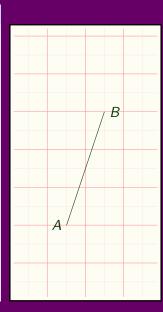


Punkte malen

```
\coordinate[label=left:$A$] (A) at
(0.5,-1);
\coordinate[label=right:$B$] (B) at
(1.5,2);
```

```
\def\Punkt{(0,0) circle (0.7mm)}
```

```
\draw (A) -- (B);
```

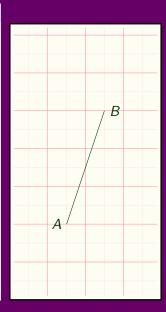


Punkte malen

```
\coordinate[label=left:$A$] (A) at
(0.5,-1);
\coordinate[label=right:$B$] (B) at
(1.5,2);
```

```
\def\Punkt{(0,0) circle (0.7mm)}
```

```
\draw (A) -- (B);
```



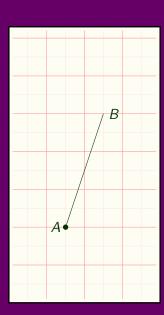
Punkte malen

```
\coordinate[label=left:$A$] (A) at
(0.5,-1);
\coordinate[label=right:$B$] (B) at
(1.5,2);
```

```
\def\Punkt{(0,0) circle (0.7mm)}
```

```
\draw (A) -- (B);
```

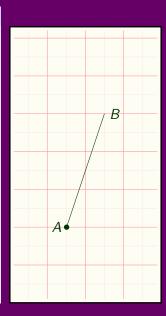

Punkte malen


```
Anweisung:
```

```
\coordinate[label=left:$A$] (A) at
(0.5,-1);
\coordinate[label=right:$B$] (B) at
(1.5,2);
```

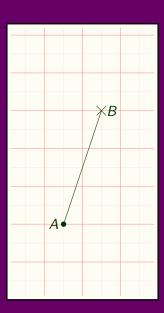
```
\def\Punkt{(0,0) circle (0.7mm)}
```

```
\fill[shift={(A)}] \Punkt;
```


\draw (A) -- (B);

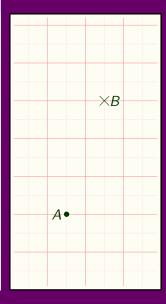
Punkte malen

```
Anweisung:
```


```
\coordinate[label=left:$A$] (A) at
(0.5, -1);
\coordinate[label=right:$B$] (B) at
(1.5,2);
\left(0,0\right) \text{ circle } (0.7\text{mm})
\def\KreuzPunkt\{(0,0)++(-.125,-.125)--
++(.25,.25)++(0,-0.25)--++(-.25,.25)
\fill[shift={(A)}] \Punkt;
\draw (A) -- (B);
```


Punkte malen

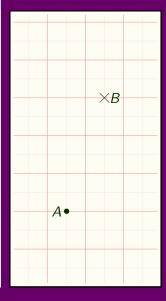
```
Anweisung:
```


```
\coordinate[label=left:$A$] (A) at
(0.5, -1);
\coordinate[label=right:$B$] (B) at
(1.5,2);
\left(0,0\right) \text{ circle } (0.7\text{mm})
\def\KreuzPunkt\{(0,0)++(-.125,-.125)--
++(.25,.25)++(0,-0.25)-- ++(-.25,.25)}
\fill[shift={(A)}] \Punkt;
\draw[shift={(B)}] \KreuzPunkt;
\draw (A) -- (B);
```


Geraden malen

In die Präamble: $\usetikzlibrary\{calc\}$

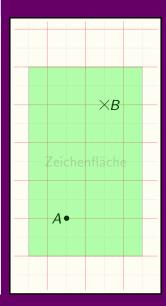
\begin{scope}



\end{scope}

Geraden malen

In die Präamble: $\usetikzlibrary\{calc\}$


\begin{scope}

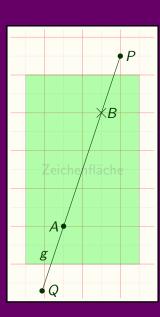
\end{scope}

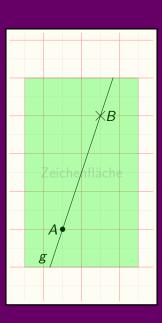

Geraden malen

```
In die Präamble: \usetikzlibrary{calc}
\begin{scope}
\draw[fill=green,opacity=0.3] (-0.5,-2)
rectangle (2.5,3) node[pos=0.5]
{\color{gray}Zeichenfläche};
```


