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Abstract

For the automatic detection of retinal blood vessels a preprocess-
ing of the noisy original images is necessary. Retinal blood vessels
are assumed to be line-like structures and can therefore be enhanced
via convolution with suitable, elongated kernels. Consequently we use
the local Radon kernel as a prototype of an elongated kernel for this
task. The Radon kernel is rotated at different angles and adapts via
a maximisation procedure to the directions of the vessels. The pro-
posed algorithm is easy to implement and combined with edge- and
coherence-enhancing anisotropic diffusion as a preprocessing step it
offers higher robustness than the Laplacian of Gaussian or Haralick
operator. Furthermore, our algorithm detects vessels as connected
structures with very few interruptions. The performance is evalu-
ated in experiments on the publicly available databases DRIVE and
STARE as well as on selected examples of our clinical database. Since
our algorithm does not depend on a priori directional and branching
models, in its generality it is capable to detect other vessel structures
in the human eye such as the conjunctiva vessels.

Keywords: Retinal imaging, vessel detection, vessel segmentation, local Radon
transform, conjunctiva vessels

1 Introduction

The inspection of the retinal vessels is a well established and scientifically
evaluated method for the screening of important vascular diseases. The in-
creasing availability of so called ”Non-Mydriatic” cameras will make digital
imaging a very important part of the ophthalmologists work. Ophthalmol-
ogists can now create considerable statistical databases which prepare the
path for unprecedented numerical and statistical analysis. Similar to cardiac
or brain vascular investigation, retinal vessel analysis is an ”in vivo” method.
This paper derives a novel approach for relatively simple and effective retinal
vessel detection and segmentation, inspired by mathematical models of com-
puterised tomography (Natterer, 1986), especially Rieder et al. (2000) and
Krause (2006).

1.1 Related work

Retinal vessel segmentation algorithms can be grouped into various cate-
gories. Some algorithms use tracking methods to detect vessels (Cree et al.,
2005), Gao et al. (1997), Niemeijer et al. (2007), starting from an initial
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point, which can be chosen for example near the optic nerve (Jelinek et al.,
2005). Other methods as described in Chapman et al. (2001), Lowell et al.
(2004), Hoover et al. (2000), Chanwimaluang and Fan (2003), M.Sofka and
Stewart (2006), Gang et al. (2002) rely on matched filter response techniques:
A shape model that resembles the vessel cross-section is convolved with the
image and rotated by several angles in the search for an optimal fit. The fil-
ter exists in one or two-dimensional versions (Lowell et al., 2004). In Hoover
et al. (2000) a piecewise threshold is used to separate vessel pixels from non-
vessel pixels in contrast to more common global threshold techniques. An
alternative way to distinguish between vessels and non-vessels is supervised
classification: to each pixel a feature vector is assigned containing different
properties, for example grayscale, matched filter response to a wavelet filter
(Soares et al., 2006), line operators (Ricci and Perfetti, 2007), directional
derivatives and more (Staal et al., 2004). This method is of statistical nature
and based on a training set of labels assigned by a human observer.
Multiscale analysis of images via the Gabor wavelet is done in Li et al. (2006),
while the Laplacian of a Gaussian (LoG) is used by Vermeer et al. (2004)
to extract vessels. Vermeer et al. derive optimal values for the standard
deviation of the Gaussian and for the threshold value in order to extract bar-
shaped vessels. Separable kernels composed from a second order Gaussian
derivative and a window function are used by Gang et al. (2002) and M.Sofka
and Stewart (2006). Gang et al. employ a box function, while Sofka and
Stewart utilise a Gaussian window function. The divergence of vector fields
such as the gradient field and the normalised gradient vector field is employed
in Lam and Yan (2008) for the detection of vessels and vessel centrelines.
An early and efficient multiscale approach based on an orientation bundle
derived from Gaussian derivatives for the detection and removal of general
elongated 2D structures in images is proposed in Kalitzin et al. (1999).
The algorithms proposed in Staal et al. (2004) and Mendonça and Campilho
(2006) use the centrelines as starting point for the vessel extraction. Many
algorithms, such as the computation of the tortuosity of vessels (Grisan et al.,
2008) can benefit from well-detected centrelines.
The detection of characteristic anatomical structures of the retina such as
vascular arch, macula and optic disc is addressed in Niemeijer et al. (2007)
and in Tobin et al. (2007). The investigations carried out in Youssif et al.
(2008), Hoover and Goldbaum (2003) and ter Haar (2005) focus on the de-
tection of the optic disc in particular. Finally we mention that methods from
image registration are used in Stewart et al. (2003) and Matsopoulos et al.
(2004) for retinal image analysis.
Quite a new approach uses vessel diameters and the angle at branching points
as a quality marker for vessel segmentation (Martinez-Perez et al., 2007).
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A general method for detecting general complex 3D vascular structures is
devised in a recent paper of Qian et al. (2009). The proposed method is
mainly applied at 3D animal vascular from both MRI and micro-CT images.

