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Abstract

While modern variational methods for optic flow computation of-
fer dense flow fields and highly accurate results, their computational
complexity has prevented their use in many real-time applications.
With cheap modern parallel hardware such as the Sony PlayStation 3
new possibilities arise. For a linear and a nonlinear variant of the
popular combined local-global (CLG) method, we present specific al-
gorithms that are tailored towards real-time performance. They are
based on bidirectional full multigrid methods with a full approxima-
tion scheme (FAS) in the nonlinear setting. Their parallelisation on
the Cell hardware uses a temporal instead of a spatial decomposition,
and processes operations in a vector-based manner. Memory latencies
are reduced by a locality-preserving cache management and optimised
access patterns. With images of size 316×252 pixels, we obtain dense
flow fields for up to 210 frames per second.

1 Introduction

For many modern applications in image processing and computer vision,
motion estimation has proved an important building block for algorithms
providing highly qualitative results. Since both the structure of the captured
scene as well as the ego-motion of the camera are thereby often unknown,
only the projection of this motion onto the camera plane is taken into ac-
count. This so-called optic flow is described by a vector field representing
the displacement of pixels in a pair of two subsequent frames.
Modern optic flow models often rely on variational approaches that lead to
dense flow fields. Starting with early techniques like the ones proposed by
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Horn and Schunck [26] or Nagel and Enkelmann [32], recent models provide
very accurate results, like the combined local-global approach proposed by
Bruhn et al. [11], the model by Brox et al. [7] based on warping, the level set
approach by Amiaz and Kiryati [1], the over-parameterised variational model
by Nir et al. [34], or the TV-L1 flow approach by Wedel et al. [39]. However,
since they rely on the solution of large systems of equations with several
thousands to millions of unknowns, they come along with a huge computa-
tional workload, and are thus rarely used in real-time applications. Instead,
one often finds local or search-based approaches [13] which are typically very
fast, but cannot provide as qualitative results.
With the research on efficient numerical solvers making progress in the re-
cent past, several techniques have been proposed to accelerate the variational
optic flow estimation significantly. Iterative solvers, like those based on suc-
cessive over-relaxation approach [43] and preconditioned conjugate gradient
methods [36], have been actively used for many years. An alternative to these
methods is found in hierarchical approaches which reduce the computational
complexity by one order, and which are thus more and more used in modern
applications: Uni- and bidirectional multigrid schemes [5, 6] are nowadays
the fastest solvers available, outperforming the classic schemes even for small
problem sizes.
As a consequence, they are often applied when it comes to optic flow estima-
tion on both 2-D and 3-D data [21, 20, 45]. By the use of these techniques,
it is already possible to obtain optic flow fields on frames of 160 × 120 pix-
els in real-time, by using standard PC hardware: Bruhn et al. compared a
nonlinear approach to a linear one, and obtained rates of 12.17 frames per
second (FPS) and 62.79 FPS, respectively [9].
Unfortunately, this performance is yet inadequate for many recent applica-
tions, demanding the computation of larger frames in a fraction of this time,
to guarantee the overall runtime to be real-time capable as well. A remedy
to this problem is promised by customised hardware, or by novel parallel
architectures, which supply more computing resources in terms of additional
processor cores.
Optic flow systems based on customised hardware seldomly implement varia-