\end{scope}

```
In die Präamble: \usetikzlibrary{calc}
\begin{scope}
\draw[fill=green,opacity=0.3] (-0.5,-2)
rectangle (2.5,3) node[pos=0.5]
{\color{gray}Zeichenfläche};
\coordinate[label=right:$P$] (P) at
(\$(A)!+1.5!(B)\$);
\fill[shift={(P)}] \Punkt;
\end{scope}
```



```
In die Präamble: \usetikzlibrary{calc}
\begin{scope}
\draw[fill=green,opacity=0.3] (-0.5,-2)
rectangle (2.5,3) node[pos=0.5]
{\color{gray}Zeichenfläche};
\coordinate[label=right:$P$] (P) at
(\$(A)!+1.5!(B)\$);
\fill[shift={(P)}] \Punkt;
\end{scope}
```



```
In die Präamble: \usetikzlibrary{calc}
\begin{scope}
\draw[fill=green,opacity=0.3] (-0.5,-2)
rectangle (2.5,3) node[pos=0.5]
{\color{gray}Zeichenfläche};
\coordinate[label=right:$P$] (P) at
(\$(A)!+1.5!(B)\$);
\coordinate[label=right:$Q$] (Q) at
(\$(A)!-1.8cm!(B)\$);
\fill[shift={(P)}] \Punkt;
\fill[shift={(Q)}] \Punkt;
\end{scope}
```



```
In die Präamble: \usetikzlibrary{calc}
\begin{scope}
\draw[fill=green,opacity=0.3] (-0.5,-2)
rectangle (2.5,3) node[pos=0.5]
{\color{gray}Zeichenfläche};
\coordinate[label=right:$P$] (P) at
(\$(A)!+1.5!(B)\$);
\coordinate[label=right:$Q$] (Q) at
(\$(A)!-1.8cm!(B)\$);
\fill[shift={(P)}] \Punkt;
\fill[shift={(Q)}] \Punkt;
\draw (P) -- (Q) node[left,pos=.85] {$g$};
\end{scope}
```



```
In die Präamble: \usetikzlibrary{calc}
\begin{scope}
\draw[fill=green,opacity=0.3] (-0.5,-2)
rectangle (2.5,3) node[pos=0.5]
{\color{gray}Zeichenfläche};
\clip (-0.5, -2) rectangle (2.5, 3);
\coordinate[label=right:$P$] (P) at
(\$(A)!+1.5!(B)\$);
\coordinate[label=right:$Q$] (Q) at
(\$(A)!-1.8cm!(B)\$):
\fill[shift={(P)}] \Punkt:
\fill[shift={(Q)}] \Punkt;
\draw (P) -- (Q) node[left,pos=.85] {$g$};
\end{scope}
```


Vorteile

- Zeichnen geometrischer Objekte (Punkt, Strecke, Gerade, etc.)
- Sieht schick aus :-)

Vorteile

- Zeichnen geometrischer Objekte (Punkt, Strecke, Gerade, etc.)
- Sieht schick aus :-)

Nachteile

- Aufbau und Syntax wird schnell komplex
- Nicht gezeigt: Bestimmung von Schnittpunkten möglich, jedoch aufgrund der Berechnung mit Hilfe des TEX-Kernels eher langsam

- Lua: Portugisisch für Mond
- ▶ Entwickelt von Roberto Ierusalimschy u.a. (1993)
- Einfache und schnelle Skriptsprache
- Paradigmen: imperativ, funktional, objektorientiert
- Literatur: *Programmieren in Lua*. Open Source Press, 3. Auflage. (2013)

Lua-Konsole

Lua-Konsole

Variablen in Lua

▶ Datentyp:

Lua-Konsole

> a = 3.5743

Variablen in Lua

▶ Datentyp:

Lua-Konsole

- > a = 3.5743
- > b = "Elbe"

Variablen in Lua

▶ Datentyp:

Lua-Konsole

- > a = 3.5743
- > b = "Elbe"
- > c = true

Variablen in Lua

Datentyp:

Lua-Konsole

- > a = 3.5743
- > b = "Elbe"
- > c = true
- > print(a,b,c)

- Datentyp: Zahlen, Zeichenketten, Wahrheitswerte
- Ausgabe:
 print()

Lua-Konsole

- > a = 3.5743
- > b = "Elbe"
- > c = true
- > print(a,b,c)
- 3.5743 Elbe true

- ► Datentyp:
 - Zahlen, Zeichenketten, Wahrheitswerte
- Ausgabe: print()

Lua-Konsole

- > a = 3.5743
- > b = "Elbe"
- > c = true
- > print(a,b,c)
- 3.5743 Elbe true

- Datentyp:
 Zahlen, Zeichenketten, Wahrheitswerte
- Ausgabe: print()
- Besonderer Datentyp: nil

Lua-Konsole

- > a = 3.5743
- > b = "Elbe"
- > c = true
- > print(a,b,c)
- 3.5743 Elbe true
- > print(d)

- Datentyp: Zahlen, Zeichenketten, Wahrheitswerte
- Ausgabe: print()
- Besonderer Datentyp: nil

Lua-Konsole

- > a = 3.5743
- > b = "Elbe"
- > c = true
- > print(a,b,c)
- 3.5743 Elbe true
- > print(d)

nil

- Datentyp: Zahlen, Zeichenketten, Wahrheitswerte
- Ausgabe: print()
- Besonderer Datentyp: nil