1.2 Basic assumptions

In our paper we assume that vessels are locally line-like structures. Generally,
vessel profiles are modeled by a single- or a double-Gaussian, which can be
derived from Bouguer’s Law (Gao et al., 1997). We derive from Bouguer’s
Law that the cross section of the grayscale representation of a vessel has
a bathtub-like shape. Hence, the second derivative of the vessel profile is
above a certain positive threshold. It is not necessary at this stage to pay
any attention to the middle reflex.
It is worth mentioning that in our approach the thresholding of second order
derivatives leads to large connected components in vessel segmentation. We
pre-smooth the vessel profile with a Gaussian before computing the second
derivative. The resulting Gaussian derivative has positive sign in the interior
of the vessel. An additional improvement, see Tables 2-4 of our method is
achieved by performing two pre-processing steps: We regularise the original
image with the edge- and coherence-enhancing anisotropic diffusion filter
from Weickert (1994) followed by a morphological operation called the black-
top-hat (Soille, 1999).
We saw advantages in using a localised variant of the Radon transform.
This transform uses line integrals and serves as a vital ingredient in the
mathematics of computerised tomography. So it is not surprising, that it
has been used in Beyerer and León (2002) to enhance line-like structures in
digital images.
We choose the so called local Radon transform, as in van Ginkel (2002),
where the locality is achieved by weighting the line integrals for example by
a Gaussian function. Furthermore, in contrast to the standard Radon trans-
form, every point of interest is treated as the origin of the coordinate system.
In addition to the algorithm of Vermeer et al. (2004), we analyse the second
derivative integrated over a line, rather than convolving it with an isotropic
Gaussian.

The structure of the paper is as follows: We introduce our vessel model in Sec-
tion 2. Our main tool, the local Radon transform, is introduced in Section 3.
In Section 4 the actual vessel segmentation algorithm and its computational
details are explained. Section 5 is devoted to the skeletonisation algorithm
and detection of the branching points. We report on experiments performed
with images of the retina and the conjunctiva in section 6.
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2 Vessel models

2.1 Coordinates

One of the main aspects of our vessel detection algorithm is the adaptivity
to the actual vessel profile. This is achieved by convolving the image with
a strongly anisotropic kernel, whose orientation is determined by a rotation
angle �.
We introduce local coordinates as shown in Fig. 1 where we depict a three-
dimensional vessel model in its representation as a grayscale image. The
image plane is spanned by two axes, one in direction ! and one in direction
!⊥ perpendicular to it,

! =

(
cos �
sin �

)
, !⊥ =

(
− sin �
cos �

)
. (1)

The direction !⊥ corresponds to the vessel run, while the gray-value repre-
sentation of the vessel profile is represented in the !-z plane. Later on, we
will differentiate in direction ! and integrate in direction !⊥. The grayscale
intensity I at a point p = s! + t!⊥ in the image plane is represented by a
z-value, hence the darker inner part of the vessel attains a smaller z-value
than the surrounding retina.
We assume locally constant gray values inside the vessel in the direction of
!⊥. Therefore we will treat I as a function of s only, I = I(s), unless stated
otherwise.

