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DISTRIBUTIONS AND I'-MONOMIALS

1. Introduction.

In the paper [A1], Anderson invented a remarkable method of double complex to compute the sign-
cohomology of the universal ordinary distribution. Das [Da] applied Anderson’s methods and results to
the study of the classical ['-monomials, and got a series of results greatly illuminating the structure of the
Galois group over Q of the extension of Q(£ ) generated by the algebraic -monomials. Using Anderson’s
methods, he was also able to give elementary proofs of some facts about algebraic I'-monomials, which
previously could only be proved with the aid of Deligne’s theory [D] of absolute Hodge cycles on abelian
varieties. In Das’ paper, he also proposed some questions for further study.

In this paper, we emphasize the applications of distributions in the study of algebraic I'-monomials.
The distribution method introduced by Yin in [Y2] may be applied to any global field. In the largest
part of the paper we consider the two cases of the rational number field and of a global function field
simultaneously. We explain, among other things, that two criteria for an element to belong to the
first or the second sign-cohomology of the universal ordinary distribution are direct consequences of the
universality of some distributions constructed from partial zeta functions. This answers Thakur’s question
9.7(c) in [Th]. In the rational number field case, this gives new proofs of some results in Das’ paper, and
also gives an affirmative answer to one of the questions listed in the end of Das’ paper. In this paper,
we also define a new I'-function in characteristic p. Let k be a global function field. We fix a place oo
of k. Let C; be the completion of the algebraic closure of ko. Thakur [Th] defined a characteristic-p
I-function from Cj to Cj, U {o0}, and studied this I'-function carefully. Our new I'-function is defined
on the set of non-zero fractional ideals of k and takes values in C, U {oco}. The advantages of the new
I'-function are that we can consider the Galois action on it and that we can apply the distribution method
to it. We study the analogues of the properties for the new I'-function of the reflection and multiplication
formulas of the classical Euler gamma function. As a direct consequence, we get the algebraicity of
some monomials of this I-function. At the same time, we explain the result of Koblitz-Ogus [KO] on
the classical I'-monomials. Finally, we connect algebraic I'-monomials with the cyclotomic units. In the
classical case, this result was first given by Das [Da] by using Anderson’s double complex. For further
properties of this new I'-function, one needs to develop Anderson’s theory on solitons to show the analogue
of Deligne’s reciprocity, and to develop Anderson-Das’ theory on the double complex to study its Galois
theoretic characters. The analogue of Deligne reciprocity [D] in the case of the rational function fields has
been given by Sinha [S1] by using Anderson’s solitons [A2]. These algebraic I'-monomials may be a new
supply of special units of abelian extensions of a global function field, and may rule out the constant factor
in the unit-index formula in [Y1]. Perhaps this gamma function will also give the answer to Thakur’s
question 9.7(d) in [Th].

In this paper, we also raise two conjectures on the universality of distributions of special values of
L-functions and of our I'-function. The former is a great generalization of the classical Bass theorem [B]
on the cyclotomic units (conjectured by Milnor), and the latter is a characteristic-p analogue of Rohrlich’s
conjecture, which is a major unsolved conjecture in transcendental number theory.

2. Global distributions.

Global distributions here mean distributions of global fields. This concept was introduced by Yin
[Y2] recently. In this section, we recall the definitions and some known results in this direction. These
definitions and results will be used later.

Let k be a global field, i.e., a number field or a global function field. In the function field case, we
fix a place co of k with degree do and fix a sign function sgn on ke, see (Def.4.1, [H2]). Let A be
the Dedekind subring of k& consisting of the functions regular outside of co. An element = € k is called
(totally) positive and denoted by z > 0 if sgn (z) = 1. In the number field case, the concept of totally
positive is in the ordinary sense. Let A be the integral closure of Z in k. In both cases, let T (resp. Tp)
be the set of non-zero integral (resp. fractional) ideals of A. In Tp, we define an equivalence relation (in
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the “narrow sense”) as follows: a ~ b if and only if there exists € 1+ b~! and x >> 0 such that a = xb.
If the totally positive condition is removed, we get another equivalence relation ~’ in the “wide sense”.
The equivalence relation ~ has the following properties, whose proofs we leave to the reader.

