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Abstract*

This paper deals with the construction of nonorthogonal and orthogonal polynomial bases for
particular subspaces of vector fields defined in the unit ball of R3. We present two different
techniques to obtain such bases. The first approach uses vector spherical harmonics to construct
orthogonal sets of solenoidal and potential vector fields by means of ridge functions. The second
one applies differential operators of vector analysis to known polynomial basis functions defined
in the unit ball. This procedure can be generalized to arbitrary Rimannian metrics without any
difficulties. It is shown that both approaches lead to bases according to the subspaces induced
by the Helmholtz-Hodge decomposition of square integrable vector fields. In addition the bases
relying on the approach by ridge functions are othogonal.

1. INTRODUCTION

Many complex problems of mathematical physics arising in theory of elasticity, gas dy-
namics, hydrodynamics, geotomography, tensor and vector field tomography, reduce to a
mathematical formulation with projections of vector or tensor fields as unknown quantities.
Particularly vector fields are the most adequate tools to investigate the distribution of flow
velocity, stress in some specimen or electromagnetic fields in plasma physics, see e.g. [21],
[22], [23], [28] for details.

The problem of vector tomography consists of reconstructing an unknown vector field
in a bounded domain when its ray or normal Radon transform is given. In contrast to
scalar computerized tomography the vector tomography problem does not have a unique
solution since the ray as well as the normal Radon transform has a non-trivial null space.
According to the Helmholtz decomposition every vector field can be represented as the
sum of a potential and a solenoidal vector field. Since this decomposition is not unique,
different conditions to guarantee uniqueness in certain Hilbert spaces have been discussed
in the past, see [29], [26], [6], [1]. The kernel of the ray transform consists precisely of the
potential fields with vanishing boundary values. Hence, it turns impossible to recover the
potential part of a field from the mere knowledge of its ray transform. Only the solenoidal
part can be detected. The null space of the Radon normal transform in turn is equal to
the subspace of solenoidal vector fields with vanishing normal component at the boundary,
see e.g. [20]. This is why the potential part of a searched field can be recovered from its
Radon normal transform. In that sense the ray transform and the Radon normal transform
represent a complementary pair of integral transforms: The entire field can be reconstructed
if one has both transforms as data available and the null space of one transform consists
exactly of those fields which can be recovered by the other one.

About twenty years ago Louis [14] and Maa$l [15] published the singular value decom-
positions (SVD) of the n-dimensional Radon transform and the 3D-ray transform, respec-
tively. To the authors best knowledge corresponding results concerning vector tomography
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still are unknown. This preprint is to be understood as the first step towards the determi-
nation of SVDs for both, the vectorial ray and Radon normal transform on the unit ball
B3 of R3. The presented bases of vector field subspaces in L?(B?, S;) should be appropriate
for a subsequent deduction of SVDs for the two integral operators in the near future.

The construction of the mentioned nonorthogonal and orthogonal bases is accomplished in
two different ways. The first approach uses classical spherical harmonics as starting point
to generate vector spherical harmonics. Similar results can be found in the work of Michel
[17], who constructed a generalization of spherical harmonics for vector fields defined on the
unit sphere. With the help of ridge functions we in contrast derive vector valued functions
supported in B? which build orthogonal sets of potential and solenoidal fields. The second
way achieves a set of linearly independent vector fields with certain properties applying
differential operators such as V, rot and div to polynomials. Polynomial bases of solenoidal
and potential vector fields for the unit disk in R? were derived in [11], [12].

The paper consists of three parts. Section 2 contains the mathematical setup with all neces-
sary notations and definitions and further provides an introduction to the Helmholtz-Hodge
decomposition of vector fields, Zernike polynomials and spherical harmonics. Furthermore
some properties and relations between classical orthogonal polynomials are established. In
Section 3 we give an outline of the deduction of orthogonal vector spherical harmonics in
B3 from classical spherical harmonics and construct bases of orthogonal ridge functions for
subspaces of solenoidal and potential vector fields associated with the Helmholtz-Hodge
decomposition. The construction of bases by applying differential operators to polynomials
finally is described in Section 4. Some fundamentals of orthogonal polynomials as well as
basic properties of Legendre, Gegenbauer, associated Legendre and Jacobi polynomials are
listed in the Appendix.

2. PRELIMINARIES

In this first section we collect all necessary tools for our further investigations. We define
necessary function spaces, important differential operators from vector analysis, we give a
brief outline of the Helmholtz- Hodge decomposition, introduce the Zernike polynomials
and some needful properties of orthogonal polynomials.

Let a Cartesian rectangular coordinate system be given in the Euclidean space R3. For
a point x € R3 we use the notation x = (2!, 2% 2?) as well as x = (z,y,2) for their
coordinates. Vectors are written in bold face letters & = (£1,£2,€%)7, or a = (a',a?,a®)"
The scalar product of vectors x, y is denoted by x -y, and the Euclidean norm by |x| =
V@2 + (22)2+ (23)2. By BP = {x € R® | |x| < 1} and S? = {¢ € R? | |¢| = 1} = OB?
we define the unit ball and unit sphere in R3, respectively.

The space of vector fields — which is equal to the space of tensor fields of rank 1 — defined
on B* and S? is written as S;(B*), S;(S?), respectively. We omit the domain B? or S* if
a confusion is impossible. Tensor fields of rank 0 are called scalar fields or potentials if
they are used to generate potential fields. For k > 0 we introduce function spaces C*(B?),
Ck(S?), CE(B?) of k-times continuously differentiable scalar fields and Sobolev spaces of
order k which are denoted by H*(B?), H*(S?), H}(B?) as usual. We remind that C§(B?)
consists of those functions from C*(B?) having compact support in B® and HEY(B?) is the
H*-closure of C5°(B?). The spaces C*(B3,S;), C*(S?,S;), C¥ (B3, S;) accordingly contain k-
times continously differentiable vector fields and the Sobolev spaces H*(B?,S;), H*(S?,S;),
HEY(B3,S;) consist of vector fields with components being elements of the corresponding




scalar Sobolev spaces.
The space of square integrable vector fields Lo(B3,S;) = H°(B?,S;) is a Hilbert space with
inner product (-,-) and norm || - ||,

(8 b) = (a, b)) = / (a(x) - b(x))dx,

lall* = [lallL,@ss,) = (a, a).

The inner product and norm in the space Ly(S?, S;) = H°(S?,S;) are defined accordingly.
We continue by recalling the basic differential operators of vector analysis. The operator
of gradient V : H*(B®) — H*1(B?,S;), k > 1, acts on a scalar field p(x) as

(00 Op Oy
Ve = (8x1’3x2’8x3) '

A vector field a € H*1(B3,S;) is called a potential field, if a = V¢ holds true for some
function p € H*(B3). In that case we call  the potential of a. The operator of divergence
div : H*(B?,S;) — H*Y(B?), k > 1, acts on a vector field a as

8(11 i 8(12 i 8(13
oxt  Ox? O3

diva =

A vector field a € H*(B3,S,) is called solenoidal if its divergence is equal to zero, diva = 0.
The operator of curl rot : H*(B? S;) — H* (B3 S;), k > 1, acts on a vector field a(x)
according to

rota — 8(13 8(12 8@1 8(13 8a2 8(11
S\ 0x2 023 9x3  Oxl’ Ox!  Ox2
Obviously,

rot(Ve) =0, div(rota) =0, div(Vy) = Ay

are valid for any scalar field ¢ € H?(B?) and vector field a € H?*(B* S;). Moreover,
solenoidal and potential fields can be characterized uniquely by means of these three fun-
damental differential operators.

Proposition 2.1. a) For every vector field a € H' (B, S;) satisfying rot a = 0, there exists
a potential ¢ € H*(B*) such that a = V.

b) For every solenoidal field a € H'(B? S;), i.e. diva = 0, there exists a vector field
v € H*(B?,S;) such that a = rot v.

c) For every solenoidal field a € H*(B?,S;), diva = 0 with vanishing normal component
at the boundary, i.e. v-a = 0 on OB, where v is the outer normal to the unit sphere OB,
there exists a vector field v € H*(B*,S;) such that a = rotv and v |ggs= 0.

Proof. Statement a) and b) is a well known fact in vector analysis and can be found e.g.
in the book of Kochin [13]. Assertion ¢) is a consequence of Stoke’s theorem. O

2.1. The Helmholtz- and Hodge-decomposition of vector fields

In this subsection we summarize the main results about decomposition of vector fields as
they have been presented in [24].
The Helmholtz-decomposition for f € H' (B3, S;) reads
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f=f+Vv, divf*=0, veHB). (2.1)

It says that every vector field can be written as the sum of a solenoidal part f* and an
irrotational part Vv. Decomposition (2.1) even holds true for f € Ly(B?, S;) when we define
solenoidal fields in the weak sense

/Bg(fs(x) -Vp(x))dr =0, forall p € C°(B?),

which is equivalent to divf® = 0 due to the theorem of Gauss-Ostrogradsky. Thus, (2.1)
allows for a splitting of Ly(B?,S;) into orthogonal subspaces

Ly(B*,S)) = H(div;B*) @ VH, (B?), (2.2)
where

H(div; B®) := {f € Ly(B*.S)) | (£, Vp)Lymrsy =0 forall p € ch(BS)}

denotes the space of solenoidal fields in Ly(B3,S;).
The space H(div;B?) itself again can be split into two orthogonal subspaces. To see this
we write every £* € Hy(div;B?) as a sum f* = f§ + 5 where £, f5 solve

rot ff = rot f* in B?, rotf5 =0 in B3,
divf; =0in B3, divfs =0 in B3, (2.3)
v-ff=0on 0B, v-fi=v £ on 0B?,

respectively. Each of the two boundary value problems (BVP) in (2.3) has a unique solution
and hence 7, f5 are well-defined. Further we deduce from the second BVP that f5 = VA
for a harmonic function h. The vector space of harmonic functions can be described by

Harm(B?) := {h € H'(B?) | (Vh(z) - Vp(x))de =0 for all p € C{]’O(IB%?’)} :

]B3

Again we used the Gauss-Ostrogradsky theorem to get a weak formulation of harmonic
functions which is even valid in H'(B?). Fields f; fulfilling the first BVP in (2.3) are
solenoidal fields with tangential flow at the boundary,

Ho(div; B?) := {f € Ly(B%S)) | divf=0, 2 €B®, v -f(z) =0,z € aJBa3}.