ω

ω

z

Figure 1: Vessel appearance and local coordinates, ! and !⊥ span the image
plane, z-coordinate shows the gray value
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2.2 The cross section of a vessel

A simple vessel model is used by Vermeer et al. (2004) who considers a vessel
as a ”brightness gap” with step size ℎ and width w.

I(s) =

{
c : ∣s∣ ≤ w/2

c+ ℎ : ∣s∣ > w/2
. (2)

Gao et al. (1997) and Chapman et al. (2001) use a Gaussian shaped model
of a vessel. This model is derived from Bouguer’s Law (Gao et al., 1997),
which relates the reflected light I to the incident light I0:

I(s! + t!⊥) = I0e
−2⋅

∫
�(s,t,u) du (3)

where �(s, t, u) is the attenuation coefficient at the point p = s!+ t!⊥+ue3,
and u is the depth in the retina.
The idea behind formula (3) is shown in Fig. 2. The incident light I0 passes
through the vessel, and is partially absorbed. The attenuation of the light is
modeled by the absorption coefficient �. It determines via equation (3) what
amount of light I is received by the camera. The Gaussian shaped model

Figure 2: Light traversing through an elliptic vessel

derived from Bouguer’s law in Gao et al. (1997) results from the assumption
that a vessel is cylindrical with a circular cross section and that � is constant
within. It states

I(s) = I0

(
1− ae−

s2

2�2

)
, a, � > 0 . (4)
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Due to the central light reflex in larger vessels, an improved model is given
by a double Gaussian (Gao et al., 1997),

I(s) = I0

(
1− ae−

s2

2�2 + be
− s2

2�2r

)
, (5)

with suitable 0 ≤ b < a and 0 < �r < �.

In this article, we assume a vessel to be cylindric but now, according to
anatomic reality (Naumann, 1980), with an ellipsoidal rather than a circular
cross section. This is sketched in Fig. 2. Assuming � to be constant inside
a vessel, we get

I(s) = I0e
−2g(s) , (6)

where g(s) is the length of the cross section through the elliptic vessel. Ac-
cording to Kak and Slaney (1988), the length g(s) is given by

g(s) =

{
c1�
√
c22 − s2 : ∣s∣ ≤ c2
0 : ∣s∣ > c2

(7)

with appropriate constants c1 = 2AB/c22 > 0 and c22 = A2 cos2  +B2 sin2  >
0 depending on the main axes A and B of the ellipse and the angle  between
incident light and the main axis of the ellipse. Possible shapes of our vessel
model I are shown in Fig. 3. For the sake of simplicity in this graphical
representation we set the parameters A,B, I0 to 1. For the attenuation coef-
ficient � we have chosen two different values, which result in a brighter and
a darker vessel appearance, for example arteries and venules.

Figure 3: Our model of the intensity profile I. The dotted line indicates an
artery with a small � while the continuous line corresponds to a vein with a
higher �-value.

2.3 The convexity of a cross section

In the Gaussian model, the cross section of the vessel is convex in the range
from −� to �, since these values indicate the inflection points of a Gaussian.
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In Gang et al. (2002) the vessel width is linearly related to �, while Gao et al.
(1997) specifies the vessel boundary at r ≈ 1.69� and Chapman et al. (2001)
at r ≈ 1.64�.

We derive from (6)

I ′′(s) = I(s)
(
4(g′(s))2 − 2g′′(s)

)
. (8)

Since we have

g′′(s) = − �c1c
2
2

(c22 − s2)3/2
< 0 (9)

inside the vessel, we obtain
I ′′ > 0 . (10)

Consequently, the vessel profile of a cross section is convex. For later use, we
note that (8) and (9) imply even that

I ′′ > T (11)

for a certain strictly positive constant T . This consideration is the first
building block for our vessel detection algorithm. The central light reflex is
not included in our model, however, this does not mar the performance of
our algorithm.