tional approaches, but for certain specific applications, such as robot naviga-
tion, their quality is often sufficient. Examples for a fully-customised layout
for real-time optic flow estimation can be found in the RETIMAC chip by
Nesi [33]. Prototyping hardware like erasable programmable logic devices
(EPLD) or later also field programmable gate arrays (FPGA) have been
used as well [25, 2, 40]. With the help of such hardware solutions, a simple
local approach is already suited to compute non-dense flow fields of 640×480
pixels with 64 FPS [40].
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Recently, both distributed and shared memory architectures have been in-
vestigated for the computationally more challenging variational optic flow
problem, such as the implementation on massively parallel computer clus-
ters proposed by Kalmoun et al. [15], or adaptations to graphics hardware
(GPU) like shown by Zach et al. [44] and Mizukami and Tadamura [31]. From
a numerical perspective, the work of Grossauer and Thoman [22] is also very
close to this subject, since they describe nonlinear multigrid techniques on
the GPU.
Much less in price compared to a PC equipped with modern programmable
graphics hardware, the Sony PlayStation 3 video console forms one of the
cheapest parallel computers on the market. Thanks to its powerful processor,
the Cell Broadband Engine, and potential speedup gains prospected thereby,
it has lately also gained popularity for scientific research: After first simple
tasks mostly implemented and evaluated for benchmarking purposes, such as
matrix multiplications [12], fast Fourier transforms [41], and an evaluation
of the heat equation [42], more sophisticated and complex algorithms have
recently been proposed as well: Elgersma et al. use the platform for the
computation of Stokes’ equation [16], Benthin et al. suggested a complete
ray tracer running on this platform [4], and Köstler et al. showed how to use
this architecture for partial differential equation based video compression [29].
Apart from our own preliminary work published on a conference [23], vari-
ational optic flow methods have so long not been evaluated on this plat-
form, which is surprising: Such methods are typically consuming a signifi-
cant amount of computational time in modern algorithms, and are thus often
replaced by less accurate, but fast counterparts. This is why we are going to
discuss the applicability of such a platform for the optic flow problem in the
present paper: We extend our previous work describing a linear algorithm
for the combined local-global (GLG) model by an even faster variant thereof.
Moreover, we present a new parallel algorithm for the nonlinear CLG method
that provides flow fields of even higher quality. We evaluate both algorithms
with respect to their run-time performance and scaling behaviour. We show
that compared to standard PC hardware, it is indeed possible to acceler-
ate the algorithm noticeably, and obtain throughputs up to 210 frames per
second on an image sequence of 316× 252 pixels.
Our paper is structured as follows: In Section 2, we first discuss the so-called
CLG model we use for the parallel optic flow estimation, and distinguish
between the linear and the nonlinear variant thereof. After commenting
upon minimisation and discretisation, we proceed to an introduction to the
numerical solvers applied, covered by Section 3. Afterwards, we use Section 4
to give a brief overview of the hardware characteristics we exploit. Moreover,
we present the special adaptations and optimisations we applied in order to
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exhaust the full potential of this hardware, and structured these by memory
level parallelisation concepts in Section 5, and instruction level parallelism
in Section 6. Immediately after, we then evaluate our new algorithms on the
PlayStation 3, which we cover with Section 7, until we conclude with a short
summary in Section 8.