By means of the Gauss-Ostrogradsky theorem it is easy to prove that f; L f5. This means
that the solenoidal fields in H(div;B?) can be decomposed into a sum of solenoidal fields
with tangential flow at the boundary and gradients of harmonic functions

H(div; B*) = Hy(div; B*) @ VHarm(B?). (2.4)

The elements of VHarm(B?) are called harmonic fields. Putting together (2.2) and (2.4)
we get the Hodge-decomposition for square integrable vector fields.

Theorem 2.2. Every vector field f € Ly(B*,S;) can be decomposed into a solenoidal field
5 with tangential flow at the boundary 0B, a harmonic field f; = Vh with h harmonic
and an irrotational part Vv, v € H}(B?) such that

f=f+Vh+Vo. (2.5)

4



That means, the space of square integrable vector fields L,(B?,S) is an orthogonal sum
of three subspaces

Ly(B* S)) = Hy(div; B*) ® VHarm(B*) @ VH} (B?).

The Hodge decomposition (2.5) can be interpreted as follows: f; contains all information
about the curl of the field rotf, the harmonic field VA contains information about the
boundary values v - f and the potential part tells everything about the divergence divf.
The space of harmonic fields VHarm(B?) is closed in Ly(B* S;) with respect to the Lo-
norm topology. In fact VHarm(B?) is the orthogonal complement of VH}(B?) in VH(B?).
A complete system of orthonormal harmonic fields can be generated by means of spherical
harmonics, see [24].

So far we have five fundamental subspaces of vector fields f € Ly(B?,S;): The solenoidal
fields H (div;B?), the solenoidal fields with tangential flow at the boundary Hy(div;B?), the
harmonic fields VHarm(B?), the potential fields VH!(B?) and the potential fields V H} (B?)
with potentials vanishing on the boundary.

In fluid mechanics the harmonic component of a vector field, which is at the same time
solenoidal and irrotational, is also called laminar component.

An overview of historical treatises which led to the Helmholtz-Hodge decomposition theo-
rem and the proof for 3D case can be found in [13|. Concerning this problem we refer also
to [2], [8], [25], [29].

2.2. Spherical harmonics

Let dw be the surface measure on S*. We have [, dw(§) = 4m. We remind that Ly(S?) is
a Hilbert space with inner product

(@.b) = (@, blr.ee) = [ (@()- b(E)d(E).

SQ

and norm
lal” = |lal[],s2) = (a,a).

Any point € € S? can be represented in spherical coordinates
£=V1—1t3(cospe, +sinpey) +te, 0<@p<2r, -1<t<1, t=cos?, (2.6)

where ¥ corresponds to the latitude, ¢ is the longitude and ¢ the polar distance. Equiva-
lently we have
& =sind cospe, +sinv sinpe, +cosve,,

where e,, e, and e, are orthogonal cartesian reference vectors. The complex spherical
harmonics {Y;,;(&€)} are related to the associated Legendre polynomials P! (see Appendix
A3 for a definition) by

(2n+1)(n —m)!
47T(n—‘f-m)! ’ |m| =n, (27)

Yn,m(E) = Nn,m eimgopgn(t), Nn,m = \/

where N, ,, are normalization factors. For negative indices m the associated Legendre
polynomials are defined by (5.13), (5.15). The spherical harmonics are orthonormal with
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respect to the Ly(S?)-inner product

[ Yo ©)Vrrsl€) ) = Sunin

The set of spherical harmonics of degree n is invariant with respect to rotations in the

sense that
n

Von(Aaps€) = 3 Dypr(et .90V (€) (2:8)
for every A, € SO(3), where «, 3 and ~y denote the corresponding Euler angles. Note
that the summation index involves m only and not the degree n of Y, ,,. If we apply
a rotation to a spherical harmonic of degree n as in (2.8), the resulting function is still
in span{Y,,,|m = —n,...,n}. The matrix D™ contains the coefficients of that linear
combination. Furthermore the matrix D™ is the (2n + 1)-dimensional representation of
the orthogonal group SO(3) and is known as matriz of rotation or Wigner’s matriz. It
satisfies

D(n)m’ (C(, Ba ’Y) = /§2 Yn,m(Aaﬁ,’yg)Yn,m’(g) dw(&) .

The orthogonality relation for D™ can be found in standard textbooks on group theory,
for instance Inui et al. [Eq. (77.3), 9] or [30]). It is given as

2m 2w S 2
n . 8
/ / Dﬁn)m, (o, B, fy)Dﬁ\]j}W(a, B,y)sinadadfdy = L(SnN(SmM(SmIM/. (2.9)
v=0Jp=0Ja=0 ’ 2n+1
Note that sin o da df dy is the Haar measure dp of the orthogonal group SO(3).
For the special case v = 0 which is relevant for this paper we have

D (a,B) =D (a,B,0) = N ™8 P’ (cosa), N, = Ny,

where Pg”’m/ are the generalized associated Legendre polynomials and NT%;) are their nor-
malization factors. Explicit representations of P™"™ are found in [3] along with more details
concerning rotations of spherical harmonics. Putting v = 0 weakens the orthogonality re-
lation (2.9) of the Wigner matrix, since the integration with respect to «y is omitted. This
yields

47

/ﬂ D n) a, 3, 7) (a, B,7)sinadadf = mfanfsmM . (2.10)

Note that we lost the orthogonality with respect to m’. When v = 0, equation (2.8) can
be rewritten as

n(Ao€) = Z DY w(€),

where 6 = (cos 3 sin «, sin (3 sin «, cos a).
The summation formulas for spherical harmonics read

4 n
Pn&) =g 2 Yl ¥oule), (2.11)
[n/2] ; 2k
CEP &) =4n > Y Yo or(m)Yn 20a(€). (2.12)
k=0 I=2k—n



Finally we present one of the most important theorems concerning spherical harmonics,
the Funk-Hecke theorem. The formula was first published by Funk in 1916 and later by
Hecke in 1918. A proof of it is found in [p. 247, 5| and [p. 29, 19].

Theorem 2.3. (Funk-Hecke theorem). Let F'(t) be continuous for —1 < t < 1. Then for
every spherical harmonic of degree n we have the identity

1

| P mYus(©do© =27uln) [ PP,

-1

where P, denote the Legendre polynomials of degree n.

2.3. Zernike polynomials

Zernike polynomials form a complete orthonormal system in Ly(B?). They play a key role
as singular functions for the Radon transform, see Louis [14] and the X-ray transform, see
Maass [15].

First we define radial polynomials {R"2* k=0,....[n/2], n=0,... }

RZka(p) — pn72kp(0,n72k+1/2) (2p2 . 1)

- CpC
— (22k n— ch Z 2n— 2k+2p+1p2p’ P c [O, 1] : (213)
n k+p

where P\ are the Jacobi polynomials of degree n and type («, ) (Appendix A4.) and
Cr=(3)-

(o) (n+ B)! 2n+oz—|—ﬁ—j)) t+ 1\ B
Pd)(t) = n+a+ﬁ'z TCEY I 5 . —1<t<1. (2.14)

The radial polynomials R}~ coincide with according polynomials in [p. 727,10] up to a
normalization factor of v/2n + 3.

The functions R"~2?* (2.13) are those polynomials of degree n having 0 as n — 2k-fold zero
and satisfying

1
/ Ry (p) By~ (p)p” dp = Opss  RITH(1) =1 (2.15)

0 2n+3
The Zernike polynomials { 2,”( )}, with B =1,...,[n/2], |I| <n—2k,n=0,1,2,...,
are then defined by

Z (%) = AT R () Y, o i(h), x=pop, |¢| =1, (2.16)

where Y,,_o;; are spherical harmonics of degree n — 2k as introduced in Section 2.2. System

{Z(n oki)} (2.16) represents an extension of the circle polynomials of Zernike to R® and
forms an orthogonal basis of Ly(B*). The norms compute to

47

AR e
|| n72k,l||L2(B3) \/m



Any f(x) € Ly(B?), hence has an expansion as

oo [n/2]

ZZ Z fr(ankl nn%z() (2.17)

n=0 k=0 |I|<n—2k

Proposition 2.4. An integral representation of the Zernike polynomials (2.16) in terms
of Gegenbauer polynomials is given as

Zr(zn)le( ) = /S2 C?) (x - &) Yoor(€) dw(§). (2.18)
Representation (2.18) leads to a further useful identity. To distinguish the surface measures

on S? and S' we write dw? and dw!, respectively. Let * = p¢, p = |x| and let S;L =
S2 N {¢*} be a great circle, then

2000 = [ OO (- €)Y,asl€) d?(6)
= / /1 3/2) t¢+\/1—t2n)) ngkl(tqb—l-\/l—t?n)dw( ) dt

dt
1—¢2

= / P (tp) / Yookt (tg + V1= 21)V1 — 2 dw'(n)
-1 st
¢L

- /1 CcB/2) (tp)/ Yi2k,1(€) dw(§) &
" gg—t 7 v1-—t

1
— 27a(@) [ O )P0,

-1

where we used

Yo ori(§)dw(€) = 2mV1 — 12 Py i (t)Yo_or1(¢)

=t

as well as the replacement & = t¢p + 1 — 2n).
The Gegenbauer polynomials as ridge functions are generating functions for Zernike poly-
nomials. From (2.18) we obtain

[n/2]
CT(L3/2) ( Z Z Z(n _9ok l —2k 1(5)
k=0 |I|<n—2k

2.4. Additional properties of orthogonal polynomials

The following lemma contains some important integral relations of orthogonal polynomials.
Their proofs are omitted here and are mainly based on the formula of Rodriguez (5.8),
integration by parts and recurrence formulas, see Appendix.



Lemma 2.5. For 0 < p < k < [n/2] we have integral relations

! n—2p _ \/7_T(n — 2p)'
@ [ Pt it = g
(b) / 11 tC2 () P(t) dt = 2712%

! 2n
(©) /1 P (R0 it = s

1
(d) C32(pt) Py_oi(t) dt = 2Ry (p)
1

(e) / 1 COD ()P _op(t) dt = 2.

1

From Lemma 2.5(a) we derive for the special cases p =0 and p =k =0

v B V!
/_lt Foan(t) dt = 2kIT(n — k + 3/2)
o V)t (nl)%2n
/_lt Fult) di = 2rT(n+3/2)  (2n+ 1)’

respectively.

Proposition 2.6. For x = pg, &£ € S?, the identities

n/2)
(a) 3/2) Z 2n o 4k + 1 n— Qk‘P(O n— 2k‘+1/2)(2p )Pn—Qk‘(¢ . 5) ,
k=

(b) /82 CO2) (x-€)CED (g -m) do(€) = 4nCP2) (x - m), k=0,..., [Q} 7

2
4
(€) [ CRPE X)L 0 m) e = 5 =G (€ )

are valid.