Lemma 2.1. Let a,b,m € Ty and let u,0 € Ty. We have

(1) If u ~ v then um ~ om. Furthermore, if m is coprime to the fractional parts of u and v, then the
inverse is also valid.

(2) am~1 ~ bm™! if and only if a and b are in the same narrow ray ideal class of conductor m.

(8) The set of ~-equivalence classes of fractional ideals v such that mv ~ u is finite.

Remark: In the function field case one can fix a finite set {o01,---,00,} of places of k (not just
a single place as above), and fix sign-functions {sgni,--- ,sgn,} at each place. Let A be the Dedekind
subring of k of functions regular outside of all oo;. Then all the concepts above and below about
distributions can be extended to the general case. But we can not define a gamma function, the main
object we study in the paper, in this general case. So in this paper we restrict to the simple case of a
single place.

An ordinary distribution of k is a function f from T, to an abelian group V that factors through
To — Tp/ ~, and satisfies the following relations, for all u € Ty and all m € Ty,

fw =3 o)), 2.1)

where v; runs over a complete set of representatives for ~-equivalence classes in the set of frational ideals
v such that mb ~ u. By Lem.2.1(3) the sum above is a finite sum. This definition fits into Mazur’s
general framework of distributions on a projective system of finite sets (cf. [Y2]). In this paper we call
an ordinary distribution a distribution for simplicity. f is called even (real in [Y2]) if it factors in the
wide sense, and called punctured if it is defined only on Ty \ Tp. The level m group of f is the subgroup
of V generated by f(am 1) with a € Ty (and m{ a if f is punctured).

Let G, be the narrow ray class group of £ of conductor m and let G = liin Gn. For 0 € G and

am~! € Ty , let 0 be the image of o under the natural map G — G4, where o} is the Artin symbol
associated to the integral ideal b. We define of(am~!) = f(abm™1!), then of is also a distribution by
Lem.2.1(1). For any function defined on Ty/ ~, we can define the action of G on it in the same way.
In section 5, we will apply this technique to our I'-function. Let J,, be the classes in Gy, of the ideals
of the form (a) for some a € A such that a = 1(modm). We define J = lim J,, C G and call it the

—

sign-subgroup of G, following Anderson [A1]. Notice that J is finite. Let s(J) € Z[G] be the sum of the
elements in J. The distribution f is called odd if s(J)f is the zero distribution. Note that in [Y2] we use
the term “non-real” for odd, which is easy to misunderstand. The even distributions can also be defined
as those on which J acts trivially. Especially when |J| = 1 there is no non-trivial odd distribution. This
happens in the case of totally imaginary number fields and in the case of function fields with constant
field of 2 elements. The V-valued distribution f is called universal if for any distribution g : Tp — W
there exists a unique homomorphism A : V. — W such that ¢ = hAf. One can construct a universal
distribution via the free abelian group generated by Ty/ ~ modulo the distribution relations. We denote
by Am (resp. AL, A% (AY%)*) the level m group of a universal distribution (resp. a universal even (odd),
a universal punctured, a universal punctured even (odd) distribution), and call them the universal level
m groups. They are G-modules via the action of G on f. All the concepts above are the extensions of
the corresponding concepts on Q/Z (i.e., where k = Q is the rational number field). In both cases of the
rational number field and of the rational function field over a finite field, the structures of the universal
level groups are determined completely, see [Thm 12.18, Wa], [GR] and [Ba]. For a general k, we only
have the following partial results, see [Sect.3, Y2].

Theorem 2.2. rankAy, = |Gunl|. If p1|Gn| for some prime p, the p-part of tor(Aw) is zero.
We can not determine the torsion completely. But in some cases A, is torsion free.
Theorem 2.3. Assume that k = Q or a function field. Then Ay ~ Z!%xl,

In the case k = Q, this theorem is due to Kubert [K1]. In the function field case, it is due to Anderson
[Al] and Yin [Y2] independently. Let A = lim Ay and let AT = lim AZL respectively. Let H!(J, A) be the

t-th Tate cohomology of the G-module A. We have
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Proposition 2.4. Assume that k is the rational number field or a function field. Then

tor(AT) ~ H(J, A) and  tor(A7) ~ H?*(J, A).