2.4 Uniform threshold despite of Gaussian smoothing

The vessel model of Vermeer et al. (2004) assumes a box-function whose
boundaries coincide with the vessel boundaries. Fig. 4(a) and 4(b) show the
cross sections of the box model of Vermeer (left column)) and our novel light
attenuation model (right column). The Gaussian derivatives are displayed in
the subsequent pictures shown in Fig. 4(c)-4(f). Our model has an important
advantage over the one of Vermeer et al. model. Vermeer et al. determines
the interior of the vessel via a carefully chosen threshold depending on the
relation of the Gaussian standard deviation � and the vessel width. For small
� the Gaussian derivative will be close to zero in the middle section of the
vessel making it very difficult to find a suitable threshold that determines
the interior of the vessel correctly.
Numerical considerations show that the Gaussian derivative of our profile
function does not approach zero at any interior point of the vessel, no mat-
ter how large or, more important, how small � is, see Fig. 4(d) and Fig.
4(f). Hence our model allows for a uniform threshold that can be chosen
independently of the Gaussian smoothing parameter �. This behaviour can

7



(a) Model of Vermeer et al. (b) Our model

(c) Model of Vermeer et al., � = 0.15 (d) Our model, � = 0.15

(e) Model of Vermeer et al., � = 0.25 (f) Our model, � = 0.25

Figure 4: Comparison: Model of Vermeer et al. vs. our model. First row:
vessel models. Middle row: second order Gaussian derivative with � = 0.15.
Last row: the same with � = 0.25. For presentational reasons the images are
scaled individually in height. The marks on the axes indicate unit length.
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be attributed to the strict convexity of our profile function in the interior
of the vessel. Note that this independence does not refer to the parameters
of the vessel, �, c1, c2, I0. Nevertheless choosing a proper threshold is still
an issue, since there is undeniably a dependency on illumination artefacts,
for example. However, the dependency on the noise level poses no severe
problem since by design of our algorithm (local Radon transform) the vessel
tree is recognised as a large connected component allowing for a quite liberal
choice of a threshold value. The connected components associated with noise
and induced by a potentially too small threshold are in general very small
and hence easily eliminated by our method, for more details see section 4.5.

3 The local Radon transform

In the last sections we have developed a vessel model that assumes a convex
vessel cross section. However, real data suffer from noise or other distur-
bances and hence might not fulfil this model assumption. Therefore the real
image has to be processed with a transform that both regularises the data
and preserves or even enhances convexity of blood vessel cross sections.
To this end it is advantageous to introduce a new polar coordinate system
that is used in a similar form in computerised tomography. We consider I as
a function of s, t in a point p = x+ s! + t!⊥ for a fixed x. The regularising
effect is achieved by averaging with a Gaussian K� in the direction !⊥ of the
vessel. However, we cannot predict the vessel run, and choosing a Gaussian
as a weight function takes this uncertainty into account. This leads us to the
local Radon transform of I van Ginkel (2002):

RLI(x, !, s) =

∫ ∞
−∞

K�(t)I(x+ s! + t!⊥) dt. (12)

As an integral transform RL produces indeed a regularised version of I. Re-
markably, the convexity of the cross sections carries over to its Radon trans-
form:

(RLI)′′(x, !, s) :=

∫ +∞

−∞
K�(t)

∂2

∂s2
I(x+ s! + t!⊥)dt

≥ T

∫ +∞

−∞
K�(t) dt = T , (13)

where we have used the assumption ∂2

∂s2
I(x + s! + t!⊥) > T and that∫ +∞

−∞ K�(t) dt = 1. In Krause (2006) the local Radon transform has been
used to detect edges in digital images.