Lua-Konsole

- > a = 3.5743
- > b = "Elbe"
- > c = true
- > print(a,b,c)
- 3.5743 Elbe true
- > print(d)

nil

- Datentyp: Zahlen, Zeichenketten, Wahrheitswerte
- Ausgabe: print()
- Besonderer Datentyp: nil
- Zuweisung: mehrfach möglich

Lua-Konsole

- > a = 3.5743
- > b = "Elbe"
- > c = true
- > print(a,b,c)
- 3.5743 Elbe true
- > print(d)
- nil
- > a,b = b,a

- Datentyp: Zahlen, Zeichenketten, Wahrheitswerte
- Ausgabe: print()
- Besonderer Datentyp: nil
- Zuweisung: mehrfach möglich

Lua-Konsole

- > a = 3.5743
- > b = "Elbe"
- > c = true
- > print(a,b,c)
- 3.5743 Elbe true
- > print(d)
- nil
- > a,b = b,a
- > print(a,b)
- Elbe 3.5743

- Datentyp:
 Zahlen, Zeichenketten, Wahrheitswerte
- Ausgabe: print()
- Besonderer Datentyp: nil
- Zuweisung: mehrfach möglich

Lua-Konsole

- > a = 3.5743
- > b = "Elbe"
- > c = true
- > print(a,b,c)
- 3.5743 Elbe true
- > print(d)
- nil
- > a,b = b,a
- > print(a,b)
- Elbe 3.5743

- Datentyp:
 Zahlen, Zeichenketten, Wahrheitswerte
- Ausgabe: print()
- Besonderer Datentyp: nil
- Zuweisung: mehrfach möglich
- Operationen und Relationen:

$$+, -, *, /, >, <,$$
 etc.

Lua-Konsole

- > a = 3.5743
- > b = "Elbe"
- > c = true
- > print(a,b,c)
- 3.5743 Elbe true
- > print(d)
- nil
- > a,b = b,a> print(a,b)
- Elbe 3.5743
- > print(a .. b)

Elbe3.5743

- Datentyp: Zahlen, Zeichenketten, Wahrheitswerte
- Ausgabe: print()
- Besonderer Datentyp: nil
- Zuweisung: mehrfach möglich
- Operationen und Relationen:

Lua-Konsole

Kontrollstrukturen und Funktionen

```
Lua-Konsole
> if d then
  print(d)
else
  print("d nicht definiert!")
end
```

Kontrollstrukturen und Funktionen

```
Lua-Konsole
> if d then
   print(d)
else
   print("d nicht definiert!")
end
d nicht definiert!
```

Kontrollstrukturen und Funktionen

```
Lua-Konsole
> if d then
   print(d)
else
   print("d nicht definiert!")
end
d nicht definiert!
> 1 = d or 17
```

Kontrollstrukturen und Funktionen

```
Lua-Konsole
> if d then
    print(d)
else
    print("d nicht definiert!")
end
d nicht definiert!
> 1 = d or 17
> print(1)
17
```

Kontrollstrukturen und Funktionen

Lua-Konsole

> repeat
 <Anweisungen>
until <Abbruchbedingung>

Kontrollstrukturen und Funktionen

- ► Selektion
- Wiederholungen

Lua-Konsole

- > repeat
 <Anweisungen>
 until <Abbruchbedingung>
- > while <Bedingung> do
 <Anweisungen>
 end

Kontrollstrukturen und Funktionen

- Selektion
- Wiederholungen

Lua-Konsole

```
> function <Name>(<Parameter>)
     <Anweisungen>
    return <Rückgabeparameter>
end
```

Kontrollstrukturen und Funktionen

- Selektion
- ► Wiederholungen
- ► Funktionen als Variablen

Lua-Konsole

```
> function f(x)
z=2*x+5
return z
end
```

- - Selektion
 - Wiederholungen
 - ► Funktionen als Variablen

Kontrollstrukturen und Funktionen

Lua-Konsole

```
> function f(x)
  z=2*x+5
  return z
end
> f(4)
13
```

Kontrollstrukturen und Funktionen

- Selektion
- Wiederholungen
- ► Funktionen als Variablen

Lua-Konsole

```
> function f(x)
  z=2*x+5
  return z
end
> f(4)
13
```

> f = function (x)
 return 2*x+5
end

Kontrollstrukturen und Funktionen

- Selektion
- Wiederholungen
- ► Funktionen als Variablen

Lua-Konsole

Lua-Konsole

Arbeit mit Tabellen

Lua-Konsole

$$> a = \{3,7.42,22,11.3\}$$

Arbeit mit Tabellen

Lua-Konsole

```
> a = {3,7.42,22,11.3}
> print(a[2])
7.42
```

Arbeit mit Tabellen

Lua-Konsole

- $> a = \{3,7.42,22,11.3\}$ > print(a[2])
- 7.42 > a[2]=5

Arbeit mit Tabellen

Lua-Konsole

> a = {3,7.42,22,11.3}
> print(a[2])
7.42
> a[2]=5
> a[#a+1]=4

Arbeit mit Tabellen

Lua-Konsole

- ► Tabelle als Feld
- ► Tabelle als Datensatz

Lua-Konsole

> Termin={Tag="Montag"}

- ► Tabelle als Feld
- ► Tabelle als Datensatz

Lua-Konsole

- > Termin={Tag="Montag"}
- > print(Termin["Tag"])