Proof. For these two kinds of fields of k, J is cyclic. Let j be a generator of J. We claim that H(J, A) =
tor(A/(1 — j)A). This implies the first isomorphism since A/(1 — j)A ~ AT. Let a € A be such that
na € (1 — j)A for some integer n. Then ns(J)a = 0. So s(J)a = 0 as A is torsion-free. Noting that
H'(J, A) is a torsion group, we get the claim. The proof of the second isomorphism is similar.

We mention that, in the rational number field case, Kubert [K2] computed the cohomology H*(J, A)
building on Sinnott’s ideas [Si], and in the function field case, Anderson [A1l] computed it by a new
method. Let wy be the number of roots of unity in k. Then wj annihilates the cohomology group
H*(J, A).

In the end of this section, we recall the definition of Stickelberger distributions. Let f : Ty — C be
a distribution with complex values. Let Q = 1i_r>n C[Gm]- The Stickelberger distribution associated to f is

defined to be St(f) : To — Q, where for u = am™! € Ty,

St(f)(w) =Y f(bu)oy?,
b

and where b € T runs over a complete set of representatives of the classes in Gy, .

3. Some universal distributions.

In this section, we construct some universal distributions in the cases of the rational number field and
of a function field by using the partial zeta functions.

At the beginning, we still assume that & is a global field. Let m,a € Ty be coprime. Let wy, be the
index of the totally positive subgroup in the group of units congruent to 1 modulo m. Let (i (s,a) be the
partial zeta functions of the wide and the narrow ray class of a modulo m, respectively. It is well-known
that they can be extended to the whole complex plane and are holomorphic except for a pole at s = 1.
Let f~(am~1) be the first non-zero coefficient in the Taylor expansion of {; (s,a) at s = 0. Assume that
m is not the unit ideal e, let fT(am™!) be the first non-zero, say s”, coefficient in the Taylor expansion
of wn(t(s,a) at s = 0. We know that f~ is a distribution and f* is a punctured even distribution,
with complex values [Sect.2, Y2]. The distribution f* is of great arithmetic interest, since the value of
L-function at s = 1 associated to a real idele class character can be expressed as a finite sum by using
this function. On this distribution, Yin raised the following conjecture (unpublished before):

Conjecture 3.1. Assume that k is a number field. Then f+ is a universal punctured even distribution
with values in torsion-free abelian groups.

When k is the rational number field, this is the Bass’ Theorem [B] (conjectured by Milnor). Let
F* = St(f*) be the Stickelberger distributions associated to f*, respectively. F* is punctured. Let
fe(a) be the coefficient of s” in the Taylor expansion of w.(} (s, a) at s = 0. We define

F+(a) = Z(fe(ub) - fe(b))ah_l,

b

where b runs over all representatives of the classes in Gy, for some m. Notice that F*(¢) = 0. Let
Q' = lim C[Gw]/(5(Gn)), where s(Gy) is the sum of the elements in Gn,. We let F* = St(f*) take
—

values in ' through the natural map Q@ — Q'. Then F* becomes a non-punctured even distribution
[Y2]. Especially, when k is the rational number field or a function field, we claim that F'~ is odd. For
u=am~! € Ty with (a,m) = ¢, we have

SHF~(w) =33 ¢0,000)07" =3 3 N@))lemooy
a b

b 0#£zl4e(bu)—?

where a runs over all representatives of the principal ideals aA with a € 1+ m modulo the principal ideal
aA with o € 14+ m and a > 0. Further we know that the inner sum in the last equality is 0 if m # ¢ and
is —1 if m = ¢. In the rational number field case, this is Euler’s equality .., 1 =0, and in the function
field case, we refer to [Prop.6.1, H2]. We get the claim.

Furthermore, we have the following theorem.

IEZ
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Theorem 3.2. Assume that k is the rational number field or a global function field. Then FYt is a
universal even distribution of k subject to the condition F*(¢) = 0 and F~ is a universal odd distribution
with values in abelian groups in which wy, is invertible, where wy, is the number of roots of unity in k.