Proof. a) Suppose that x = pp, p = |x| and € € S?. Gegenbauer polynomials have an
expansion

2 m — 2p+ 1)
CHPx €)= on Z(_l)ppl((nn_ Qp;T(; —)p)u (- &)
s . . .

The nth power of the inner product (n - £)" for n, £ € S* can be written as

[n/2]

w1 n—2p+1/2 '
(m-&" = 2n\/7_m!pzop!r(n—p+3/2)P”‘2”(" ¢)
[n/2)
B 2”+1\/7_Tn!pgoplf(n—p+3/2)(n—p+3/2) o &)



which yields

[n/2]
O 8) = 50 2 N gy iz v 2

[n/2] .
n—2p—2j+1/2
X P,_o, 2i(h-&).

2 G-z e 8

By a change of the summation index £ = j + p and a subsequent change of the order of

summation we obtain

[n/2]

CP (x - €)

2 & O(_ I T
[n/2]
- 2k + 1/2
[n/2}
-V Z(n — 2k +1/2)P, or(¢p - §)
k=0
k
—1)P(2n — 2p +1)1p" 2
szzgg% 2pp —p)lk—p)!T'(n—p—Fk+3/2)
/2]

= VT Y (n—2k+1/2)P, (¢ &)

o

k
2 o wons
R 2= TG k378

Z (n—2k+1/2)p""2*P,_ou(¢p- &)

k
xli< DPCH(2n = 2p+ Do —p— h+ 1)
’f!p:o 22(k=1)(n — p)1(2n — 2p — 2k + 2)! ‘

Putting ¢ = k — p yields
o [/ (—=1)*
CPx-€) = > (0 =2k +1/2)p" *Poan($- )5y

DIC(2n — 2k +2q + D)!(n+q — 2k +1)! ,,

k=0
(=
X
qZO (n—k+q)!(2n + 2q¢ — 4k + 2)!

3
~
N,

[ (=1)*C5,

(n— 2k +1/2)p" P, _o(¢p - &) %D

Il
M

0
N~ )qu'(Qn—2k+2q+1)(n-i—q—%"“l)p2q
(n —k+q)!(2n + 2q — 4k + 2)!(2k)!

q=0

=T
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(-D*C3

n—2/€+1/2) P ok &)t 92k—1

= M\

" ( DICHEN(2n — 2k 4+ 2 + 1)!(n + ¢ — 2k)! S
L= (n—k+q)(2n +2q — 4k + 1)!(2R)! ’

where we used the notation C¥ := (}). Hence,

[n/2] ch02

07(13/2) (x- &) = Z(Qn — Ak + 1)pn72kpn_2k(¢ i € QkZ F 2n—2k+2¢+1 P2

k=0 n—k+q

whence statement a) follows if we take into account that

— % chcgn 2k+2q+1 2¢ _ p(0,n—2k+1/2) o 2
2% Z o pl =P, (2p° —1).

n—k+q

b) We only consider the case k = 0, the proof for k& # 0 follows accordingly. The Gegenbauer
polynomials as ridge functions have representations

[n/2]
CHPMm-&) =4 > YompMYu2kp(€), m, €S, (2.19)
k=0 |p|<n—2k
[n/2]
C3 (x —47TZR” #0) D Vaop(@)Yn2p(§), x=ppeB’, £
Ip|<n—2k
(2.20)
Using these identities and the orthogonality of spherical harmonics gives
[n/2]
07(13/2) (X . 6)07(13/2) (5 . 77) dw(€ (47) Z R~ Qk Z Y, 2kp ka(n)

2
s Ip|<n—2k

= 47T0n3/2 (X . 7)) ,

which is assertion b) for k& = 0.
¢) Applying representations (2.19), (2.20) again and taking into account the orthogonality
relation (2.15) for the radial polynomials R"~?* we derive

/ B2 (¢ . x) OB/ (x 1) dx
[n/2]
(47) / / D RO P Yooyl O
8% lp|<n—2k
[n/2]
x ZR" (o) D Vaokp(@)Yaakp(m)p” dpdu(e)
|p|<n %
[n/2]
(4m) Z/ Rn *(p dp Z Vouoop(€) 2k,p(€)Yn—2n,p(1)
|p|<n—2k
2n+3z > Vo p(§)Yiekp(n) = m CP2 (- n).
k=0 |p|<n—2k
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3. CONSTRUCTION OF A COMPLETE SYSTEM OF ORTHOGONAL
VECTOR FIELDS BY MEANS OF RIDGE FUNCTIONS

The construction of complete orthogonal systems in L,(B?, S;) corresponding to the sub-
spaces generated by the Hemholtz-Hodge decomposition (2.5) is subject of this section.
This construction is derived with the help of vector spherical harmonics and ridge func-
tions. Ridge functions have the property that they are constant orthogonal to some direction
w € §?. We start by introducing vector spherical harmonics and outline some of their basic
properties (Section 3.1). Then we describe the construction of orthogonal bases with the
help of ridge functions involving vector spherical harmonics (Section 3.2).

We start by introducing vector spherical harmonics. We denote the unit vectors corre-
sponding to spherical polar coordinates by e,, e, and ey. They form the so called local
moving triad

e, =& e,= 1 % ey = g
TS ™ T sinbape’ T 90
We will also consider complex reference vectors e., e = —1,0, 1,
e, —ie, 1 1, 8 e, +ie, 1 _1
€1 = =71 71)] =€ = €41 =¢€1 = — =—=\|1]>
Vi Vel 1 vioval

where e,, e, and e, are the standard orthogonal cartesian vectors. We have

e_1 X ey= —ie,l, e X ey = iel, e_1 X e; = —ieg. (31)

3.1. Vector Spherical Harmonics

The concept of spherical harmonics as outlined in Section 2.2 extends to vector fields.
We show that we can construct orthogonal sets in Ly(S? S;) with spherical harmonics as
starting point. The described approach relies on [18], [7], [15], [16].

Let {Y,1(€), n € Ny, |I] <n} be the Ly(S?)-orthonormal set of scalar spherical harmonics.
We define a system of vector spherical harmonics

(y9)(€), neNy, |l <n, j=1,2,3}.

At first we set
1
yoi (€) = €Yo,(€).

For any n € N and || < n we define vector fields ygg(é), j=1,2,3, by

yi(€) = EY,(8), (3.2)
y2©) =2 [ - (& ma e € ) ot (33)
SQ
yOe) = e / Yl (MO (€ -m) do(m) = € x 3,2 (). (3.4)
SQ

12



which are called vector spherical harmonics of degree n and type j.
We continue by summarizing basic properties of the fields yfi 2 If we follow Morse and
Feshbach [18| and put

1 o 1 0
B () —+ |9 Lt 9
ni(£) nnt 1) | o6 T n 0%90

Cni(§) = =€ x Bn,(8),

YTLJ(&)?

2)

. and yfl) up to a normalization

then Morse and Feshbach’s B,,; and C,,; are equal to y

factor. Indeed applying the summation fromula (2.11) and P/ (t) = 02/_21(15) we have the
identities

1 0 1 9 02/721("7 &)
Vit [0 me%} R VZTES TR A

7' Yo (n
\/nn—i—l) T +1§

which together with the orthogonality of Y,,; yields

ynl 5 n(n+ 1)Bnl 5)7

ynl (&) = —v/n(n+1)C, (&)

and thus

1 1 )
yffl) (&) = = [ [n(n —l+ )Y, — (n+1)(n+ Z)Yn_lyl}eg + 1lYn’le4 ,

3 1 1 .

y7(7,,2 (6) = sin 6 |:277/ i 1 [n(n —1 + 1)Y7’L+1,l - (n + 1)(” + Z)Yn—l,l] €y — llYn,le<P:| .
The system {yr(ljz} forms an orthogonal basis in Ly(S? S;). From settings (3.2)—(3.4) we
immediately read that

Exyll© =0, &y2e)=0 € ye =0 (3.5)

The family {y } consists of purely radial vector fields whereas the systems {y } {ynl}
are tangent Vector ﬁelds

The fields y and N 2 are connected to each other. Using the Funk-Hecke theorem (The-
orem 2.3) and formula (b) from Lemma 2.5 we obtain

yole) = [ n - (6 mEVaum Y e mdu(m)
SQ
2 1 2 1 1
=2 [ me e mdstn) - 2 evte) [ s s Rs)ds
2 1 2 1 1
= 714'7: /SQySl)( )0(3/2 (&-n)dw(n) — n;‘ y7(11’2(€) /1 SOT(L?:/f)(S)Pn(S)dS
2 1
= 7141— /S2 ysl)( VOB (¢ m)dw(n )_nysl)(@ (36)

13



Next we calculate the Ly(S?,S;)-norms of the different systems. From according properties
of scalar spherical harmonics we easily get

Hy HL2 §2,81) — =1

The calculation of ||yn /1| is done with the help of (3.6), Proposition 2.6 (b), the Funk-Hecke
theorem and again formula (b) from Lemma 2.5.

Hy ||L2(8251
(an) /S /S /S ()Y (1) O (€ - )2 (& - ) deo(m) e (') e (€)
2”“ /S/S 1 - €) You(n)Yn1(€)CED (& - m)dw(n)dw(€) + n?[ly)]|?

- %/SQ /SQ("?"'?/) Yo i (0)Yoa () CED (- ') deo (m) deo ()

~ @+ U [ V@@l [ O )P+

-1
_ (2n41)°

- [ YamYamds) [ 0P (s)ds

_@n+1)n /S V)Y€ (€) / SO/ () P(5)ds + n?

-1
=(2n+1)n—2n*+n*=n(n+1)

The norms of yff? coincide with those from y®), what follows from (3.4) and(3.5).

n,l?

1y e 80 = /82<ng53<§>) € x yOENdule)
= [ [e- 0@ yie) - € yier] ae - Iv2ie

Proposition 3.1 contains fundamental relations between scalar and vector spherical har-
monics. More specifically, it shows that the vector fields yfﬁ 3 can be written as linear com-
binations of only few scalar fields Y,,;, which implies that they are orthogonal to almost
every Y, .

Proposition 3.1. We have the orthogonality relations
/S YOV dol€) =0, mAn—1 nt1
/SQYSQ(&)Y (O dw(€) =0, mAn—1, n+l
/82 YS’;)(E)Y (E)dw(&) =0, m#n.