9



4 Retinal Vessel Segmentation

4.1 Criterion for vessel segmentation

In order to use the local Radon transform and its derivative to decide whether
a point x is a vessel point or not, we consider (RLf)′′(x, !, 0) as a function
of ! alone for a fixed point x,

! 7→ (RLI)′′(x, !, 0) . (14)

We select an optimal direction !x according to the following strategy: !x is
the direction that maximises (RLI)′′(x, !, 0).
Then we recognise x as a vessel point if

(RLI)′′(x, !x, 0) > T . (15)

It is important to remark that for the classification of the vessel points the
accurate estimation of the vessel direction is not crucial due to the employed
threshold technique (15).

(a) Segmentation without anisotropic dif-
fusion

(b) Segmentation on anisotropic diffusion
filtered image

Figure 5: Effects of anisotropic diffusion

4.2 Details of computation

We compute the second derivative via a central difference with step size
ℎ = 1, as we assume the image to be sampled with that grid size. The
resulting approximation H(x, !) to (RLI)′′(x, !, 0) is given by

H(x, !) = RLI(x, !,−1)

−2RLI(x, !, 0) (16)

+RLI(x, !, 1) .
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In our basic assumptions vessels are always convex. Hence points with
H(x, !) < 0 for all ! are of no interest. Therefore we can restrict our
attention to the function

res(x) = max(0,max
!

H(x, !)) . (17)

Vessel points x are characterised by res(x) > T .

4.3 Techniques for Preprocessing

In the preprocessing steps we use a well established smoothing technique
called edge- and coherence-enhancing anisotropic diffusion (ECED) (Weick-
ert, 1994). It produces simplified versions u(x, t) of the original image I(x)
as solutions of the nonlinear partial differential equation

∂tu = div (D(u)∇xu) (18)

u(⋅, 0) = I (19)

subjected to Neumann boundary conditions. Here D denotes a symmet-
ric positive definite matrix (diffusion tensor) that adaptively encodes domi-
nant directional information in the evolving image u and steers the evolution
process governed by (18). For further details the reader is referred to We-
ickert (1994). Furthermore, in early experiments it became apparent that
the brightness of the optic disc was responsible for erroneous results at its
boundary. These errors can be diminished by using a classical morphological
operator, namely the black top hat, followed by an image inversion. De-
tailed information about morphological operators are provided, for example,
in Soille (1999).

4.4 Efficient implementation

We can implement the calculation of H as convolutions with pre-computed
kernels g!, in the !-!⊥-coordinate system exploiting the symmetry of both
the Radon kernel and the Gaussian kernel. To see this we assume x to be
0, and we approximate RLI(0, !, l) with a trapezoid rule,

RLI(0, !, l) ≈
∑
k∈ℤ

K�(k)I(l! + k!⊥) . (20)
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The points where I has to be evaluated are approximated by bilinear inter-
polation which leads to a formula of the form

RLI(0, !, l) ≈
∑
m∈ℤ2

�mI(m) (21)

with weights �m = �m(!). From the central difference quotient in (16) we
obtain

H(0, !) ≈
∑
m∈ℤ2

g!(m)I(m) (22)

for some g!. The approximation of H(x, !) at an arbitrary point x can be
obtained by a convolution with the symmetric kernels g!,

H(x, !) = (I ∗ g!)(x) . (23)

Since g! have a small support the convolutions with the pre-computed kernels
g! are highly efficient.

4.5 Eliminating small connected components

To counteract the fact that our algorithm might produce false positives in
addition to real vessels, see Fig. 7(c), we have to ensure that only relevant
components are recognised as vessels. Small connected components are dis-
missed as non-vessels. The components and their size are computed via a
Union-Find algorithm (Cormen et al., 1990).
The central light reflex establishes a relatively small non-vessel component
which is completely surrounded by an already detected vessel. As before these
small components are identified with the help of a Union-Find algorithm and
then turned into vessel points.