Montag

- ▶ Tabelle als Feld
- ► Tabelle als Datensatz

Lua-Konsole

```
> Termin={Tag="Montag"}
```

```
> print(Termin["Tag"])
```

Montag

> Termin["Ort"]="Konferenzraum"

- ► Tabelle als Feld
- ► Tabelle als Datensatz

Lua-Konsole

```
> Termin={Tag="Montag"}
> print(Termin["Tag"])
```

Montag

- > Termin["Ort"]="Konferenzraum"
- > Termin.Zeit="13:30"

- ► Tabelle als Feld
- ► Tabelle als Datensatz

Lua-Konsole

- ▶ Tabelle als Feld
- ► Tabelle als Datensatz
- ► Tabelle als Objekt

Lua-Konsole

```
>function Termin:Ausgabe()
print("Tag: " .. self.Tag)
print("Zeit: " .. self.Zeit .. " Uhr")
print("Ort: " .. self.Ort)
end
```

- ▶ Tabelle als Feld
- ► Tabelle als Datensatz
- ► Tabelle als Objekt

Lua-Konsole

```
>function Termin:Ausgabe()
  print("Tag: " .. self.Tag)
  print("Zeit: " .. self.Zeit .. " Uhr")
  print("Ort: " .. self.Ort)
end
```

- ▶ Tabelle als Feld
- ► Tabelle als Datensatz
- ► Tabelle als Objekt

Lua-Konsole

```
>function Termin:Ausgabe()
  print("Tag: " .. self.Tag)
  print("Zeit: " .. self.Zeit .. " Uhr")
  print("Ort: " .. self.Ort)
end
>
  Termin:Ausgabe()
Tag: Montag
Zeit: 13:30 Uhr
Ort: Konferenzraum
```

- ▶ Tabelle als Feld
- ► Tabelle als Datensatz
- ► Tabelle als Objekt

Lua-Konsole

Ort: Raum 26h

```
>function Termin:Ausgabe()
  print("Tag: " .. self.Tag)
  print("Zeit: " .. self.Zeit .. " Uhr")
  print("Ort: " .. self.Ort)
end
> Termin.Ort="Raum 26h"
> Termin:Ausgabe()
Tag: Montag
Zeit: 13:30 Uhr
```

- ▶ Tabelle als Feld
- ► Tabelle als Datensatz
- ► Tabelle als Objekt

Vorteile

- Objektorientierte Programmierung möglich
- ,,1000x schneller bei Berechnungen als TikZ"(C. Meigen, Dante2012)

- ► Lual^ATEX: ,,Wenn der Löwe den Mond anbetet " (Patrick Gundlach, Dante 2010)
- ► Einbettung von Lua in T_EX
- ► Motivation: Generalüberholung des 8BitT_EX-Systems
- ► Features: Unicode, direkter Eingriff ins Satzsystem, direkter Lua-Zugriff
- ► Herbert Voß: Einführung in LuaTEX und LuaLETEX. lehmanns media (2013)

Idee: Geometrische Objekte

LATEX-Dokument

\begin{luacode*}

\end{luacode*}

Idee: Geometrische Objekte

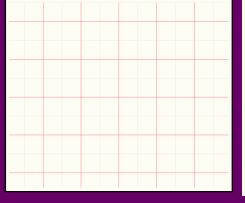
LATEX-Dokument

\begin{luacode*}
require("lua/geometrie.lua")

\end{luacode*}

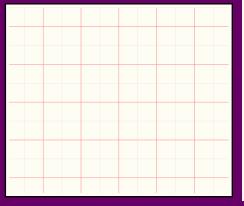
Idee: Geometrische Objekte

LATEX-Dokument


\begin{luacode*}
require("lua/geometrie.lua")
geobib:startBild()

Idee: Geometrische Objekte

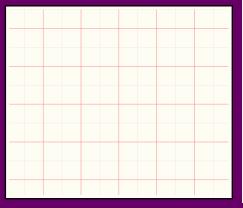
Mit Lua erzeugen


LATEX-Dokument

\begin{luacode*}
require("lua/geometrie.lua")
geobib:startBild()
A = Punkt(-2,-1)

Idee: Geometrische Objekte

Mit Lua erzeugen

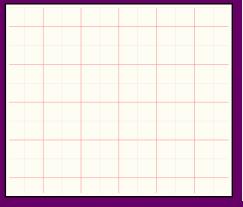


LATEX-Dokument

\begin{luacode*}
require("lua/geometrie.lua")
geobib:startBild()
A = Punkt(-2,-1)
B = Punkt(1.5,1.5)