2 The Combined Local-Global Optic Flow

Method

In order to evaluate the applicability of variational optic flow approaches
on the PlayStation 3, we decided to create parallel algorithms based on the
combined local-global (CLG) model proposed by Bruhn et al. [11]. Com-
bining the noise robustness of the local Lucas/Kanade technique [30] with
a global smoothness constraint from the Horn/Schunck model [26], this ap-
proach forms an ideal basis for our evaluations: From a theoretical point of
view, it provides a sound mathematical description of the problem as a contin-
uous optimisation problem and thanks to the global smoothness constraint,
it yields dense flow fields as well. However, also from a technical standpoint
this model can be regarded as ideal, because it combines accuracy on the one
with a moderate computational complexity on the other hand. Many novel
approaches, such as the highly accurate optic flow approach by Brox et al. [7],
still require to solve huge but sparse linear or nonlinear systems of equations
and extend the CLG method by additional concepts, such as better data
terms or an improved handling of large displacements by warping strategies.
The runtime performance of a parallel implementation of this CLG model
can thus be expected to be representative for many other algorithms of this
kind, and will allow justified predictions for the speedups achievable for other
variational optic flow approaches being adapted to the Cell Processor.

2.1 Variational Model

Given a rectangular image domain Ω ⊂ R2, let f (x, y, t) be a grey value
image sequence with (x, y) ∈ Ω denoting the location, and t ∈ R+

0 specifying
the time. We then define fσ (x, y, t) := Kσ ∗ f (x, y, t) to be the spatially
presmoothed counterpart to f , which is obtained by a convolution with a
Gaussian kernel Kσ of standard deviation σ. Thus, it creates a first robusti-
fication of the model against high frequent perturbations.
The 2-D CLG method then derives the optic flow

w (x, y) := (u (x, y) , v (x, y) , 1)> (1)
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as the minimiser of the energy functional [11]

E(u, v) = ED(u, v) + α ES(u, v). (2)

The data term ED(u, v) penalises deviations from the grey value constancy
assumption: This means that it steers the model towards a solution in which
objects are assumed not to change their grey value over the image sequence.
As it turns out, this constraint performs well to estimate the so-called normal
flow, i.e. the optic flow component parallel to the image gradient. In any
region of the image where the displacement direction does not coincide with
the gradient, or where the gradient vanishes, the optic flow can however
not be accurately estimated only using the data term. This is also known
as the aperture problem. As a remedy, the smoothness term ES(u, v) is
employed to include propagated information from the neighbouring pixels
into the computation, assuming a globally smooth flow field. To this end, a
filling-in effect is established, and the solution found by the model is a dense
optic flow field with smoothed transitions at boundaries. The regularisation
parameter α is used to steer the influence of the smoothness term to the
model, thus creating a balance between smoothness of the solution and sharp
discontinuities at the boundaries of moving objects.
Depending on the choice of the data and smoothness terms, we are going to
discriminate between two concrete variants of this model, namely a linear
and a nonlinear version.

2.2 Linear CLG Model

The linear CLG model is a simple instance of the variational approach de-
scribed above. In this method, the data and smoothness terms are given by
the quadratic expressions

ELD(u, v) :=

∫
Ω

(
w>Jρ (∇3 fσ) w

)
dx dy, (3)

ELS(u, v) :=

∫
Ω

(
|∇u|2 + |∇v|2

)
dx dy, (4)

where ∇ =
(

∂
∂x
, ∂

∂y

)>
and ∇3 =

(
∂
∂x
, ∂

∂y
, ∂

∂t

)>
denote the spatial and spa-

tiotemporal gradients, respectively. In this context,

Jρ (∇3 fσ) := Kρ ∗
(
∇3 fσ ∇3 f

>
σ

)
(5)

represents the channel-wise spatially convolved motion tensor with a Gaus-
sian of standard deviation ρ. Note that since we use the linearised grey value
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constancy assumption [10], the motion tensor just equals the structure ten-
sor. As we shall see in Section 3, minimising a quadratic energy functional
leads to linear problems.

2.3 Nonlinear CLG Model

The linear model from Section 2.2 already provides a good flow field quality,
but does not pay attention to discontinuities in the flow field: Because of
the homogeneous smoothness assumption, edges always appear blurred, and
outliers in the data term are not treated in a robust manner.
To enhance these results considerably, Bruhn et al. suggested to apply an iso-
tropic flow-driven regularisation to the smoothness term using a subquadratic
penaliser, as well as to robustify the data term using the same non-quadratic
function [11]: By pursuing a piecewise smoothness, it is hence possible to
benefit from the filling-in effect of the smoothness term while still obtaining
sharp discontinuities at object boundaries, and the additional penaliser on
the data term weights down outliers in the input data. Unlike this original
method, which uses the function introduced by Charbonnier et al. [14], we
follow the idea from Brox et al. [7] and employ a penaliser function minimising
the L1 distance:

ψ(s2) =
√
s2 + ε2. (6)

This comes down to a regularised total variation (TV) penaliser in the
smoothness term [35]. Here, ε is a numerical parameter ensuring the strict
convexity of the function. For our experiments, we use εND = 0.1 for the data
term, and εNS = 0.001 for the smoothness term, thereby obtaining ψND and
ψNS.
Using the notation from Section 2.2, we instantiate (2) by a non-quadratic
penalisation of data and smoothness terms END and ENS, respectively, ob-
taining