Proof. Since A* only have wy-torsion points, we only need to check the ranks of the level groups of F'*.
Let Ff and T be the level m groups of F* in Q' and in (), respectively. Then Ff = T&/s(Gw)Tit.
Let G be the group of complex characters of Gy,. A character x € G is called real if X(Jm) = 1. We
extend the definition of x linearly to C[Gy,]. By Thm 3.1 in Chap. 1 in [KL] we have

rank(Fiy) = #{x € G | x(F) # 0} = #{1 # x € G | X(T37) # 0}-

Since F'* is even and F~ is odd, we see that x(7) = 0 if x is not real and x(T,;) = 0 if x is real. Now
let 1 # x € Gn with conductor f. Let L(s,x) be the L-function associated to x. In the function field
case, it does not contain the Euler factor at oo. We first assume that x is not real. Then

= [Gnl c®) = Crl o, 2) 20
Zf (af ! |G|Zf Hx(b G L0 #0,

where a and b run over the representatives of Gy and of Gy, respectively. Next suppose that x is real.
Then when f # ¢, we have
|G|

451y — 19m|

L'(0,x) # 0.
When § = ¢, let a € Ty be such that x(a) # 1. We have

X(PH@) = 2 0@ - DE'0,0 20,

Thus we get
rank(Fy) = |Gul/|Jn] =1 and  rank(F) = (|Ju| = 1)|Gunl|/[Jul-

Now we consider the distribution F' = F+ + F~. Since FT is even and F~ is odd, the level m group
F, has the same rank as that of Fi} + F,;. The latter is a direct sum. As Ay, is free of rank |G|, we
must have that

rankA} = rankF} +1 and rankA = rankF .
This completes the proof.

We can produce a universal even distribution from F* as follows. Define F*(¢) = a for some a.
Let Ft(a) = Ft(a) + aif a € Ty and Ft(a) = F*(a) if a € Ty \ Tp. Clearly Ft is a distribution.
Choosing a conveniently, for example a € Q' \ ImFT, we get a universal even distribution with values in
abelian groups in which wy, is invertible. For simplicity, we also denote F* and F~ the limits of their
level groups, respectively. The theorem above implies

Corollary 3.3. We have the following exact sequences

+
0 — H'(J,A) — A+ &5 F+ — 0,

and

0 — H2(J,A) — A= L5 F~ — 0,
where ¢+ ([a]) = F+(a) and ¢~ ([a]) = F~(a).



4. Two criteria.

From now on, we always assume that k is the rational number field or a global function field. In this
section, we give two criteria when an element of A is in H'(.J, A) or in H?(J, A). In the rational number
field case, this gives new proofs of some results in [KO] and in [Da], and also gives an affirmative answer
to one of the questions in [Da]. In the function field case, our results are new. Our approach explains the
natural reason of the criteria.

We first give a clear description of A and of A*. Let A = A(k) be the free abelian group generated
by all the classes [a] of T/ ~. We define the action of G on A in the obvious way via the natural map
G — Gn. We identify A with the quotient of A by the subgroup generated by all elements in A of the

form
o] = Yfon~, (11)

b~a
where n € Ty and a € Ty. Let j be a generator of J. We identify A* with the quotient of A by the
subgroups generated by all elements of A of the form (4.1), along with all those of the form [a] — j[a] and
along with all those of the form s(J)[a], respectively. We view H'(J, A) and H?(J, A) as subgroups of
AT and of A, respectively, through the canonical isomorphisms in Prop. 2.4. Let a=}, m;[a;] be an
element in A, and let m be the lem of the denominator of the a;. For o € G, let o be the image in Gy,
of o under the natural map, where o} is the Artin symbol associated to the integral ideal b. Then the
action of o on a is defined as

a? = Zm,[ba@]
(2

If a € Ty, we set fT(a) = f.(a) and define o f+(a) = f.(ab) — f.(b). We have the following criteria.

Theorem 4.1. (1). If ac H'(J, A), we must have Y, m; = 0, where the summation is over all i such
that a; is integral. Further, ac H'(J, A) if and only if Y, m;o f*(a;) is independent of o € G.
(2). ac H?(J, A) if and only if 3, m;o f~(a;) is independent of o € G.

Proof. (1). By Corollary 3.2, ac H'(J, A) if and only if a€ ker¢t. Since F*(e) can be defined freely in
some sense, we must have ), m; = 0, where the summation is over all i such that a; is integral. Clearly
ac€ kerg if and only if the condition in the theorem holds. The proof of (2) is also obvious.