Idee: Geometrische Objekte

Mit Lua erzeugen


LATEX-Dokument

\begin{luacode*}
require("lua/geometrie.lua")
geobib:startBild()
A = Punkt(-2,-1)
B = Punkt(1.5,1.5)

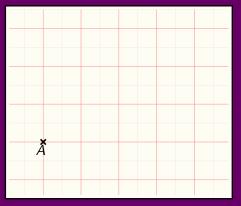
C = Punkt(-0.8, 1.8)

Idee: Geometrische Objekte

Mit Lua erzeugen

LATEX-Dokument

\begin{luacode*}
require("lua/geometrie.lua")
geobib:startBild()
A = Punkt(-2,-1)


B = Punkt(1.5, 1.5)

C = Punkt(-0.8, 1.8)

P = Polygon(A,B,C)

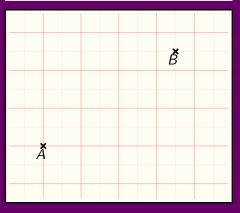
Idee: Geometrische Objekte

- Mit Lua erzeugen
- ▶ Mit tikz malen

LATEX-Dokument

\begin{luacode*}
require("lua/geometrie.lua")
geobib:startBild()
A = Punkt(-2,-1)

B = Punkt(1.5, 1.5)


C = Punkt(-0.8, 1.8)

P = Polygon(A,B,C)

A:MalMich()

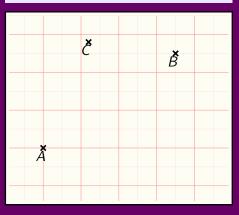
Idee: Geometrische Objekte

- Mit Lua erzeugen
- Mit tikz malen

LATEX-Dokument

\begin{luacode*}
require("lua/geometrie.lua")
geobib:startBild()
A = Punkt(-2,-1)

B = Punkt(1.5, 1.5)


C = Punkt(-0.8, 1.8)

P = Polygon(A,B,C)

A:MalMich()
B:MalMich()

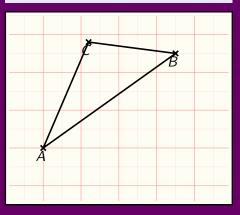
Idee: Geometrische Objekte

- Mit Lua erzeugen
- ▶ Mit tikz malen

LATEX-Dokument

\begin{luacode*}
require("lua/geometrie.lua")
geobib:startBild()
A = Punkt(-2,-1)
B = Punkt(1.5,1.5)

C = Punkt(-0.8, 1.8)


P = Polygon(A,B,C)

A:MalMich()
B:MalMich()

C:MalMich()

Idee: Geometrische Objekte

- Mit Lua erzeugen
- Mit tikz malen

LATEX-Dokument

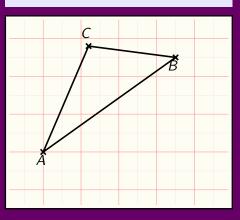
\begin{luacode*}
require("lua/geometrie.lua")
geobib:startBild()
A = Punkt(-2,-1)

B = Punkt(1.5, 1.5)

C = Punkt(-0.8, 1.8)

P = Polygon(A,B,C)

A:MalMich()


B:MalMich()

C:MalMich()

P:MalMich()

Idee: Geometrische Objekte

- Mit Lua erzeugen
- ▶ Mit tikz malen

LATEX-Dokument

\begin{luacode*}
require("lua/geometrie.lua")
geobib:startBild()
A = Punkt(-2,-1)

B = Punkt(1.5, 1.5)

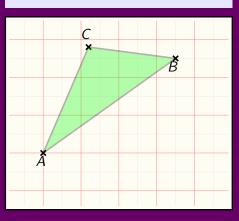
C = Punkt(-0.8, 1.8)

P = Polygon(A,B,C)

A:MalMich()

B:MalMich()

C.Position=[[above]]

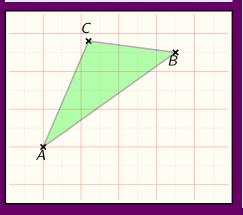

C:MalMich()
P:MalMich()

geobib:stopBild()

\end{luacode*}

Idee: Geometrische Objekte

- Mit Lua erzeugen
- Mit tikz malen



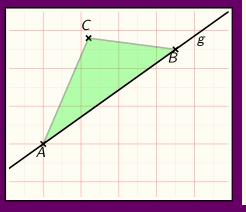
LATEX-Dokument

```
\begin{luacode*}
require("lua/geometrie.lua")
geobib:startBild()
A = Punkt(-2, -1)
B = Punkt(1.5, 1.5)
C = Punkt(-0.8, 1.8)
P = Polygon(A,B,C)
A:MalMich()
B:MalMich()
C.Position=[[above]]
C:MalMich()
P.Fuellfarbe=[[green]]
P:MalMich()
```