END(u, v) :=

∫
Ω

(
ψND

(
w>Jρ (∇3 fσ) w

))
dx dy, (7)

ENS(u, v) :=

∫
Ω

(
ψNS

(
|∇u|2 + |∇v|2

))
dx dy. (8)

By design, both ψND and ψNS depend on the current flow field w, making the
model nonlinear. As a consequence, we will need a different technique for
solving the resulting equation system than in the linear case, as we will see
in Section 3.

6



2.4 Minimisation

Linear Setting The energy functional E(u, v) from (2) can be minimised
by solving its Euler-Lagrange equations [19]

0 = ∆u− 1

α
(Jρ,11u+ Jρ,12v + Jρ,13) , (9)

0 = ∆v − 1

α
(Jρ,12u+ Jρ,22v + Jρ,23) , (10)

using reflecting Neumann boundary conditions

0 = n>∇u and 0 = n>∇v. (11)

Jρ,nm denotes the corresponding entry (n,m) of the convolved motion tensor
Jρ (∇3 fσ), ∆ is the Laplacian given by

∆u := ∂xxu+ ∂yyu, (12)

and n describes the normal vector orthogonal to the image boundary in the
regarded point.

Nonlinear Setting For the nonlinear model, the Euler-Lagrange equations
also include the derivatives of the penalisers for data and smoothness terms:

0 = div(ψ′s∇u)−
ψ′d
α

(Jρ,11u+ Jρ,12v + Jρ,13) , (13)

0 = div(ψ′s∇v)−
ψ′d
α

(Jρ,12u+ Jρ,22v + Jρ,23) , (14)

with the abbreviations

ψ′s := ψ′NS(|∇u|2 + |∇v|2), (15)

ψ′d := ψ′ND(w>Jw), (16)

and ψ′NS, ψ
′
ND denoting the first derivatives of ψNS, ψND with respect to their ar-

gument, respectively. Again, we are assuming reflecting boundary conditions
as in (11).

2.5 Discretisation

For Equations (9)-(10) and (13)-(14) to be solved numerically, they need to
be suitably discretised with respect to a grid of size Nx × Ny using a cell
spacing of hx × hy.
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Choosing Nx and Ny to coincide with the input frame dimensions, those
images as well as the resulting flow field frames are just sampled at the re-
spective grid points (i, j) ∈ [1, Nx]× [1, Ny]. Spatial derivatives with respect
to this grid are realised by a fourth order finite difference scheme evaluated
in between the two regarded frames, and temporal derivatives are in con-
trast using simple two-point stencils [8]. Products of either of these types
can then be used to assemble the discrete motion tensor entries [Jρ,nm]i,j.
Likewise, continuous convolutions can just be mapped to their discrete coun-
terparts, therefore sampling the Gaussian kernel at an equally spaced grid
and truncating it to a certain precision.
If we now decompose the four-neighbourhood of pixel (i, j) according to the
parts aligned to axis l ∈ {x, y}, we can denote them as Nl(i, j) and finally
write down the discretised versions of Equations (9) and (10), respectively:

0 = [Jρ,11]i,j ui,j + [Jρ,12]i,j vi,j + [Jρ,13]i,j

− α
∑

l∈{x,y}

∑
(m,n)∈Nl(i,j)

um,n − ui,j

h2
l

(17)

0 = [Jρ,12]i,j ui,j + [Jρ,22]i,j vi,j + [Jρ,23]i,j

− α
∑

l∈{x,y}

∑
(m,n)∈Nl(i,j)

vm,n − vi,j

h2
l

(18)