We remark that in the criterion (2) we can assume a; ¢ Tg since f~ (a) = —1 for any integral ideal a.
In some cases, we can write out the criteria more concretely. Let k = Q. We speak now of positive rational
numbers rather than fractional ideals. We know that f~(a/m) =< a/m > —1, where < a/m > is the
fractional part of a/m, and f*(a/m) = log|l — &% | = log(2sinm < a/m >) for m { a, up to a constant
factor. Let o0 € G = Gal(Q* /Q) and let o; be the image of o in G, = Gal(Q(&,)/Q) under the natural
map. The actions of G on f* are ofT(a/m) = log(2sinm < at/m >) and of~(a/m) =< at/m > -3,
respectively. Now let a= ). m;[a;] € A and let m be the lem of the denominators of a;. The theorem
above becomes

Corollary 4.2. Assume that k = Q. We have

(1). ac H'(J, A) if and only if [],(2sinm < ta; >)™ is independent of t € (Z/mZ)*. In this case we
must have a; € 7.

(2). ac H*(J, A) if and only if 3, m; < ta; > is independent of t € (Z/mZ)*.

This corollary gives new proofs of Theorems 8 and 14 and Proposition 12 in [Da], and also gives a
positive answer to one of the questions listed in the end of that paper. Our approach is simple and brings
to light of the essential reasons of the criteria.

Now we consider the function field case. We first consider the case of the rational function field. In
this case, the criteria are also simple and clear. Let k = Fy(T) and A = F,[T]. Let a/m € k/A with
dega < degm. We know that f~(a/m) = (¢ —2)/(q¢ — 1) if a is monic and f~(a/m) = —=1/(g — 1)
otherwise. For a # 0, also f*(a/m) = degm — dega — q/(q¢ — 1), see [GR]. The actions of G on f*
are the same as those in the case k = Q. We recall Anderson’s [§7.6, Th] notation: < a/m >=11if a
is monic and < a/m >= 0 otherwise, where we first normalize, using translation by elements in A, by
making m monic and dega < degm. Notice that < a/m >= f~(a/m) +1/(¢ — 1). For any b € A with
(b,m) = 1, let [b],, be the unique polynomial such that a = [a],,(modm) and deg[a],, < degm. Let
a= ) .m;[a;/n;] € A, where a;,n; € A are coprime, and let m be the lcm of the denominators of a;/n;.
Now Theorem 4.1 becomes
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Corollary 4.3. Assume that k =F;(T) and A =F,[T]. We have

(1). ac H'(J, A) if and only if Y, mideg [ta;],; is independent of t € (A/mA)*. In this case we must
have n; { a;.

(2). ac H?(J, A) if and only if 3, m; < ta;/n; > is independent of t € (A/mA)*.

The two corollaries above give an explanation of the question 9.7(c) in [Th].

Finally we consider a global function field k. In this general case, we have not found an obvious
expression for the function f~. But Hayes gave a simple formula at least for the function f*. We now
recall this result.

Let C, be the completion of the algebraic closure of ko,. For an ideal u € Tp, let £(u) € Cy be
the &-invariant associated to u, which is characterized by the condition that the lattice (A-submodule of
Cr) &(u)u corresponds to some sgn-normalized rank one Drinfeld module. Thus it is determined up to
a non-zero factor in Fy,, the residue field of k at co. We fix a value of {(A). Then by the technique in
[Sect.2, Y3], the value &(u) for any u € Ty is fixed completely. In the paper [Yu], Yu showed that £(u) is

transcendental over k. Let s
ew(s) =s H (1- E) (4.2)

0#£zEu
be the Drinfeld exponential function associated to u. Let vy be the extension to C; of the normalized
valuation at co. We have f (1) = vo0 (£(u™1)ey-1(1)) up to a constant if u € Ty and fe (1) = voo (E(u™1))+
degu up to the same constant when u € Tp, see [§6, H2] or [§7, GrR]. Let a= ), mi[ain; '] € A, where
ai,n; € Ty, and let m be the lem of the fractional parts of a;n;'. Let <u >= f(u) + qi—l, which is an
integral number in the case degoo = 1 by [Sect.6, H2].