Idee: Geometrische Objekte

- Mit Lua erzeugen
- Mit tikz malen
- ▶ In Bewegung versetzen

LATEX-Dokument


\begin{luacode*}

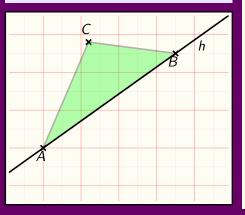
g = Gerade(A,B)

\end{luacode*}

Idee: Geometrische Objekte

- Mit Lua erzeugen
- Mit tikz malen
- ► In Bewegung versetzen

LATEX-Dokument

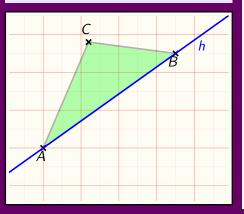

\begin{luacode*}

g = Gerade(A,B)
g:MalMich()

\end{luacode*}

Idee: Geometrische Objekte

- Mit Lua erzeugen
- Mit tikz malen
- In Bewegung versetzen

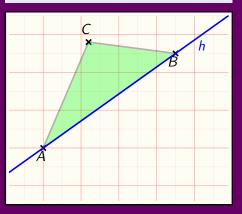

LATEX-Dokument

```
\begin{luacode*}
```

```
g = Gerade(A,B)
g.Bezeichnung=[[h]]
g:MalMich()
```

Idee: Geometrische Objekte

- Mit Lua erzeugen
- ▶ Mit tikz malen
- ► In Bewegung versetzen

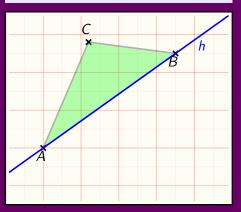

LATEX-Dokument

```
\begin{luacode*}
...
```

```
g = Gerade(A,B)
g.Bezeichnung=[[h]]
g.Farbe=[[blue]]
g:MalMich()
```

Idee: Geometrische Objekte

- Mit Lua erzeugen
- Mit tikz malen
- ► In Bewegung versetzen

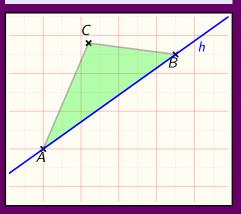

LATEX-Dokument

```
\begin{luacode*}
```

```
g = Gerade(A,B)
g.Bezeichnung=[[h]]
g.Farbe=[[blue]]
g:MalMich()
sigma = Achsenspiegelung(g)
```

Idee: Geometrische Objekte

- Mit Lua erzeugen
- Mit tikz malen
- ► In Bewegung versetzen

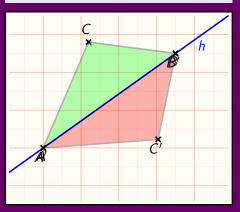

LATEX-Dokument

```
\begin{luacode*}
```

```
g = Gerade(A,B)
g.Bezeichnung=[[h]]
g.Farbe=[[blue]]
g:MalMich()
sigma = Achsenspiegelung(g)
Ps = sigma:Bewegen(P)
```

Idee: Geometrische Objekte

- Mit Lua erzeugen
- Mit tikz malen
- ► In Bewegung versetzen

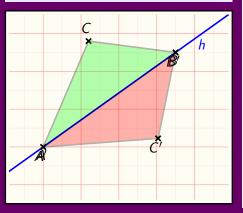

LATEX-Dokument

```
\begin{luacode*}
```

```
g = Gerade(A,B)
g.Bezeichnung=[[h]]
g.Farbe=[[blue]]
g:MalMich()
sigma = Achsenspiegelung(g)
Ps = sigma:Bewegen(P)
Ps.Fuellfarbe=[[red]]
```

Idee: Geometrische Objekte

- Mit Lua erzeugen
- Mit tikz malen
- ► In Bewegung versetzen


LATEX-Dokument

```
\begin{luacode*}
```

```
g = Gerade(A,B)
g.Bezeichnung=[[h]]
g.Farbe=[[blue]]
g:MalMich()
sigma = Achsenspiegelung(g)
Ps = sigma:Bewegen(P)
Ps.Fuellfarbe=[[red]]
Ps:MalMich()
```

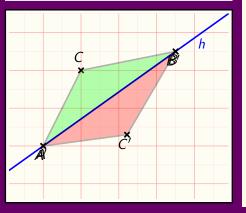
Idee: Geometrische Objekte

- Mit Lua erzeugen
- Mit tikz malen
- In Bewegung versetzen

LATEX-Dokument

\begin{luacode*}

A = Punkt(-2,-1)


B = Punkt(1.5, 1.5)

C = Punkt(-0.8, 1.8)

• • •

Idee: Geometrische Objekte

- Mit Lua erzeugen
- Mit tikz malen
- In Bewegung versetzen

LATEX-Dokument

```
\begin{luacode*}
...
```

A = Punkt(-2,-1) B = Punkt(1.5,1.5) C = Punkt(-1,1)

. .

Vorteile

Mit TikZ und Lua können die Vorteile von TikZ bei der Erstellung geometrischer Zeichnungen genutzt werden, ohne die Nachteile (wie eine komplexe Syntax oder lange Rechenzeiten) von TikZ in Kauf zu nehmen.