5 Skeletonisation

5.1 Skeletonisation algorithm

In order to obtain a more abstract representation of the vessels we construct a
graph-like structure, the so called 1-pixel wide vascular tree (Chanwimaluang
and Fan, 2003). This representation facilitates the analysis of the vessel. To
this end we apply a skeletonisation algorithm as described, for example,
in Gonzalez and Woods (2002). The employed procedure is a prairie-fire
algorithm, avoiding the well-known failures of other thinning-line algorithms
(Wang et al., 2007). As a result of the algorithm connectivity patterns of the
vessel structure are represented correctly by the obtained skeleton.
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5.2 Detection of branching points

The first step in the analysis of the skeleton is to determine its branching
points. For this purpose we employ the following procedure inspired by the
above skeletonisation algorithm. We consider a 5×5 square with centre point
p1 as indicated in Fig. 6. Next we generate a finite sequence v2, v3, . . . , v17, v2
with

vi =

{
1 if pi is a skeleton point
0 else

(24)

Now we associate to the center pixel p1 a value N(p1) as the number of

9
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Figure 6: The center point p1 and a 5× 5-square

0-1-transitions in the sequence {vi}i=2,3,...,17,2. The point p1 is marked as
branching point if N(p1) ≥ 3. However, with this method several points may
qualify as branching points for the same furcation. In order to single out a
unique branching point for each furcation the procedure described above is
repeated with a smaller 3× 3-square. Note that endpoints p of the skeleton
are characterised by N(p) = 1.

6 Experiments

Our algorithm works on scalar images, so we converted colour images (RGB
8 bit) into grayscale images by using convert from the package ImageMagick
from imagemagick.org (2008) in order to incorporate information from all
channels, that is 0.299 ⋅R + 0.587 ⋅G+ 0.114 ⋅B.
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6.1 Preprocessing

In order to improve our results, mainly to eliminate false positives, we first
perform some preprocessing steps before applying our model algorithm to
the images.

1. Performing only four timesteps of an explicit discretisation of the aniso-
tropic diffusion equation (18) entails a slight improvement of our results
by avoiding the creation of false positives at the vessel boundaries,
see Tables 2-4 and image 5. A more excessive use of this smoothing
technique would lead to a deterioration of the final results.

2. In all the images of the considered database the field of view (FOV)
is surrounded by dark background pixels. In order to avoid undesired
boundary effects, we either cut out the FOV (STARE database) or
extend the FOV by a circular mirroring and inpainting-type process
(DRIVE database).

3. An inverted black top hat as mentioned in section 4.3 diminishes the
rate of false positive classifications caused by the optic disc.

6.2 Results on our clinical database

Fig. 7 shows the results of our segmentation results of our clinical database,
where the images have been created by a Topcon NW200 camera (resolution
2048 × 1536)). This database consists of nearly 11.000 patients and about
37.000 images.
Pre-smoothing via anisotropic diffusion and the application of the local Radon
transform results in Fig. 7(b). Further thresholding, Fig. 7(c), and subse-
quent automatic removal of smaller disturbances and false positives, accord-
ing to the procedure described in subsection 4.5, leads to Fig. 7(d).
For better visualisation of the final skeletonised result Fig. 8(b) we zoom
into the marked section in Fig. 7(a). A comparison of the images Fig. 8(a)
and Fig. 8(b) confirms that the vessel structure is adequately and correctly
represented by the skeleton.

6.3 Evaluation on DRIVE- and STARE-Database

When applying our method the the STARE- and DRIVE database we follow
the standard rules described in detail in Mendonça and Campilho (2006),
Staal et al. (2004) and Hoover et al. (2000). Table 1 shows the parameter
settings of our experiments. The noise scale � refers to the standard devi-
ation of the Gaussian pre-smoothing that was performed for regularisation.
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The integration scale � determines the size of the applied local Radon kernel.
The numbers in the last line in Table 1 indicate the minimal size (in terms
of numbers of pixels) of the connected components that are displayed in the
final result. Connected components that have less pixels than the user de-
fined number have been eliminated. The specific results of our experiments
are displayed in Tables 2-4. For comparison and examples, see Fig. 9 and 10.
The computing time of our algorithm for an image of the DRIVE database
is about 18 seconds including anisotropic diffusion filtering, mirroring and
black-top-hat, and about the same time for the STARE database performed
on a Dual-core Pentium PC (1.86 Ghz, 2 GB RAM). Note that the running
time for segmentation may be more important in the future as our actual res-
olution (own database) has an approximately 18 times, the estimated future
standard even 64 times more amount of data compared to the DRIVE- and
STARE-database images. We performed our own implementation in C++
(using g++ on Linux).
The bold letters indicate the best results in the following categories:

accuracy =
number of correctly classified pixels

total number of pixels
,

true positives =
number of detected vessel pixels
total number of true vessel pixels

,

and false positives =
number of falsely detected vessel pixels

total number of non-vessel pixels
.

For both databases, our method leads to the smallest rate of false positives
among all techniques. Concerning the STARE-database, the method of Staal
seems to be better than our method. Nevertheless, with respect to accuracy
our methods outperforms the other approaches.

Table 1: PARAMETER SETTINGS USED FOR VESSEL SEGMENTA-
TION

Parameter DRIVE images STARE images our clinical database
� 1.75 1.75 2
� 4.5 4.5 6

size of connected comp. 25 25 100

6.4 Comparison with other second order filters

Our method belongs to the class of matched filter approaches. This class
includes the concepts presented by Gang et al. (2002) and M.Sofka and Stew-
art (2006) as well. Both groups use separable kernels. Gang et al. calculate
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Table 2: PERFORMANCE OF VESSEL SEGMENTATION METHODS
(DRIVE IMAGES)

Method Accuracy True positive False positive
Human observer, 0.9473 0.7761 0.0275
(Niemeijer and van Ginneken, 2002)
Our method (without anisotr. diff.) 0.9439 0.6831 0.0183
Our method (with anisotr. diff.) 0.9442 0.6848 0.0182
Mendonça (gray-intensity) 0.9463 0.7315 0.0219
Mendonça (green-channel) 0.9452 0.7344 0.0236
Staal (Staal et al., 2004), 0.9442 0.7194 0.0227
(Niemeijer and van Ginneken, 2002)
Niemeiijer (Niemeijer et al., 2004), 0.9417 0.6898 0.0304
(Niemeijer and van Ginneken, 2002)

Table 3: PERFORMANCE OF VESSEL SEGMENTATION METHODS
(STARE IMAGES; WITH FOV)

Method Accuracy True positive False positive
Human observer, 0.9354 0.8949 0.0610
(Niemeijer and van Ginneken, 2002)
Our method (without anisotr. diff.) 0.9482 0.6518 0.0171
Our method (with anisotr. diff.) 0.9485 0.6632 0.0182
Mendonça (a∗ component) 0.9479 0.7123 0.0242
Mendonça (luminance) 0.9421 0.6764 0.0266
Mendonça (green) 0.9440 0.6996 0.0270
Staal, 0.9516 0.697 0.019
(Niemeijer and van Ginneken, 2002)
Hoover (Hoover et al., 2000), 0.9267 0.6751 0.0433
(Hoover, 2000)
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Table 4: PERFORMANCE OF VESSEL SEGMENTATION METHODS
(STARE IMAGES-NORMAL VERSUS ABNORMAL CASE)

Method Accuracy True positive False positive
Normal cases

Human observer, 0.9283 0.9646 0.0764
(Niemeijer and van Ginneken, 2002)
Our method (without anisotr. diff.) 0.9537 0.7104 0.0164
Our method (with anisotr. diff.) 0.9536 0.7169 0.0174
Mendonça (a∗ component) 0.9531 0.7366 0.0178
Mendonça (luminance) 0.9477 0.7109 0.0206
Mendonça (green) 0.9492 0.7258 0.0209
Hoover, (Hoover et al., 2000), 0.9324 0.6766 0.0338
(Hoover, 2000)