In the nonlinear case, we pursue essentially the same discretisation strategy
as before, but insert the discretised variants of the multiplicative penalisa-
tion factors from (13)-(14). While ψ′d can immediately be evaluated at the
sampled components [J ]i,j and (u, v)>i,j, we need to specify a derivative ap-
proximation scheme for the argument to the smoothness term weight ψ′s. In
this context, we use a first order finite difference scheme and evaluate the
function at the grid points, like proposed by Bruhn et al. [11]. With this
strategy, we finally obtain the discrete Euler-Lagrange equations as

0 = [ψ′d]i,j

(
[Jρ,11]i,j ui,j + [Jρ,12]i,j vi,j + [Jρ,13]i,j

)
− α

∑
l∈{x,y}

∑
(m,n)∈Nl(i,j)

[ψ′s]m,n + [ψ′s]i,j
2

um,n − ui,j

h2
l

, (19)

0 = [ψ′d]i,j

(
[Jρ,12]i,j ui,j + [Jρ,22]i,j vi,j + [Jρ,23]i,j

)
− α

∑
l∈{x,y}

∑
(m,n)∈Nl(i,j)

[ψ′s]m,n + [ψ′s]i,j
2

vm,n − vi,j

h2
l

. (20)

These equations can be solved immediately in a numerical way, but since
the resulting linear system of equations involves 2NxNy unknowns ui,j and

8



vi,j, storing the whole matrix is costly. In particular, the restricted RAM
dimensioning of the PlayStation 3 does not even allow to process images of
reasonable size using a canonical representation.

2.6 Memory Representation

Instead, this system matrix turns out to be sparse: The nontrivial entries are
just appearing in diagonals describing the relation of u and v in a specific
pixel, or the communication of either of these directional flow field compo-
nents in one pixel with its four-neighbourhood.
Hence, it is sufficient to store only these diagonal entries, and we are in
particular aligning them in a grid corresponding to their location of impact
within the image domain. This breaks all computations down to simple
stencil operations, and also minimises computational overhead, since only
nontrivial operations are issued on this dataset. Without loss of generality,
we group the values in a Fortran-style column-major order in memory, as we
do it for the input frames and the output flow fields.

3 Efficient Numerics

For our experiments on the Cell platform, we apply two of the fastest nu-
merical solvers currently available: So-called multigrid strategies, developed
in the 1960s and improved in the late 1970s [6, 24, 5], have gained high pop-
ularity in the field of visual computing [8, 44, 22]. In particular, Bruhn et
al. showed that this solver is even able to accelerate optic flow algorithms to
real-time performance on standard PC hardware [8, 10].
A basic observation motivating the development of these multigrid techniques
is the decay behaviour of different error frequencies using traditional solvers:
While high frequent errors diminish after a very little number of iterations,
low frequent errors remain significantly longer. With respect to a coarser
grid, however, those remaining terms reappear with a higher frequency, and
can thus be eliminated much faster.
Since one of the regarded problems is of linear type while the other is not,
we handle both methods separately and developed two different solvers, each
of which is using the specialities of the respective underlying problems.

3.1 Linear Full Multigrid Scheme

First, we turn to the linear CLG method described in Section 2.2. Our solver
for the resulting Euler-Lagrange equations depicted in (9)-(10) is the so-called
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Linear Full Multigrid strategy.
Here, there residual equation is restricted to a coarser grid, and the prolonga-
tion of the computed error is then used to correct the immediate solution on
the fine grid. In particular, a basic algorithm for the solution of an equation
system

Ahxh = bh (21)

with linear operator Ah and right hand side bh on the fine grid h consists of
four important stages [6, 8, 38]:

1. First, high frequent errors are eliminated applying η1 presmoothing
relaxation steps using a traditional iterative solver.

2. The residual system Aheh = bh−Ahx̄h, x̄h is the solution from 1., is then
transferred to a coarser gridH. This equation obtained by restriction of
both the linear operator and the right hand side is recursively solved for
the error term eH . To perform transitions between the different grids,
prolongation and restriction operators P and R need to be defined. In
this context, we use an area-based resampling approach as described
by Bruhn et al. [8].