Corollary 4.4. Assume that k is a global function field. Let b run over a complete set of integral
representatives of Gn,. We have:

(1). Assume that a= Y mslan;t] + Y, me[ay], where ny { a;. Then ae H'(J, A) if and only if
>y Moo (E(6 7 ar ns)ey_r -1, (1) + 20y meveo(E(b7a; 1)) is independent of b. In this case we must
have )~, m; = 0.

(2). a€ H?(J, A) if and only if 3, m; < ba;n;' > is independent of b.

5. [-function in characteristic p.

We introduce a new characteristic-p I'-function and study its basic properties in this section. Our
new I'-function has the advantage that it is provided with a Galois action. The classical Euler gamma
function has the following well-known functional equations:

T(s+ 1) = s[(s)

[(s)T'(1—s) = w/sinmws
_ (5.1 —5.3)
s+ z)
-

(27) " n2 T (s) = 1:[ I(
=0

We will give the analogous properties for the new I'-function.

Let k be a global function field with constant field F, of ¢ elements. Our I'-function is defined on the
set Ty of non-zero fractional ideals of k. Assume degoo = 1. We will give a remark later how to deal
with general degoo. We define T' : Ty — Cy, U {0} as follows: for u € T,

1
T(u) = (-2,

aEuHa>>0 @
and we call it the gamma, function of k. The reader can compare the definition with that of the Drinfeld
exponential function (4.2). Notice that I'(a) = oo if a € Tg. Thus we only consider the I'-function on
To \ To- We mention that there are many ways to define such a “gamma” function, for example, we
could replace the minus in the products by plus, multiply this gamma function by a factor, or do not
take the reciprocal and so on. But they are the same essentially. We mainly wish that it has properties
analogous with the properties (5.1-5.3) of the classical Euler gamma function. We also point out that
when k = F,(T), our gamma function, via the action of the sign-subgroup (see below), can be identified
to Thakur’s gamma function on k. There are natural extensions of I' to larger sets, for example, to
G x To. But the present function is enough for our purposes to the study of the arithmetic of k. We now
give some properties of this I'-function. The following result may be viewed as an analogue of Eq.(5.1).

6



Proposition 5.1. Let a,b € Ty \ Ty. Suppose that a ~ b. Then T'(a) = '(b) mod k*.
Proof. Choose z € 1+ a~! so that z > 0 and b = za. We have

ro= [ a-3°

0gbeb—1
1
- H (I-—)"
r -a
0KLa€a~1
= II =
a—2x
0La€a—1
-0 I =
a a—2
0La€a—1 0KLa€ca~1,dega<degz
a—1
=T(a) H .

a—x
0KLaca~1,dega<degz

Thus we get the result.

By this result, ' is defined up to a factor in k* on the set (Tp \ Tp)/ ~ of equivalence classes, and
thus we can define the action of G on I" as we mentioned in section 2. More precisely, let oy € Gy, be the
image of ¢ € G under the natural projection. We define

I'?(u) = I'(bu) mod k*,

where we take m to be the denominator of u. We also define the action of G on £(u) in the same way, i.e.,
£7(u) = £(bu) up to a factor in k*. The following result gives the analogue of the reflection formula (5.2)
for the classical I-function. Recall that J is the sign-subgroup of G and s(J) is the sum of the elements
in J.

Proposition 5.2. Let a € Ty \ Ty. Then T*)(a) = eq-1(1) "' (mod k*).

Proof. We have

rO@=]] [ a-07= [I -2 =em,

a
o 0Ka€(aa)~? 0#a€a—?

where « runs over all representatives of the principal ideals aA with o € 1+ m modulo the principal ideal
aA with @ € 1 + m and a > 0. Here m is the denominator of a. This completes the proof.

Since £(a71)eq-1(1) is a division point of a rank 1 Drinfeld module, Yu’s results [Yu] imply that
eq-1(1), thus T*(?) (q), is transcendental over k*.

Finally we consider the analogue of the multiplication formula (5.3) for the classical I-function. For
u € Ty and n € Tp, let w = w(u/un) be a complete set of representatives of u/un. We can assume that
the elements in 1 4+ w are totally positive. Up to a factor in F}, we set I'(u) = (£(A)) 1 /T(u). Let K,
be the normalizing field (i.e., the narrow Hilbert class field) of (k, 0o, sgn), which is generated over k by
the coefficients of sgn-normalized rank 1 Drinfeld modules, see [Part 2, H1].