Moreover vector spherical harmonics can be represented as sums of scalar spherical har-
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monics as
1

Z anle -1 l+e ee + Z bnle n+1 l+€(€)e €5 (37)

e=—1 e=—1
1
yq(’i; Z an, N e -1 l+6 _6 —n Z bn,l,eYnJrl,lJre(g)efea (38)
e=—1 e=—1
1
() =1 cnpYnrre(€)e—, (3.9)
e=—1

where the coefficients a,;,, by 4 and c,;, are given as

[+ D +l-1 o (n—=0(n+1)
Il = A 5@2n — D2n + 1) Mt = A 2 = D(@2n+ 1)’

)
)
" o n—=0(n—-1-1)
AT 2020 — D20 + 1)

m—Il+1)(n—1+2) n+l+1)(n—101+1)
bn,l,fl = ; bn,l,O = ;

22n+3)(2n+1) (2n+3)(2n+1)

N (RS ESCESET)
mobtl 22n+3)(2n+1)

n+l)n—I>1+1
Cpl,—1 = \/( >( 9 ), Cnl0 = l,

¢m+z+nm—n
Cnl+1 = — B .

Proof. Since the orthogonality relations are a consequence from the representations (3.7)—
(3.9), we restrict the proof to showing the latter ones.

From the recurrence formulas for associated Legendre polynomials, see Appendix A3, and
connection (2.7) we get three recurrence relations for spherical harmonic functions.

1) e¥V1 — t2]\;7lY”vl(£) = V1 — 2P (1)l
:Qnil(%ﬂ() P (1)) et
- 2n1—|— 1 (Nn+11,l+1 Yo (€) = Nn_117l+1 Yn—l,l+1(€)> ;
2) e—iwm]\}mym(@ — o1 2P (1)el
- 2n1—i— 1 (n+D(n+1—-1)P1(t) — (n—1+1)(n—1+2)P7i(t)) eli=e
“ g (T @ - S 0),

15



1 .
3) t——Y, (&) = tPL(t)e"?
Nn,l
1 i
=91 (n=1+1)P. . (t)+ (n+1)P._ (1)) e
1 1
= —{+1 Y, [ Y, _ )
et (= 1 DY ©) + (0 D Yat0))
We remind that
N — (2n+1)(n —m)!
o dm(n+m)!
From 1) and 2) we deduce
1 . . 1
1") 2cosp V1 — t2N Yoi(€) =(e¥+e¥V1— t2N Yo.(€)
n,l n,l
! V(€)= (0= L+ 1) (0 = L+ 2) Va1 1(€)
= Y —(n— n— 1l
2n +1 \ Npg1+1 i Npt1-1 B
1
_N Yn—l,l—l—l(E) + (TL + l)(n + [ — ]-) Yn—l,l—l(&)) ;
n—1,1+1 n—1,1—1
1 . . 1
2') 2sinp V1 — 12 ~ V(&) =i (€9 —e V1 —t2 ~ Y1(€)
n,l n,l
1 —1 —1
= Y, —1+1 —1+2 Y-
1 (Nn+1,l+1 @) =1+ -1+ )Nn+1,zf1 +1,-1(8)
—i —i
—N Yn,171+1(£) — (n + l)(n + [ — 1) Ynl,ll(£>> .
n—1,1+1 n—1,0—1

Writing £ in spherical coordinates as in (2.6) and summarizing 1’), 2’) and 3) yields

1 0
Nn,l . Nn,l
20+ DyH€) = i | —1 | Yorrena(@ + (= 1+ 1) 0 | Yur1a(8)
n+1,1+1 0 n+1,1 1
N 1
— =14+ —1+2)—" | i ]| Vy1a(€)
2Nn+1,l71 0
1 0
— o [ = Vi (©) + () | 0] Vi 1a(€)
2Nn71,l+1 0 anl,l 1
N 1
n,l .
+(n+Dn+1- 1)ﬁ ) Yo1-1(8)-
n—1,1— 0
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It remains to evaluate the coefficients. Some straightforward calculations show

(n+0)(n+1-1)

Ny =D+l =2){(n+1)*(n+1—1)2
V2N, _1,1(2n4+1) 2(n+0)!(n—1)!(2n —1)(2n+ 1)

:\/(n+l)(n+l—1)

2(2n — 1)(2n + 1)

= Qn,l,—1,

(n+1)

Npi B n=0Dn+1-1D!(n+1)?
Non+1)  \[(n+Dl(n—1-1)(2n—3)(2n+1)

:\/ (n—Dn+l) _
(2n—1)2n+1)

Ny B (n—"0!n+1)!
VN @)\ 2+ Dl — 1= 2)1@n - D+ D

:\/(n—l)(n—l—l):a
202n—1)(2n +1) B

(n—I1+1)(n—1+2) N :\/(n—l)!(n+l)!(n—z+1)2(n—l+2)2

V2N,i1-1(2n + 1) 2n+D)!'(n—1+2)!(2n +3)(2n + 1)

=1+ 1)(n—-1+2)
L 22n+3)2n+1)

= bn,l,fla

N e ) o D T Dien s )@n + 1)

:\/(n+l+1)(n—l+1)

(2n+3)(2n+1)

Noy :\/ (n—Dln+1+Dl(n—1+1)2

= bn,l,07

Niy B (n—0Yn+1+2)!
VN @n+ 1)\ 2+ Dl — D20+ 8)(20 + 1)
_ \/(n+l+1)(n+l+2)

2(2n+3)(2n+1)

— Un,l,1-

That gives the first representation (3.7)

yff? (&) = ant,1Yn111(8)8 7 + anioYn-11(8)€0 + ani1 Yo 1111(§)€51
+bns—1Yntr1-1(8)er + anoYnt1(&)eo + ang1Ynt1i41(&)e—1.
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For sake of simplicity we introduce notations
Aple = an,l,ee_ey bn,l,e = bn,l,ee—ea €= _]-7 07 ]-7

and have . ,
= Z an,l,eYnfl,lJre(g) + Z bn,l,eYn+1,l+e(€>-
e=—1 e=—1

The summation formula (2.12) for spherical harmonics together with according orthogo-
nality properties lead to

2 1
o /Sgyiﬂ )OS (& - mdo(n) = = Zam / s (MO (€ - m)duo(m)

2n+1
mee / Visrasem)CY2 (€ - m)duo(m)

e=—1

g

=0

e )Y a3 | Yo O, et

e=—1 |s|<n—1
1

=(2n+1) Z an e Yn-1,4c(€)

e=—1
and
2n+1
V€)= = [ ¥Rme e mastm —nyil(e)
1 1 1
- (2n + ]-) Z an,l,eYn—l,l+e(€) —n <Z an,l,eYn—l,l+e(£) + Z bn,l,eYn+l,l+e(£)>
e=—1 e=—1 e=—1

1 1
- (TL + 1) Z an,l,eYn—l,l+e(£) —n Z bn,l,eYn+1,l+e(£)7

e=—1 e=—1

where we again made use of relation (3.6) and equation (3.7). This is representation (3.8).
Recall that & x ygg (&) = 0. Hence, from (3.7) we obtain

§ : yn ll-‘,—e X An e + § : yn+1 l+e X b"717€ = 07

e=—1 e=—1
or equivalently
1
- Z yg—)l,ue(g) X n,le = Z yn+1 1+e(€) X b e (3.10)
e=—1 e=—1

Applying (3.7) once again gives

1

1
Yfz)ll—i—e( ) = Z an—l,l+e,aYn—2,l+e+a(€) + Z bn—l,l+e,aYn,l+e+a(£)a

a=-—1 a=-—1
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1 1
1
yr(zl1,z+e(§) = Z n 41, 14e,6Y ni4er(8) + Z b1 itesYni2irers(§)-
B=—1 B=—1

Inserting these identities into the right- and left-hand side of (3.10), respectively, yields

1 1 1 1
- Z Z Ap—1,l4¢, X an,l,eYn72,l+e+a(£) - Z Z bnfl,lJre,a X an,l,eYn,l+e+a(€>

e=—1la=-1 e=—1la=-1
1 1 1 1
= Z Z Apt1,04¢,8 X bn,l,eYn,lJreJrﬁ(é) + Z Z bn+1,l+e,ﬁ X bn,l,eYn+2,l+e+ﬁ(£)'
e=—18=—1 e=—1p=-1

Since the spherical harmonics Y,,; are linearly independent we get as an immediate conse-
quence

1 1
Z Z Ap—1,l+e,a X an,l,eYan,lJreJra(g) = O: (311)

e=—1la=-1
1 1
Z Z bn 1Ll+e,a X anle nl+e+a + Z Z An+1,l+¢,3 X anGYn 1+6+g(€) = O, (3.12)
e=—1la=-1 e=—1 =
1 1
Z Z bri1ives X buicYnioiiers(§) = 0. (3.13)
e=—1p=-1

Since yf’; (&) =& x yflzl) (&), see (3.4), we may compute

1
Y€)= +1) Y € xanYu € —n Y €x by Yo (€)

e=—1 e=—1

= (n+1) D ¥ 1€ X A —n Z Yiiiee(€) X b

e=—1 e=—1

2n + 1 : : y’ﬂ 1 lJrG X a"ﬂ,l,ﬁ
e=—1

2n + 1 Z Z Ap—1,l4e,e X ap N eY 72,l+6+6/(€>

e=—1le/=—1

2n+1 Z Z bn 1,0+e,e X anleYnl-i-e-i-e (5)

e=—lée'=-1

= (2n + 1) Z Z bnfl,lJre,e/ X an,l,eYn,lJreJre’(S)

e=—1le'=-—1

:(2n+1)<(bn 11=1,0 X Ap g1+ bp1-1 X A50)Yni-1(€)
+ (bp—1441,-1 X Ang1 +bpo1i-11 X A1) Y01 (§)

+ (bp—1,041,0 X @ns1 + br_101 X Ang0)Yni+1(£)
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=(2n+1) ((bnfl,lfl,O@n,l,fleo X €1+ by_11-1an10€1 X €)Y 1-1(§)
+ (bp—1,441,-10n1€1 X €1 + b1 1-11an;—16_1 X €_1)Y;1(€)
+ (b—1,141,00n,1,1€0 X €1 + bp_111an 1 0€—1 X eo)Yn,z+1(€))

= (2n + 1)i<(bn—1,l—1,oan,z,—1 + bp—1,1,—10n,1,0) Yn—1(&) e
+ (=bn—141,-1An 11 + bp—11-11n1,-1)Yn1(€)eo
— (bp—1,141,00n11 + bn—l,l,lan,l,O)Yn,l-l—l(€)e—1)> ,

where we used (3.10) and (3.11) as well as the obvious identities

e X e_; = elxeoziel,
e Xxe = _ie(]7
e xe; = leg,
ey Xe = e_1Xe = —le_; = ie;g.