Abnormal cases
Human observer, 0.9425 0.8252 0.0456
(Niemeijer and van Ginneken, 2002)
Our method (without anisotr. diff.) 0.9430 0.5964 0.0177
Our method (with anisotr. diff.) 0.9437 0.6046 0.0179
Mendonça (a∗ component) 0.9426 0.6801 0.0306
Mendonça (luminance) 0.9364 0.6420 0.0326
Mendonça (green) 0.9388 0.6733 0.0331
Hoover, (Hoover et al., 2000), 0.9211 0.6736 0.0528
(Hoover, 2000)
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a Gaussian derivative perpendicular to the vessel direction multiplied with
a box function in tangential direction. Instead, Sofka and Stewart use a
Gaussian convolution in tangential direction as well. However, our matched
filter computes finite difference approximations of the second order deriva-
tive combined with true Gaussian weighted line integrals that are obtained
by interpolation. This enhances the localisation of our kernel and lowers
the computational load in comparison with Sofka and Stewart and Gang et
al. In order to show the ability of our algorithm to close gaps in inter-
rupted lines we compare it to a second order differential filter, the Haralick
operator (HO) (Haralick, 1984). which computes the second order derivative
in gradient direction. The result of the classical HO when applied to the
original image is depicted in Fig. 11(b). In comparison with the result of
our local Radon transform as displayed in Fig. 11(a) it becomes apparent
that th HO operator produces a less smooth result with fluctuating vessel
intensities that even lead to pseudo-interruptions of the vessels. Both in the
case of local Radon transform and HO operator negative values are mapped
to zero. Fig. 11(a) brings to light an important feature of the local Radon
transform, namely its capability to close gaps in line-like structures.

6.5 Conjunctiva vessels

Our detection algorithm does not depend on the presence of a typical geo-
metric pattern or other a-priori information about the vessel-tree structure.
This is confirmed by the results obtained from applying our detection al-
gorithm on two images of conjunctiva vessels, Fig. 12(a) and Fig. 12(b).
Despite the poor image quality, the characteristic vessel structure is found
without pre-processing or parameter tuning, see Fig.12(c) and Fig. 12(d).

7 Conclusion

This paper starts with the assumption of an ellipsoidal cross-section of real
world vessels. Using the light-attenuation model expressed by Bouguer’s law
we derive a vessel intensity model that employs convexity properties of the
describing functions. We use the local Radon transform to process vessel im-
ages for three reasons: first it has a regularising effect on the image, second
it detects and enhances line-like structures, and important, it preserves con-
vexity properties of our intensity model which are captured by second order
derivatives. The performance of the local Radon transform can be improved
by a preprocessing via an anisotropic diffusion filter. The obtained results
allow the application of a skeletonisation algorithm leading to an accurate
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representation of the vessel-tree and its ramification. The proposed method
is conceptionally simple, robust and universally applicable as the example of
the conjunctiva vessel detection may demonstrate. In the future we intend
to extend our algorithm to be part of a learning system.
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(a) Original image (b) Application of the local Radon trans-
form

(c) Thresholded image (d) Show only larger connected compo-
nents

Figure 7: Results of our algorithm - own clinical database

(a) Subimage of the original image,
rescaled for better visualisation

(b) Skeleton with branching points

Figure 8: Results of the skeletonisation algorithm - own clinical database
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(a) Original (b) Segmentation (c) Ground truth

Figure 9: Results of our algorithm on DRIVE-database

(a) Original, normal case (b) Segmentation, cropped
at boundary

(c) Ground truth, cropped
at boundary

(d) Original, abnormal case (e) Segmentation, cropped
at boundary

(f) Ground truth, cropped at
boundary

Figure 10: Results of our algorithm on STARE-database,
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(a) Local Radon transform (b) Haralick operator, noise scale � = 2.0

Figure 11: Comparison with Haralick operator, no anisotropic diffusion on
input image

(a) Original image 1 (b) Original image 2

(c) Intermediate result of input image 1,
brightened for visualisation

(d) Intermediate result of input image 2,
brightened for visualisation

Figure 12: Human conjunctiva
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