Proposition 5.3. Let a € Ty \ Ty and n € Ty. Then

L(a) = []T(b;) mod (&)Y,

where {b;} is a complete set of representatives for ~-equivalence classes in the set of fractional ideals b
such that nb ~ a.

Proof. Let w = w(a™!/a~!n). For each b; in the product there is one and only one z € 1 + w such that
b; = za. For a fractional ideal u and an integral number 4, we write u} = {u € u|degu = i,u > 0}. Set

H::O Hae(a—l)j— (a - 1)

t—degn
Hwel—i—w Hi=0 s Hae(a—ln)?' (a - 'Z')
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where t is any integer with ¢t > max{degz | z € 1 + w} + 2g + degn and g =genus of k. We abbreviate
dy = dega and u = degn — dega. Then

HF([’J')

H [(zan™)

z€El4+w

I I a0

z€ltw0kKacaIn

J
a
= 1i
Jo ILIL 1T o=
1=u TEW aE(a—ln)?'
. 2:u Hwew Hae(u—ln)f(a - 1)
=R lim Td
J [IiZ2, Hae(a—l)jr a
| J G | L
= R-T(a) - lim ——5 a€(aln);
i T2, Hae@-nr @
fla—n) e

E@1)#T

=R-T(a)-

The last equality comes from the following fact obtained by Gekeler ([Ge], P.36) that up to roots of unity,
see also ([Th], §3),

Since £(u)/€(A) € K, for u € Tp, we get the result.

Remark. For degoo > 1, write Fy, for the residue class field at co. Choose a set S of representatives of
the classes Iy, /IF;, and denote sgn (a) € S by “a > 0”. We define

rg= J[ a-2

a€a~1,a>0

Then essentially the same proofs work by replacing (u)} with {a € a|dega = i,a > 0}.

6. I'-monomials.

In this section, we explain the algebraicity of some I'-monomials, which is an analogue of Koblitz-
Ogus’s result [KO] for the classical Euler I'-function. Our approach works also in the classical case.

We let T take values in C/ k* through the natural map, where k is the algebraic closure of k in Cy.
Prop.5.1 says that T is a function on Ty \ T/ ~, and Prop.5.3 tells us that I is a punctured distribution.
Furthermore, it is an odd distribution by Prop.5.2. Thus we get

Theorem 6.1. T : Ty \ Ty — C} /k* is a punctured odd distribution.

When k = Q, the theorem is also valid after replacing T' here by T' = v/27/T.

In [Th. 3.1, Y4] Yin gives a sufficient and necessary condition when a punctured distribution can be
completed to a non-punctured distribution. As a corollary we have that a punctured odd distribution
with values in a group on which |J| and |G.| are invertible can be completed to a unique non-punctured
odd distribution with value 0 at the unit ideal e (see [Cor.3.3, Y4]). Here an integer is invertible on a
group means that multiplying by the integer is an ismorphism of the group. The uniqueness can be seen
easily from the distribution relations (2.1).

Since the group C; / k* is torsion free, the punctured distribution T' can be completed to a unique
odd distribution, denoted also by I', with ['(¢) = 1. The same procedure may be applied to the classical
T-function T = \/ﬂ/ T.
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Let S be a complete set of representatives of Ty/ ~. For a € Ty, we denote by a(®) the unique element
in S such that al®) ~ a. Let a= 3", m;[a;] € A. We define

T(a) = [ T(a{®)™.

Note that by Prop.5.1, ['(a) is independent of the choice of S up to a factor in k*. Let m be the lem of
the denominators of the a;. We have

Theorem 6.2. Let the inéegml ideal b run over all representatives of the classes in G, . If Ez m; < ba; >
is independent of b, then T'(a) is algebraic over k.

As we remarked behind Theorem 4.1, we can assume that the a; are not integral. In the rational
number field case, it is Koblitz-Ogus’ theorem, by combining with Corollary 4.2(2). In the rational
function field case, this result, linked with Corollary 4.3(2), first appeared in [§7.8, Th] without proof,
but Thakur mentioned that it can be proved in Koblitz-Ogus’ way.