This proves representation (3.9), since we may evaluate

br—11-1,00n,1,-1 + bp—1,,-1n10

_ 4l Dn-141) D=1 [m-Dn-1+1) [ (=Dt
-\ @en+DEn-1) \2@2n-1D)@2n+1) 22n+1)2n— D\ 2n—1)2n+1)

:\/ (n+0)(n—1+1) (n+z—1+n—z):\/(””)(”_l“)— Cni1

2(2n +1)2(2n — 1)2 22n+1)2 2+ 1’

— bp_1 41,1001 F 11110001

:_\/(n—l—l)(n—l)\/(n—l)(n—l—l)+\/(n+l—1)(n+l)\/(n+l)(n+l—1)
22n+1)(2n—1)\/ 220 — 1D (2n + 1) 22n+1)(2n— 1)\ 220 — 1)(2n + 1)
m=Il—1n-101) nm+l-1)n+1) I o

22n+1)(2n—1)  22n+1)2n—1) 2n+1 2n+1’

br—1,141,00n,01 + br_11,10n10 =

_ ol —1-1) [(n=Dn—1-1) [(n+Dn+i+1) | (n=DO(n+])
\ @n+1D)(2n—1) 2(2n —1)(2n + 1) 22n+1)(2n — 1)\ 2n—1)(2n + 1)

:\/ (n+1+D(n—1) (n—l—1+n+l):\/(n+l+1)<n_l): Coin

2(2n +1)2(2n — 1)2 2(2n + 1)? 41

O

We conclude this subsection by establishing an extension of the Funk-Hecke theorem (The-
orem 2.3) to vector spherical harmonics.
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Theorem 3.2. Suppose F(t) to be continuous for —1 < t < 1. Then for every vector
spherical harmonics of degree n and type |

/ yU©F(E 1) dw(€) = oy () + arsy (),
| YHOF (€ m) dut) = v m) + v )
/ YOEF(E - 1) dw(€) = asy® ()

hold true, where the constants are given as

2

=5 (n /1 F(s)Pyr(s) ds + (n + 1) /1 F(s)Pyor(s) ds) |

-1 -1

o=y ([ FORa s = [ FoRaG6).

1

Qo1 = n(n + 1)0&12,

Qg = 2;: : ((n +1) /1 F(s)Po_1(s) ds + n/l F(8) Py (s) ds) ,

1 1

Proof. The identities (3.7) and (3.8) can be reformulated as

1
> Yo7 = 5 (ny1(6) +¥3(©)).

1
> buuYusisd€ec = o (0 + Dy - ¥1(©).

e=—1

These equations allow for using the classical Funk-Hecke formula, which together with a
further application of (3.7) implies

1

/yr(zz(ﬁ) (&) dw(€ _QWZ&MG —1ite(m )ee/_ F(s)P,_1(s)ds

e=—1 1

1

1
4203 b Yoeriedmes [ F(5)Paa(s)ds

e=—1 —1

_ 231 1( y() +yff}(€)) /_11 F(s)Py_1(s) ds

1 1
= 0611}’511,2(77) + 0412}’512,2(77).

The other identities follow accordingly. O
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3.2. Complete orthogonal systems of ridge functions in L,(B?, S;)

Using vector spherical harmonics as a starting point we are able to present complete orthog-
onal systems of Ly(B3, S;)-subspaces corresponding to the Helmholtz-Hodge decomposition
(2.5).
Proposition 3.3. The system of vector fields
n -1
{Ai_’l_Q,ﬁ,l, neN, k=0,.. l” } l<n—1- Qk}
n n
U{B1 o m €N, k=0, H ol <n+1-2k)
n -1
U{C;—)Qk,h TLGN, k:Ow“a |:n2 :| ) |l| Sn_Qk}a

where for x € B?

AL (0= [ 3 (00 (x-€) dle). (314)
B o= [y dot), (3.15)
B (%) 1= [ 3 (O (x-€)du@), > 1. (3.16)
Cl) o= [ ¥ €1CE - ©) d(o) (3.17)

forms a complete, orthogonal basis of Ly(B?,S;) consisting of polynomial vector fields.
Thus any f € Ly(B3,S;) has a unique representation

3 o [ [%F]
0 0 n n
= Z bg,z)Bg,z) (x) + Z Z Z &7(1—)1—2k,lA£z—)1—2k,l(X)

=1 n=1 | k=0 |I|<n—1—2k

[5]
+Z Z bgﬁfl 2len+1 le Z Z le n— le( )

k=0 I=|1|<n+1-2k k=1 |l|<n—2k

Moreover Ble 2.1 Cfl )le are solenoidal vector fields, i.e. div Bn ") =0, div Cg?%’l =

+1-2k,0 =
0 and the fields Aflflf%,l are potential vector fields

Agzn—)l—ﬂc,l( ) = Vx . Y—1-0k(&) Poy1(x - &) dw(§), (3.18)

where the potentials

P (%) = /S Vi ok €) P (- €) do(€)

have vanishing boundary values for ¢ € S?

PT(L?i)lka,l(gb) = / Yn—l—%,l(g)PnH(d’ : 5) dw(E)
. 1 (3.19)
= 21 () / Para () Pa (5) ds = 0.

-1
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Proof. The first part of Proposition 3.3 is an immediate consequence from Proposition
3.5. Equation (3.18) follows from (3.2) and P, (t) = ci? (t). The orthogonality of the
Legendre polynomials P, leads to (3.19). O

Proposition 3.4 delivers the representation of the systems (3.14)—(3.17) in spherical coordi-
nates. We will see that they are in some sense generalizations of Zernike polynomials (2.16)

o . (n) (n)
to vector fields. Restricting x = ¢ € S? we shall realize that the fields Anflf%’l7 Ban%’l

and Cgﬁ)%,l are identical to the vector spherical harmonics (3.2)—(3.4).

Proposition 3.4. Let x = p¢, p > 0, ¢ € S*. The families of vector fields (3.14)(3.17)
are represented in spherical coordinates as

n dm n—2— n—
A i) = i) (0= 1= 20 R (p) + (n = 2k) R (0)
47 (2)

+ 27L —1—= 4kynflf2k,l(¢) (RZ_Q_Qk(p) - R2_2k(p)) )

(n) Am(n+1—2k)(n+2—2k) q n- nt-
Bn+172k,l(x) = on — 4k + 3 yn+172k,l(¢) (Rn %(P) - Rn+2 Qk(P))

47‘(‘ (2)
o — a3 mr-anl(®)

X ((n+2 = 2k) Ry (p) + (n+ 1 = 2k) Ry (p)) |

+

Colos (%) = Ay, Yy ()R (p).
For x = ¢ € S* we have

1
473’7(17)17%,1(?’5)7
4

Ag@p%,z(ﬁb)
n 2
B;l1—2k,l(¢) Wyglp%,l(ﬁb)a
C;n—)%,l(ﬁb) = 47TY;3—)2k,l(¢)'

Proof. Applying the Funk-Hecke formula for vector spherical harmonics (Theorem 3.2)
and identity (d) from Lemma 2.5 yields

AP ) = [ Y (O - €)dule)

477' 1)
m—1— 4kyn7172k,l
47 (2)
2n — 1 — 4k "2

(@) ((n =1 =2k) Ry (p) + (n — 2k) By (p))

+ (@) (Rr>7*(p) — Ry (p))

Bfgl—%,z(x) = /SQyT(LQ—f)—l—Qk,l(g)Cng/m(X'£)dw(£)

47T(n+1—2k)(n+2—2k) (1) — n+2—
2n — 4k + 3 Ynt1-200(@) (B (p) — Ry (p))

47T (2)
o kit 3y"+1*2’“’l(¢)

X ((n+2—=2k)Ry " (p) + (n+ 1 —2k) Ry (p)) ,
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Cfﬁ)%,l(x) - /Sg yffi)%’l(&)q(f/?) (x-&)dw(€) = 47TY£L322k,1(¢)RZ_2k(P)'
The boundary values at S? then are obvious, since R 2*(1) = 1 for all n and k =
0,...,[n/2]. O

With the help of the systems (3.14)—(3.17) we can build orthogonal bases of five different
subspaces which are inspired by the Helmholtz-Hodge decomposition.

Proposition 3.5. We have:
(a) { o ok l} forms an orthogonal basis for V Hy (B*) with

1672
on+3

HAE’L@I—Qk,lHLQ(BSvSI) =

(b) { il z} forms an orthogonal basis for VHarm(B?*) with

B (167 (n+1)(n + 2)?
H n+1,lHL2(B3,Sl) - (2n—|—3)2 )

(c) { N 2,”} U {Bfﬁzu} forms an orthogonal basis for VH'(B?).

(d) { 1ok K # 0} U {Cgb—)Qk,l} forms an orthogonal basis for Hy(div;B?) with

B®, . e :\/167r2(n+1—2k)(n+2—2k)
n+1—2k,l1 | L2(B3,S1) on+3 )
n—2k,111 L2(B3,S1) o2n 4+ 3 :

(e) {BnJrl okl) U{C;”_)%,l} forms an orthogonal basis for
H(div; B*) = VHarm(B?) @ Hy(div; B?).

Proof. The second part of Proposition 3.3 tells us that {Afzn_)l_%l} C VH}(B?). Since
due to Proposition 3.4

A@ldk,l(?b) - /gg ygf)k%,z(&)q(zgﬂ)(@b €)dw(§) = 4773’217)1721@,1(91’)7

we may compute

HA 1 2kl||2 / /SQ/SQ yn 1— 2kl yiz)l 2kl(€))

><03/2>< L&)CP (x - £) dw(€) dw(€) dx

2n 1 3 /Sz / y” 1-2x(8 yfz )1 2kl(€/>> CPP (& - &) dw(€') dw(€)
- 1672 H H2 1672
2 + 3 1 2k,1 271/ n 3
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where we applied formula (¢) from Proposition 2.6, Theorem 3.2 and ||y7(11_)1_2k||L2 = 1.
Using (3.5) we obtain

. n d
div B;—zl—Qk,l(X) = /S2 £ y7(12-i)-1—2k,l(€)_07(13/2) (x-&)dw(€) =0

and in the same way one shows div C le(x) = 0 for x € B®. From the fact that

Bfﬁgl 2kz(¢) = 47Ty7(z2-i)-1—2k,l(¢> and Cnn—)2k,l(¢) = 47Ty7(z3—)2k,l(¢) for ¢ € S* (Proposition
3.4) we easily obtain

¢'Bg:21—2k,l(¢) =0, ¢- Cn 2kz(¢) =0, ¢e§,

where we have applied (3.5) once more. Hence we have shown that {Bgﬂrl onpr K F# 0} U
{0} € Hofaiv;B?).