3. Back on the finer grid, the preliminary solution x̄h from 1. is corrected
by the (prolongated) error term eh obtained in 2.

4. To compensate for high frequent errors introduced during the coarse
grid correction, the iterative solver from 1. is again applied for η2 post
relaxation steps.

This recursion rule involving one recursive call during step 2 is called a V
cycle, such that one often finds the description of a whole run abbreviated
with the notation V (η1, η2).
In our concrete implementation, we apply a Jacobi relaxation during steps 1
and 4. On the finest scale, this solver is given by the equations

uk+1
i,j =

[Jρ,13]i,j + [Jρ,12]i,j v
k
i,j − α

∑
l∈{x,y}

∑
(m,n)∈Nl(i,j)

uk
m,n

h2
l

− [Jρ,11]i,j − α
∑

l∈{x,y}

∑
(m,n)∈Nl(i,j)

1
h2

l

, (22)

vk+1
i,j =

[Jρ,23]i,j + [Jρ,12]i,j u
k
i,j − α

∑
l∈{x,y}

∑
(m,n)∈Nl(i,j)

vk
m,n

h2
l

− [Jρ,22]i,j − α
∑

l∈{x,y}

∑
(m,n)∈Nl(i,j)

1
h2

l

, (23)

with u0 = v0 = 0. Here, uk
i,j describes the solution u in the grid point (i, j) at

time step k, and Nl(i, j) denotes the four-neighbourhood around point (i, j).
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Note that due to being constant over the course of the computations, [Jρ,13]i,j
and [Jρ,23]i,j happen to be the right hand side of the equation system. By
construction of the multigrid correction cycle, their position on the coarser
grids is hence taken by the new respective right hand sides, which are in fact
the restricted residuals from the finer stage.
The Full Multigrid scheme now extends this idea by a coarse-to-fine strategy,
i.e. the problem is first solved on the coarsest grid, and the solution is then
used as an initialisation for the computation on the next finer grid. By
construction, this scheme already dampens the global error tremendously,
such that for the multigrid recursion steps involved, rather little effort is
necessary: Are the coarser grids always chosen in a way that they contain
half as many sampling points in either dimension than those on the next
finer grid, very few relaxations on the respective layers are already sufficient
to let the system fully converge to a steady state.

3.2 Nonlinear Full Approximation Scheme

Secondly, we turn our attention to the nonlinear multigrid solver, the so-
called Full Approximation Scheme [6], for equations of type

Ah(xh) = bh. (24)

The idea behind this approach is different to the linear setting, since there
is no longer a single compulsory notion of the nonlinear operator Ah(xh) for
the whole run of the solver available, but instead, this operator needs to be
evaluated against the most current version of the solution: This follows the
concept of lagged nonlinearities [18].
Therefore, it is necessary to find a suitable coarse grid representation for the
initial problem, instead of regarding its residual equation only, and to project
the error compensation back to the fine grid. This works as follows:

1. Like in the linear setting, we first apply η1 iterative relaxation steps
using a Jacobi solver with lagged nonlinearities.

2. Similar to before, we compute the residual rh = bh−Ah(xh) and restrict
it to the coarse level. In addition, we restrict the preliminary solution
x̄h and use it to evaluate the nonlinear operator AH(Rx̄h). Using Rx̄h

as an initialisation for xH , we denote the coarse grid system by

AH(xH) = Rrh + AH(Rx̄h). (25)

Similar to before, we use area-based resampling to describe the prolon-
gation and restriction operators P and R.
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3. After recursion, we compute the amount of change applied to each grid
location within the new intermediate solution, x̄H , compared to the
initialisation Rx̄h, prolongate this difference, and add it to the previous
fine grid solution to compensate for lower frequent errors:

x̄h ← x̄h + P (x̄H −Rx̄h) (26)

4. Since the coarse grid correction introduces new high frequent error
terms, we finally perform η2 relaxation steps using the iterative solver
from 1.