The proof of the theorem is trivial. Namely, if a satisfies the condition in the theorem, it is a
torsion element of A, by Theorem 4.1. Thus its image I'(a) in C}/k* is also torsion. Noting that
C; /k* is torsion free, we must have I'(a) € k*. Similarly, we get Koblitz-Ogus’s theorem from Corollary
4.2. Essentially, the algebraicity of some I'monomial comes from the distribution properties of the I'-
functions. We conjecture that the inverse of the theorem is also valid. By Theorem 4.1 and Corollary
3.3, it is equivalent to the following conjecture.

Conjecture 6.3. I': T, — C; /k* is a universal odd distribution with values in abelian groups in which
wy, 18 invertible.

This is a characteristic-p analogue of Rohrlich’s conjecture on the classical I-function. The latter
is a major unsolved conjecture in transcendental number theory. The conjecture is trivial when ¢ = 2,
since there is only the trivial odd distribution in this case. The constant factor in the unit-index formula
in [Theorem B, Y1] is also trivial in this case. In addition, in the case of the rational function field,
Sinha [Thm 6.2.4, S2] has proved the transcendence of many special values of Thakur’s I-function by
connecting the special values with the periods of t-motives.

7. Connection with cyclotomic units.

When £k is the rational number field or a global function field, the cyclotomic extensions of k are the
narrow ray class fields of k. They can be described in the obvious manner. The classical cyclotomic theory
is well-known. In the function field case, the cyclotomic extensions are generated by torsion points of
Hayes’ sgn-normalized rank one Drinfeld modules, for which we refer to [Part 2, H1]. The units generated
by these torsion points are called the cyclotomic units [Y1]. In this section, we connect the algebraic
I'-monomials with the cyclotomic units over k.

Let u be a non-integral ideal of k. When k = Q, we set F(u) = |1 — exp(27iu)| = 2sin7 < u >,
where u = uZ. It is a punctured even distribution. When £ is a global function field, we set F(u) =
£(u™)e,-1(1). The following result tells us that F with values in Cj /F% is also a punctured even
distribution.

Proposition 7.1. Let u € Ty and m € Ty. For y € Cy,, we have

H fum)eum(y + ) = {(w)eu(y)

zeu/um

and

I éumem(@) = &w)/Ewm).

O£z Eu/um

Proof. We use the basic fact in non-archimedean analysis that an entire function on C; is determined,
up to a factor, by its roots, multiplicities being counted [Th.2.14, Go].
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Both [], exm(y + x) and ey(y) have the simple root set u. Thus the second equality implies the first.
Let p' correspond to the lattice £(um)um and let D(p},) be the constant coefficient of the isogeny pm. By
[Sect.2, Y3], we have

= D(py,) = H o= H §(um)eym ().
0#acAh 0#zE€u/um

This completes the proof.

Let wy, be the number of roots of unity in k. In both cases, we set I = I'“*/F. We let I take
values in C*/ (Q*)l/ * and in C;/K?, respectively. Here (Q*)l/ °° is the subgroup of elements of C*
for which some power is in Q*. Then I is a punctured distribution. Since I(a)*/) = 1( mod K?) for
a € Ty \ To by Eq.5.2 and Prop.5.2, I is odd. Let a=)",m;[a;] € H*(J, A). Then wya = 0in A~. Thus
I(a)** € (@ )1/ * and € K}, respectively. Let m be the lcm of the denominators of a;. Notice that in
the case k = Q, the level m group associated to I actually takes values in C*/(Q*)Y/™ by Eq.5.3, where
m = |Z/m|. Thus we get

Theorem 7.2. With notations as above, we have T(a)? = r'/2™F(a) in the case k = Q, where r is some
element of Q*, and T(a)“* = r'/“x F(a) in the function field case, with some r € K.

The result in the rational number field case was first given by Das [Th.6, Da] by using the method
of the double complex. Only using distributions, we can give no further information about the constant
r. To get further properties of the new I'monomials, we need to construct the double complex for
global function fields, and also to develop Anderson’s theory of solitons to show the analogue of Deligne’s
reciprocity for the new I'-function.
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