It remains to show that rot B ni1(x) =0in B3. Taking into account that ((j(/\)) oA
and yn+1—2k,l(€) = € X yn_?_l_gkyl, we have

ot B () = | &x i (L) (x- ) du(§)
= 3 [ YO0 x € du®). (3.20)
S2
Since
[n/2]
CO(t) =23 (2n+3 — 45)C 3 (t)
s=0

(formula (5.12)) and

[n/2)
COPN(x-€) =4m Y 2n—4k+ )R (p) Y Yaookp(@)Va-p(&), x=pd,
k=0 \p\<n 2k

which follows from (2.11) and part (a) of Proposition 2.6, we may write

["T—l] [n—12—23]
3CTD(x-€) = 4r > (2n+1-4s) > (2n—1—ds —4k)RI-I2(p)
5=0 k=0

X Z Ynf172572k,p(¢)Yn7172572k,p(€)7 (3-21)

|p|<n—1-2s—2k
where again x = p¢. The last ingredient is the expansion (3.9) with n replaced by n + 1,
yn+ll =1 Z Crt1 e Yn1i+e(§)e—. (3.22)
e=—1

Putting (3.21) and (3.22) in (3.20) finally shows that rot B!"), , = 0 because of n + 1 #
n — 1 —2s — 2k and the orthogonality of the spherical harmonics Y, ;.
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The norms of Bgﬁ:l_%l and C;”_)%l compute to

(2)
HBnJrl 2kl||2 / /82/ yn+1 2kl “Yori- 2191(5,))

x CPP (x - §)CP) (x - €) dw(€') dw(§) dx

T 2n+3 /Sz /Sz <y512ﬁ21—2k7l(€> ’ yg—?—l—%,l(é)) CPR(E- &) dw(E)) dw(€)

1672 Iy H2_167r2(n—|—1—2k)(n—|—2—2k)
C 2n+3 ”+1 2L on+3 ’

Hc(n 2kle2 / /52/ yn 2k:l yq(zg)%z('sl))

x CB2(x . €)COD (x - &) dw(€) dw(€) dx

/S'Q /SQ yn 2kl yS’)Qk (5,)) CT(L3/2) (€ : 5,) dw(ﬁ’) dw(&)

T 2+3
872 .
T+ 3 (/ (s )P”—%(S)ds)/s (yym(é) y£)2k1(5)> dw(€)
_ 16 o, p = 6m = 26— 2k + 1)
2n + 3 n le m + 3 .
Again we used formula (¢) from Proposition 2.6, Theorem 3.2 and ||ynl||L2 ||ynl)||L2 _

n(n+1).
The density of the systems in the corresponding subspaces follows from the density of poly-

nomials in the according spaces. Note that (a) and (b) imply (c¢) and (e) is a consequence
of (b) and (d). O

4. CONSTRUCTION OF COMPLETE SYSTEMS OF VECTOR FIELDS
BY MEANS OF DIFFERENTIAL OPERATORS

We show an alternative way to construct bases of vector field subspaces. Using bases of
polynomial scalar fields defined on the unit ball as starting point complete systems of vector
fields are accomplished by the application of differential operators such as gradient or curl.
The method described in this section is not restricted to polynomials but does also work
for any complete system consisting of smooth functions which are defined on a bounded
Riemannian domain with algebraic boundary.

Again we will find bases for spaces of potential fields VH!(B?), VH}(B?) (Section 4.1),
solenoidal fields H (div; B?), Hy(div; B*) (Section 4.2) and harmonic fields VHarm(B?) (Sec-
tion 4.3). In contrast to the systems constructed in Section 3, the bases generated here are
non-orthogonal.

Nevertheless polynomial bases are useful not only to develop numerical solvers, since they
are simpler to verify on a computer than the ridge functions (3.14)—(3.17), but also to state
theoretical results such as convergence and stability estimates or uniqueness theorems. E.g.
in [4] the reader finds applications of non-orthogonal polynomial systems in vector and
tensor tomography.
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4.1. A polynomial basis for VH'(B*) and VH;}(B?) (potential fields)

Since the multivariate polynomials in (z,y, z) are dense in H'(B?), we find a system of
vector fields which is complete in VH'(B?) by simply applying the operator of gradient V.
The scheme below shows, how the potential fields emerge from polynomials with increasing
degree from top to bottom.

r — Vzx - (1,0,0)
y — Vy - (0,1,0)
z — Vz —  (0,0,1)
? xy —  V(z?), V(ry) —  (22,0,0) , (y,,0)
vz, y* — V(xz), V(y?) —  (2,0,7) , (0,2y,0)
yz , 22 —  V(yz), V(z?) —  (0,z,y) , (0,0,22)
(4.1)
st — V(z5t) —  ((s+1)z*,0,0)
r°y  — V(z*y) —  (sz*ly,2%,0)
2 — V(z2) —  (sz°7'2,0,2%)
ZEkylZm N v(l.kylzm) N (k;xkflylzm7 ll.kylflzm’ mxkylszl)
AR V(z5t) —  (0,0,(s+1)z%)

The following proposition collects basic properties of the space of homogeneous scalar and
vectorial polynomials of degree s. The assertions can be proven easily or can be read
immediately from scheme (4.1)

Proposition 4.1. Let n denote the dimension of the Euclidean space.

(a) The space of homogeneous, multivariate polynomials in R™ of exact degree s has di-
mension N(n,s) = CZ,,_,, the dimension of the space of homogeneous, multivariate poly-
nomials of degree less than or equal to s is given as N(n,< s) = C%,,. In particular we
have N(3,s) = (s+ 1)(s +2)/2, N(3,<s) = (s+ 1)(s + 2)(s + 3)/6.

(b) The dimension Nd(n,s) of the space of potential vector fields in R™ with components
being homogeneous, multivariate polynomials of exact degree s is equal to N(n,s + 1) =
C’jﬁ, the space of potential vector fields with components being homogeneous, multivariate
polynomials of degree less than or equal to s has the dimension Nd(n,< s) = N(n, <
s+1)—1=C?t | — 1. In particular we have Nd(3,s) = (s +2)(s + 3)/2, Nd(3,< s) =
(s+2)(s+3)(s+4)/6—1.

(¢) The vector fields generated by method (4.1) are potential fields. They are linearly
independent and represent a basis of the subspace which consists of all potential vector
fields with components being multivariate polynomials of degree less than or equal to s.
Thus, every such field has a unique representation in terms of (4.1).

(d) Letting s — oo by (4.1) we obtain a system which is dense in VH'(B?).

We proceed by constructing a polynomial basis for VH}(B?) in a similar manner as for
VH'(B?). All homogeneous polynomials with vanishing boundary values at dB* except
0 contain a factor (1 — r?), where r* = z? + y* + 2z2. We call the set of polynomials
having a representation as (1 — r?)p, where p is homogeneous of degree s in R”, the set of
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(5,5 +2)-homogeneous polynomials. We denote this set by II7,,. We generate a system of
nonorthogonal polynomial vector fields in VH}(B?) applying the operator of gradient V
to (s, s + 2)-homogeneous polynomials.

1= =  VQI-1r) - (-2z,-2y,-22)

(1—re — V[(1-rz] — (1—r?=22?, 20y, 222
-y - VII-r - (~2ay,1-r— 22 —2y2)
(1=1%: = V1= — (-2s-2,1-r2 22
(1—rHa? —  V[(1-r)2?] — (20— 2 — 2", -2y, —22%2)
1—rzy — V[(Q—-r)ry] — (y—yr®—22%,z—2r* —2zy?,

—2zy2)
(1—r?2 —  V[(1-7r%)2% — (—222%,-2yz%,22—22r* —22%)
(1—rHzst — V[(1-rHzt ] — ((s—1Dz¥2(1 —1r?) — 22°,
—2x5 7y —2x5712)

L=r)z"2y — V[1-r)ay — ((s=2)a" y(l —r®) = 22"y,
.CI?S_2(1 _ 7,2) _ 2x5_2y2 , —2$S_2y2)

(1—rHzt — V[ -7z — (=2z271, —2yz571,
(s —1)2572(1 — r?) — 22%)

Proposition 4.2 summarizes the main properties of system (4.2). Note that we consider
only polynomials of the type (1 — r?)z*y'2™ k+1+m =s, s > 0.

Proposition 4.2. (a) The space of (s, s+2)-homogeneous polynomials in R™ has dimension
N°(n,s,s+2) = N(n,s) = C%,,_, s> 0. In particular for n = 3 we have N°(3,s,5+2) =
(s+1)(s+2)/2.

(b) The dimension of the subspace VII}, , C VHj(B?), s > 0, is Nd’(n,s,s + 2) =
N(n,s) = C%,, ;. The elements of VII} ., consists of potential vector fields with compo-
nents being homogeneous, multivariate polynomials of exact degree s+ 1. In particular for
n =3 we have Nd"(3,s,s +2) = (s + 1)(s + 2)/2.

(¢) The vector fields generated by method (4.2) are potential vector fields with vanishing
potential at the boundary OB®. They are linearly independent and represent a basis for the
subspace of all potential vector fields with components being multivariate polynomials of
degree less than or equal to s and vanishing potential at OB®. Thus, every such field has a
unique representation in terms of VII .

(d) Letting s — oo by (4.2) we obtain a system which is dense in VH} (B?).

4.2. A complete orthonormal system for the subspace VHarm(B?) (harmonic
fields)

To construct an orthonormal basis for VHarm(B?) we use an approach which is different
from section 4.1 and revert to spherical harmonics which have been introduced in section
2.2. We remind that there are 2n + 1 linearly independent spherical harmonics of degree n
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and they can be represented as

Y,0(0) = P,(cos?), Y,x(0)= le(cos V) cos(kyp),
Y,_x(0) = Y, _1(8) = PH(cosd) sin(kp), k=1,...,n,

where 0 = 0(9, p) = (sin ¥ cos p, sinJ sin ¢, cos¥) € S? for p € [0,27), ¥ € [0, 7] and

dk:
are the associated Legendre polynomials of degree n. Since spherical harmonics are restric-
tions of harmonic polynomials to S?, there is a straightforward manner of extending them
to harmonic functions on R3.

Lemma 4.3. Let (r,0) € Ry x S? be spherical coordinates, i.e. z = r@ for x € R3, and
Y, i (r0) :=1"Y,, x(0). Then,

{?nk}, neN, —-n<k<n (4.3)

forms a system of harmonic functions in R3.