PS:

Die von mir in Lua entwickelte Bibliothek geometrie.lua steht frei zur Verfügung und kann (zusammen mit weiteren Beispielen und einer unter Windows leicht installierbaren Version von TeXLive) über den in der Zusammenfassung stehenden Link herunter geladen werden.

4

Arbeitsblatt Geometrie

- Automatische Generierung von Aufgabenblättern
- Automatische Generierung von Musterlösungen

Voraussetzung

Gegeben sei ...

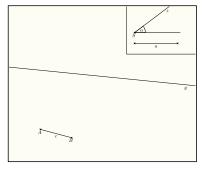
Zeichenfläche

Hier kann die Schülerin mit Zirkel und Lineal arbeiten.

Aufgaben

(a) Konstruiere ...

Voraussetzu Gegeben sei


ZeichenfläcHier kann
Zirkel und Li

Aufgaben
(a) Konstrui

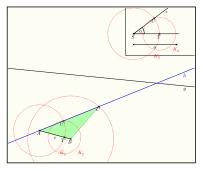
Konstruktionen Dreieck

Voraussetzung

Zu einem Dreieck $\triangle ABC$ seien die Seitenlängen c=3 cm, a=4 cm und das Maß des Winkels $\angle(C,A,B)$ bekannt, $a=\|\angle(C,A,B)\|=37^\circ$ bekannt. In der Konstruktionsvorlage sind die Punkte A und C, sowie die Länge der Seite a und das Maß des Winkels vorgegeben. Weiterhin sei eine Gerade g vorhanden.

- (a) Konstruiere das Dreieck △ABC über der Strecke AC zu den gegebenen Maßen.
- (b) Konstruiere das an der Gerade g gespiegelte Dreieck $\triangle A'B'C'$.
- (c) Zeichne die Geraden $AA^\prime,~BB^\prime$ und $CC^\prime.$ In welcher Beziehung stehen die Geraden zueinander?
- (d) Begründe, warum die in (c) gezeichneten Geraden in der angegebenen Beziehung stehen.

Voraussetzu Gegeben sei


Zeichenfläc Hier kann Zirkel und Li

Aufgaben
(a) Konstrui

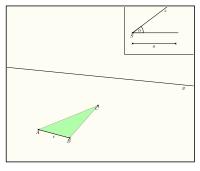
Konstruktionen Dreieck (Musterlösung)

Voraussetzung

Zu einem Dreieck $\triangle ABC$ seien die Seitenlängen c=3 cm, a=4 cm und das Maß des Winkels $\angle(C,A,B)$ bekannt, $\alpha=||\angle(C,A,B)|=37^\circ$ bekannt. In der Konstruktionsvorlage sind die Punkte A und C, sowie die Länge der Seite a und das Maß des Winkels vorgegeben. Weiterhin sei eine Gerade g vorhanden.

- (a) Konstruiere das Dreieck △ABC über der Strecke AC zu den gegebenen Maßen.
- (b) Konstruiere das an der Gerade g gespiegelte Dreieck $\triangle A'B'C'$.
- (c) Zeichne die Geraden $AA^\prime,\,BB^\prime$ und $CC^\prime.$ In welcher Beziehung stehen die Geraden zueinander?
- (d) Begründe, warum die in (c) gezeichneten Geraden in der angegebenen Beziehung stehen.

Voraussetzu Gegeben sei


ZeichenfläcHier kann
Zirkel und Li

Aufgaben
(a) Konstrui

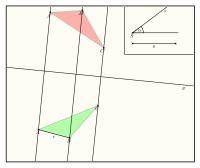
Konstruktionen Dreieck (Musterlösung)

Voraussetzung

Zu einem Dreieck $\triangle ABC$ seien die Seitenlängen c=3 cm, a=4 cm und das Maß des Winkels $\angle(C,A,B)$ bekannt, $\alpha=||\angle(C,A,B)|=37^\circ$ bekannt. In der Konstruktionsvorlage sind die Punkte A und C, sowie die Länge der Seite a und das Maß des Winkels vorgegeben. Weiterhin sei eine Gerade g vorhanden.

- (a) Konstruiere das Dreieck △ABC über der Strecke AC zu den gegebenen Maßen.
- (b) Konstruiere das an der Gerade g gespiegelte Dreieck $\triangle A'B'C'$.
- (c) Zeichne die Geraden $AA^\prime,\,BB^\prime$ und $CC^\prime.$ In welcher Beziehung stehen die Geraden zueinander?
- (d) Begründe, warum die in (c) gezeichneten Geraden in der angegebenen Beziehung stehen.