Proof. Spherical harmonics are eigenfunctions of the Laplace-Beltrami operator Ag. We
have
ASYn,k = —n(n + 1)Yn,k

Since
_ o 20 1,
“or2 Tror 2t
we may compute

AYn,k = A(T’n nJg)
= n(n—1)r"" 2, .+ 200" 2V, — " n(n + 1) Y
0, neN, —n<k<n.

O

Applying the operator V to the system {?nk} yields a complete, orthonormal system of
harmonic fields.

Lemma 4.4. The set

{n’l/2 V?nk} C VHarm(B?%), neN, —n<k<n (4.4)

with ?nk from lemma 4.3 is a complete system of Ly-orthonormal fields in VHarm(B?).

Proof. We obviously have n=1/2 V)N/mk € VHarm(B?) from Lemma 4.3. Assume n,n’ € N,

29



—n < k<n, —n' <k <n'. Applying Green’s formula shows

/ (ml/? VY, k() - (n) Y2 VY (x)) dx
B3

= (nn)"1? /a Bg(ayf/n,k)(x) Yy o () dsy — (nn') =1/ /B 3(m7n,k)(x) Y () dac

A /S {ar?n,k(r,e)} Y, w(1,0)do

r=1

= (nn')‘lﬂ/ nY, x(0) Y, (0)do
S2
= (nn/)il/Q n 5n,n/ 5k,k/

since {Y,, 1} forms a complete orthonormal system in L,(S?). It remains to show the com-
pleteness in VHarm(B?). To this end consider an element f = VA € VHarm(B?), h har-
monic, with

/ <V}7nk(3:) : Vh(x)) de =0 foralneN, —n<k<n.
B3
Then, again using Green’s formula, we get
0 = n_1/2/ <V§~fnk(x) . Vh(x)) dx
B3
n_1/2/ (8V§7nk)(x) h(z)ds, — n_1/2/ (A?nk)(x) h(x) dx
OB3 B3

= n /2 /S2 {8r)~/n’k(7“9)}

which implies that » = 0 on S? = 9B? because of the completeness of {Y,, x} in Ly(S?).
The maximum and minimum principle for harmonic functions yield

h(0)do = n'/? / Y,,.x(8) h(6) d0
SQ

r=1

sup h(z) = suph(0) =0

zeB3 0es?
inf A = inf A(O) =
o, ko) = ja,h(6) =0

N - 72
whence h = 0 and thus VA = 0 in B3 follows. This together with the property VHarm(B3)L
= VHarm(B?) ([24], Lemma 4.14) completes the proof. O

4.3. A polynomial basis for H(div;B?) (solenoidal fields)

We consider again the open unit ball B® equipped with the Euclidean metric and use the
notations u = (u;) = (uy,ug,u3) for a vector field on B*. We use again homogeneous
polynomials to construct a basis of solenoidal vector fields. Let z¥y'2™, k,I,m >0, k+1+
m = s + 2 be monomials of degree s + 2, which we collect in the set

_ s+2 s+1 s+1 s k. l.m s+2
M = {25 2%y, Tz 2fyz, 2ty 2 2T
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If we apply the operator V to the set M we obtain

0 0 0
V(ZEkylZm) _ (axx yz a_yxk:ylzm7 &ZEkylZm)

klm>0, k+l4+m=s+2.

The vector fields (4.5) can be divided in three groups, where each of them corresponds to
the number of non-zero components.

1) The first group consists of fields with only one non-zero component. There exists three
different types of such fields,

V(@) = ((s+2)2°,0,0),
V() = (0, (s+2)y°",0) (4.6)
V(z**?) = (0,0, (s+2)z s“) .

2) The second group consists of those fields from (4.5) having two non-zero components.
Again we have three different types,

V(zFyh) = (kxkflyl, laky =1t ), k>0, k+l=s+2
V(zFz™) = (ka* 2™, 0, ma*2™"), k,m >0, k+m=s+2 (4.7)
V(y'z™) = (O, Iyt z™ mylz™ 1), Im>0, l+m=s5+2

3) The third group finally has no vanishing components,

V(xkylzm) — (kxkfly Zm ll’k - 1Zm mxkylzm 1) ’

(4.8)
E,lm>0, k+l+m=s+2.

An additional application of the operator rot to both sides of (4.5) yields

0 = rot(V(z"y'2™))

=rot (gxkylzm,0,0) + rot (0 0 —akylym O) + rot <O, 0, ggckylzm)
ox dy 0

The right hand side consists of a sum of solenoidal fields, the left hand side implies that
they are linearly dependent. Thus a basis of solenoidal vector fields can be chosen in many
ways. We analyze the three groups 1)-3) in order to find the ambuigities and to obtain a
linearly independent set of solenoidal fields.
1) The application of rot to elements of the first group delivers no further information,
hence they are omitted and will not be included to the searched basis.
2) Applying rot to elements of the second group, we find identities

krot(z*'y' 0,0) = —lrot(0, 2"y, 0),
0<k,l<s—i—2, kE+1=s+2,

krot(z"12™,0,0) = —mrot(0, 0, zFz™71),
0<km<s+2, k+m=s+2,

Irot(0, y'~12™,0) = —mrot(0, 0, y'z™ 1),
0<Ilm<s+2, l4+m=s+2.

(4.9)
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because of the linearity of rot.
Alltogether we have 3(s+1) relations and 6(s+ 1) solenoidal fields in (4.9). Thus we include
3(s + 1) of them in our searched basis. In particular we take the fields

rot (kxkflyl, 0, O) = (O, 0, —klzkflyl’l) ,
rot (O, lyt=tzm 0) = (—lmyl_lzm_l, 0, 0) , (4.10)

rot (O, 0, mxkzm’l) = (O, —kmattm L O)

as outcome of group 2).
3) Applying rot to the potential fields of the third group, i.e. on the fields of type V (xz*y!z™),
O<kilm<s+1,k+1+m=s+2, gives

0 = rot (V(z"y'2™))
= rot (kxk_lylzm, laky!=tzm, mxkylzm_l)
= rot (kxk’lylzm, 0, O) + rot (O, lakyt=tm, O) + rot (O, 0, mxkylszl) )
k,dl,m >0, k+l+m=s+2.

(4.11)

A little bit of combinatorics shows that these are s(s + 1)/2 relations and that hence the
sum on the right-hand side consists of 3s(s + 1)/2 solenoidal vector fields. Hence we may
fix s(s + 1) solenoidal fields for the searched basis. The remaining s(s + 1)/2 fields are
omitted since they are linearly dependent. First we rewrite (4.11) as

0 = (07 kmxk_lylzm_l, —kll‘k_lyl_lzm)
+ (—lmxkyl’lszl, 0, kmxkflylflzm) (4.12)

+ (lmxkyl_lzm_l, —kmat 1yl 0) .
We omit the last expressions from (4.12) and include

rot (ka:k_lylzm, 0, ()) = (0’ kmxk‘—lylzm—I’ —klxk_lyl_lzm)
ot (0, la*y' ™2™, 0) = (—tmay' "t 0, Kl Ty ) (4.13)
0<k7l7m<8+1, k—l—l—}-m:s—i—Q

into the searched basis.

Thus we have 3(s + 1) linearly independent solenoidal fields as outcome from the second
group and s(s + 1) solenoidal fields from group 3). Since obviously the monomials x*y'2™
k,l,m >0, k+1+m = s+ 2 span the space of homogeneous polynomials of degree s + 2,
the space of solenoidal vector fields with components being homogeneous polynomials of
exact degree s has the dimension 3(s + 1) + s(s + 1) = (s + 1)(s + 3). This result can
be generalized to solenoidal, symmetric tensor fields of arbitrary rank ¢q. For ¢ = 1 the
assertions of proposition 4.5 are consequences from the investigations above.

Proposition 4.5. (a) The space of solenoidal, symmetric tensor fields of rank ¢ in R™
with entries being homogeneous, multivariate polynomials of degree s has the dimension
Né(n,q,8) = Cf,,, 1C5 g — Cg:ll+n_1C’j:11+n_1. In particular for n = 3 and ¢ = 1 we
have N§(3,1,5) = 3C%,, — Cf = (s + 1)(s + 3).

(b) The elements of the systems (4.10), (4.13) are solenoidal fields, i.e. they are elements of
H(div;B3). They are linealy independent and represent a basis of the subspace consisting
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of solenoidal vector fields with components being homogeneous, multivariate polynomials
of degree s. Hence every such field has a unique extension in terms of (4.10), (4.13).
(c) Letting s — oo by (4.10), (4.13) we obtain a system which is dense in H(div;B?).

We conclude this section giving a brief outline how to perform the described construction
of a basis when B3 is replaced by an arbitrary Riemannian domain B C R3. Let (¢/*) be
the discriminant tensor with e'® = e*! = €312 = —¢?13 = 132 = ¢! = 1/, /7 and zero
components else. Here g denotes the dterminant of the metric tensor, g = det(g,;).
The operator v : H*(S;(B)) — H"7'(S;(B)) assigns a vector field (u;) to a vector field
(tu)® by

(tu) = e*uy,; . (4.14)

The operator v is a generalization of the operator rot for arbitrary Riemannian metrics as
can be seen, if we write (4.14) in an explicit way

tu = ((vu)', (vu)?, (tv)?)
(L (0 a0y 1 (o o\ 1 (o ow
- \yg \0z3 022)7 \Jg \Oz' 023)  Jg \Oz2 Oz'))"
The field v u is solenoidal where we have to take into account that the operator of divergence
§ is transformed with respect to the given metric tensor (g;;),

1 0 ,
6(eu) = (tu)ly + (vu)% + (vu)ly = % 5 (Vg (tu)’) = 0.
Since t and ¢ are analogue expressions for curl and divergence in Riemannian domains, the
method to construct a polynomial basis of solenoidal vector fields outlined in this section
may be inherited without any difficulties. The resulting basis differs from (4.10), (4.13) by
a factor of (,/g)" for each term only.