Voraussetzu Gegeben sei


ZeichenfläcHier kann
Zirkel und Li

Aufgaben
(a) Konstrui

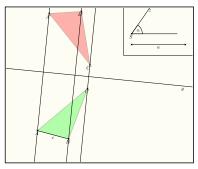
Konstruktionen Dreieck (Musterlösung)

Voraussetzung

Zu einem Dreieck $\triangle ABC$ seien die Seitenlängen c=3 cm, a=4 cm und das Maß des Winkels $\angle(C,A,B)$ bekannt, $\alpha=||\angle(C,A,B)||=37^\circ$ bekannt. In der Konstruktionsvorlage sind die Punkte A und C, sowie die Länge der Seite a und das Maß des Winkels vorgegeben. Weiterhin sei eine Gerade g vorhanden.

- (a) Konstruiere das Dreieck $\triangle ABC$ über der Strecke \overline{AC} zu den gegebenen Maßen.
- (b) Konstruiere das an der Gerade g gespiegelte Dreieck $\triangle A'B'C'.$
- (c) Zeichne die Geraden $AA^\prime,\,BB^\prime$ und $CC^\prime.$ In welcher Beziehung stehen die Geraden zueinander?
- (d) Begründe, warum die in (c) gezeichneten Geraden in der angegebenen Beziehung stehen.

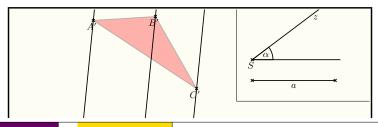
Voraussetzu Gegeben sei


Zeichenfläc Hier kann Zirkel und Li

Aufgaben
(a) Konstrui

Konstruktionen Dreieck (Musterlösung)

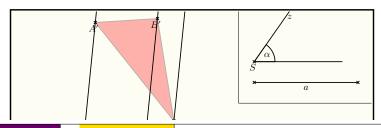
Voraussetzung


Zu einem Dreieck $\triangle ABC$ seien die Seitenlängen c=3 cm, a=5 cm und das Maß des Winkels $\angle(C,A,B)$ bekannt, $\alpha=||\angle(C,A,B)|=55^\circ$ bekannt. In der Konstruktionsvorlage sind die Punkte A und C, sowie die Länge der Seite a und das Maß des Winkels vorgegeben. Weiterhin sei eine Gerade a vorhanden.

- (a) Konstruiere das Dreieck $\triangle ABC$ über der Strecke \overline{AC} zu den gegebenen Maßen.
- (b) Konstruiere das an der Gerade ggespiegelte Dreieck $\triangle A'B'C'.$
- (c) Zeichne die Geraden $AA^\prime,\,BB^\prime$ und $CC^\prime.$ In welcher Beziehung stehen die Geraden zueinander?
- (d) Begründe, warum die in (c) gezeichneten Geraden in der angegebenen Beziehung stehen.

Voraussetzung

Zu einem Dreieck $\triangle ABC$ seien die Seitenlängen c=3 cm, a=4 cm und das Maß des Winkels $\angle (C,A,B)$ bekannt, $\alpha=||\angle (C,A,B)|=37^\circ$ bekannt. In der Konstruktionsvorlage sind die Punkte A und C, sowie die Länge der Seite a und das Maß des Winkels vorgegeben. Weiterhin sei eine Gerade g vorhanden.



Aufgaben (a) Konstrui

- (a) Konstruiere das Dreieck △ABC über der Strecke AC zu den gegebenen Maßen.
- (b) Konstruiere das an der Gerade g gespiegelte Dreieck △A'B'C'.
- (c) Zeichne die Geraden $AA',\,BB'$ und CC'. In welcher Beziehung stehen die Geraden zueinander?
- (d) Begründe, warum die in (c) gezeichneten Geraden in der angegebenen Beziehung stehen.

Voraussetzung

Zu einem Dreieck $\triangle ABC$ seien die Seitenlängen c=3 cm, a=5 cm und das Maß des Winkels $\angle (C,A,B)$ bekannt, $\alpha=||\angle (C,A,B)|=55^\circ$ bekannt. In der Konstruktionsvorlage sind die Punkte A und C, sowie die Länge der Seite a und das Maß des Winkels vorgegeben. Weiterhin sei eine Gerade g vorhanden.

Aufgaben (a) Konstrui

Aurgabe

- (a) Konstruiere das Dreieck △ABC über der Strecke AC zu den gegebenen Maßen.
- (b) Konstruiere das an der Gerade g gespiegelte Dreieck △A'B'C'.
- (c) Zeichne die Geraden AA', BB' und CC'. In welcher Beziehung stehen die Geraden zueinander?
- (d) Begründe, warum die in (c) gezeichneten Geraden in der angegebenen Beziehung stehen.

Zusammenfassung

- Mit Lua erhält eine einfache Skriptsprache Einzug in die Arbeitswelt von LATEX.
- ➤ TikZ in Verbindung mit Lua belebt die Geometrie auf Arbeitsblättern.
- Mit T_EXLive ist ein einfacher Einstieg in Lual[∆]T_EX möglich.

Link

Zip-Archiv (Win-Zielverzeichnis: c:\lualatex)
Enthält: TEXLive 2013, Maxima, TEXStudio
Ermöglicht: Einfaches Arbeiten mit LualATEX mit vielen Beispielen