APPENDIX. Orthogonal polynomials

In the appendix we summarize important facts about orthogonal polynomials. We give
brief overviews of some well known polynomials and their properties.
Let w(t) be a given real valued function which is non-negative in the interval (a,b) and

fulfills fabw(t) dt > 0. Assume further that the integrals fab t"w(t) dt exist forn =0,1,. ...
Then there exists a unique sequence of polynomials po(t), p1(t), ..., pa(t), ... such that

e the polynomial p,(t) is of degree n and has a positive leading coefficient of ",

e the polynomials py(t),pi(t),... are orthogonal and normalised with respect to the

weight function w(t),
b

/ P () ()0 (2) dt = Gy,

a

where 0,,, denotes the Kronecker symbol, ¢,,,, = 0 if n # m, and é,,, = 1 if n = m.
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Thus, the family of polynomials {p,(t)}, n € Ny, represent a system of orthonormal func-
tions in (a,b) with respect to the weight function w(t), which is complete in Lsy(a, b).
Let a, be the leading coefficient of p,(t). Then we have the summation formula

Zpk(u)pk(v) = aa: Pu ()P (V) :pn(u)pn+1(v) u,v € (a,b). (5.1)
k=0 ntl w=v

Orthogonal polynomials satisfy further a three term recurrence formula

Pu(t) = (Ant + Bp)pn-1(t) — Copn—a(t), n = 2,3,... (5.2)

where A,,, B, C,, are constants. In particular, A,, = a,/a,_1, C,, = apap_2/an_1.
The most important examples of normalized orthogonal polynomials are listed in Table 1.

Table 1. Orthogonal polynomials

Polynomials p,(t) | (@b | w(t) |
Legendre:
1
1\ 2
(n+ 5) P,(t) (=1, 1) 1
Gegenbauer:
1
(n+pn! \2 1
2PT(p) | ==t @) (¢t ~1,1 1— 23
0 (st ) e Ly | a-#
Hermite:
27511 (n!) "2 H, (1) (—00, 00) | exp~”
Jacobi:
1
Q(Q+1)"‘(Q+n—1)(p+2n)r(p+n))§ S .
G(p,q,t 0,1 t=H(1 —t)p1
( n ()T (p—qg+n+1) (p,q,t) (0, 1) ( )
Laguerre:
(NT(p+n+1)"* Li() (0,00) | trexp

A1l. Legendre polynomials.
The Legendre polynomials P, of degree n have the representation

[n/2]

Z(—l)pp! St )Y (5.3)

(n —2p)!(n —p)!

1 d" ., w1
Pl = gigm -0 =

p=0

They are orthogonal in Ly(—1,1) and satisfy
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The integral representation is given as

™

P,(t) = ;ﬂ <t+( )%cos¢> dy)
= %]<t+(t2 )%Cosw> di.

0

The generating function for the Legendre polynomials is

V1 2tz+22 ZP

Putting 2 = r, t = cos ¢ we get

! = i (cos p)r

V/1—2rcosp+ 12
The three term recurrence reads
n+1)Pa(t) — 2n+ DtP,(t) + nP,_1(t) =0, n=1,2,..., (5.5)

The following relations involving derivatives can be proved with the help of (5.3) and the

recurrence (5.5).

n(n+1)
2n+1

(t2 —1) c;t =n(tP,(t) — Pa(t)) = (Prya(t) = Pua(t)), (5.6)

P, P, P,
_dPralt) | dPa(t) _, dR()

P —
n(t) dt dt dt -’
dP,(t)  dP,_1(t)
P.(t) =t —
nP,(t) o .
dPoii(t)  dPo_i(t)
on+1)P, —
(2n + 1) Pu(t) pn p”

From (5.6) we deduce

/_1115 f)Pa(t)dt = 2n1+ : ((n+ 1) /_11 f(t)Pn+1(t)dt+n/_ll f(t)Pnl(t)dt) . (5.7

Applying integration by parts to (5.7) we obtain the Rodrigues rule for Legendre polyno-
mials (see[19], p. 23): For any f € C"([—1,1])

[ sorawir= g [ - ey (58)

The Legendre polynomials up to degree 5 are explicitly given as

R(t)=1,  Pi(t)=t=cosp,

35



1 1
Py(t) = 3 (3t —1) = 1 (3cos2p +1),

1 1
Ps(t) = 5 (5¢% — 3t) = 3 (5cos3p +3cosy),

1 1
Py(t) = 3 (35t* — 30* + 3) = i (35 cosdy + 20 cos 2p + 9),
1 1
Ps(t) = S (63t° — 70t + 15t) = o8 (63 cos 5 + 35 cos 3¢ + 30 cos @) .

A2. Gegenbauer polynomials.
The Gegenbauer (generalized Legendre) polynomials cW of degree n are defined by

2u0+1
pio - G (HQ ) () g ()
" F(QM)F( u2 +n) 59)
¥ Tutn-p) .
= 2V i g Y

For p = 1/2 the Gegenbauer polynomials and the Legendre polynomials coincide,
O/ (1) = Pa(t).

In case ;1 = 3/2, which plays an important role in this paper, the Gegenbauer polynomials
are explicitly given as

[n/2] (

3/2 1 N
o) = RO pgo(—l)

[n/2]
1
- — —1)?
>

p=0

n—p+3/2)
pl(n — 2p)!

(2t)" 2P

(5.10)
(2n—2p+1)!
pl(n —2p)l(n — p)!

n—2p

Gegenbauer polynomials fulfill the orthogonality relation

/ COIB)CW (1) (1 —12)""2 dt = nffn+g(l?(;§‘&)6nm (5.11)

and have the integral representation

2u+1

r'u+n)l m
\/ln' u F(2M)F((u)2 )/<t+(t2 b

0

=

CW(t) = Ccos @/)) sin?* L) dap.

The generating function of C{(¢) is given by
(1—2tz4 2% => C¥(
n=0
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We have the three term recurrence formulas

=

(n+1)CY (1) = 2(n + WtCW () + (n+ 20— NCY, (1) =0, n=1,2,...,
(n+ 1)L (1) = 20 (100 (@) = V(1)) =0,
(n+20)C (1) — 200 (CO4V (1) = 1CI5V (1)) =0,

n—

nCU (&) — (n + 2u — DECY, (1) + 2u(1 — 2)CV5V (1) =0,
and for k-th order derivatives formula

L K
W (L) =2
el

C(k+p)
L(p) "

is valid. The polynomials oW (t) have further an expansion in terms of Gegenbauer poly-
nomials of different type

[n/2]
n—2k+p—1_ .
CWt)y=>" = CU D (). (5.12)
k=0

The relations above lead to numerous other identities such as

d

—CW(t) = 2u CY (1),

dt

dCi (1)
dt

(1-13) — (n+2u— 1)CW (t) — ntC (1)
= (n+2u)tCY(t) — (n + 1)CW, (1),
2
(1= ) 50 (1) — (2u+ 1)1 5 C 1) + nln + 2)CL (1) = 0.

In section 3 we often use relations between C/% (t) and Legendre polynomials P, (). In
particular we have

dP,
(3/2) () = 22l
CHo(t) = — = (1),
[n/2] /2]
— 2k +1/2
o = 3 % CU2 (1) = 37 (20 — 4k + 1) Pk (t).
k=0 k=0

The Gegenbauer polynomials up to degree 5 are explicitly given as
Gl =1, () =2,
CY(t) = 2 (u+ 1) 12—,

4
C§(t) = g (nt1) (p+2)t° —2pu(p+1)t,

Ci”)(t)z%u(lﬂr1)(u+2)(u+3)t4—2u(u+1)(u+2)t2+%u(wrl),

CU(0) = (4 1) (u2) (e +3) (- 4) 8 = (1) (e +2) (4 3) 7
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+u(p+1) (p+2)t.

A3. Associated Legendre polynomials (Legendre functions of the first kind).
The associated Legendre polynomials P of degree n and order m are defined by means of
the Rodrigues formula

Pm(t) = (1 — t2)m/2d_mp (t) _ 1 (1 . tQ)m/Qﬂ(tg . 1)n
(2m)! iy :
= S (L= )OI (0, te -1,
They obey the orthogonality relation

1 ( y
2(n +m)!

P (t)PF(t) dt = SmOun 5.14

[ Prop©d = G2 (514

0
and their values at 0 are

(1) (2m + 21)!
om+2[(m + 1)

Prrnn+2l+1(0) =0, PnT+2l(O) -
Three term recurrences are given in different ways
(2n+ V1= 2P(t) = PrAN (1) — PEA(2),
(2n + 1)@13;”(1?) =m+m)n+m—-1DP"'t)—(n—m+1)(n—m-+ 2)P$:11(t),
Cn+DtPM(t) = (n—m+ )Py () + (n+m)P (t).

These formulas extend to negative m, if we define

m(n — m>!pm(t) 0<m<n. (5.15)

P (t) = (-1) xm)’n

For |m| > n we set P" = 0.

Associated Legendre polynomials P* are related to Gegenbauer polynomials C'q(z” ) and
derivatives of Legendre polynomials P, by

1
Fu+n)T(p+ = T

) 1 den(t) m °
e O = G g Y (2m)!

Q/\
3
o

A4. Jacobi polynomials.
The Jacobi polynomials PP of degree n are defined by the Rodrigues formula
(1 — )P d"

PP (t) = D, e (¢t 1 — t)Ptre) (5.16)
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They have the orthogonality property

1
/tq 1 £y~ qp(p q)( )p(pvq)(t) dt — nl(@l'(p—qg+n+1) .
) " qlg+1)...(g+n—=1)(p+2n)T(p+n)
(5.17)
The explicit expansion in terms of monomials ¢* is given as
—1+Z nt (ptn)ptntl). (ptntk-1),
k'n— k)! qg+1)...(¢+k—-1)

Legendre and Gegenbauer polynomials can be generated from Jacobi polynomials. More
explicitly we have

n!(2u —1)! 2
Jacobi polynomials have the generating function

(1=t 91+ )7 (2 =1+ VI =22t +22)" (2 +1—VI—22t +22)" "
1 =2zt + 22

k'q—l B 2 ‘

=0

07(#) _ (_1) (2,u—|—n — ].) PTEQHM-F 5) (]. +t) ‘

The Jacobi polynomials up to degree 5 are explicitly given as

1
PPy =1,  PPY(t) = 1—p—;r t
PPy =1 2P T2, P23,
q glg+1)
3 3)(p + 4 3)(p+4)(p+5
progy =1 —3F 3 g+ td), P EHRE5)
q q9(g+1) q(q+1)(q+2)
4 4H(p+5 4)(p+5)(p+6
peagy =1kt (2FHRH0) )RS E6),

q qlg+1) (g +1)(g +2)
(p+4)p+5)p+6)p+7)

g+ 1)(g+2)(g+3)

PEOyy = 1_5p+5t+10(p+5)(p+6)t oA+ 6)(p+T)
q(g +1) q(q +1)(q +2)
+5(p+5)<p+6)<p+7)<p+8) (p+5)p+6)p+ )P +8)(p+9) 5
g(q+1)(g+2)(g+3) g(q+1)(g+2)(g+3)(g+4)
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