Analogously to 3.1, we use the notation V (η1, η2).
Before addressing the hardware-related adaptations and optimisations as well
as implementational details, we will first have a look on the special charac-
teristics of the underlying hardware platform. For more details, we refer the
reader to [38] and [9].

4 The Cell Processor

The Cell Broadband Engine processor is an asymmetric multi-core shared
memory unit. It consists of one general purpose core, the PPU, which is
supplied with eight stream processor cores, the SPUs, out of which six are
available on the PlayStation 3 [3].
Resembling a POWER architecture, the PPU is instruction set compatible
to existing platforms implementing this design. In the context of the Cell
processor, it is mainly used to execute the operating system, whereas parallel
special-purpose tasks are executed by the SPUs instead. Here, the PPU also
acts as an arbiter and resource manager between the single SPU kernels, and
regulates the global programme flow and system interaction.
The SPUs in contrast are more focussed towards high performance applica-
tions, though they still offer a broad range of functions, such that they can
still be seen as general purpose units. To unveil their full potential and to
make them interact with the global programme, however, they need to be ex-
plicitly addressed using so-called intrinsics [37]. Those instructions extend
the C programming language and describe macros to dedicated assembly
code structures which cannot be automatically modelled by standard com-
pilers. Meanwhile, the kernel code remains formally designed in a high level
language, such that compiler optimisations can still be applied to a certain
degree.
For a higher data throughput for massively parallel computations, the SPUs
work on a native pipeline bandwidth of 128 bits. This follows the concept of
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the single instruction multiple data (SIMD) pattern [17]: Vectors of four sin-
gle precision floating point values are processed parallel as long as they are all
subject to the same operation and aligned to a memory address of a multiple
of four. This construction does not make loop unrolling strategies obsolete,
however, since pipeline latencies still require a sufficiently high number of
independent instructions to be scheduled in an interleaving manner [37].
Sometimes, the power of the intrinsics does not suffice to formulate partic-
ular operations in a fully-optimised manner. This is for instance the case
if bit operations are to be issued on SIMD vector-valued data. However,
the programmer can still resort to assembly instructions, such that many
optimisation tricks known from traditional hardware can still be applied.
To profit from data locality while still being situated in a complex distributed
application setup, the SPUs are equipped with unmanaged caches, each 256
kB of size. Those Local Stores are by consequence not automatically syn-
chronised with the global memory, but need to be explicitly filled by the
application developer by means of direct memory access (DMA) operations.
This grants a high amount of freedom and predictability for time critical
applications, but comes along with an associated responsibility for any data
synchronisation between the RAM on the one hand and the working copies
of the SPUs on the other. Fortunately, however, the memory flow controllers
are designed to work independently from the core, such that DMA operations
and arithmetics can be executed independently from each other.
Being issued via the ring-bus chaining the single cores together, such external
memory requests finally converge in one single memory interface controller,
which provides a peak memory bandwidth of 25.6 GB/s [27]. In practice it
turns out that this component still describes a critical bottleneck for real-time
applications that has to be respected during software development. However,
each memory flow controller for an SPU can run independently from the
actual core, such that latencies on this side do not necessarily affect the
overall performance of the algorithm.
Another critical aspect of this novel chip is the lack of a dynamic branch pre-
diction circuit. Despite for simple examples, where compile time evaluations
can already yield reasonable results, high misprediction penalties of 18 cycles
are likely to be issued [27]. Therefore, branching should be entirely avoided
whenever no reliable branch hint can be set at development time, and where
alternative solutions are in average faster than the branching variant.
Taken these observations together, several challenges need to be mastered
in order to exhaust the full potential of this novel processor and to write
extraordinary fast algorithms:

1. They must be adapted to the distributed setup, such that all cores are
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equally charged. Inter-core dependencies for the global problem must
hereby be fulfilled using synchronisation messages.

2. Their local structure should match the vector processing style of the
single cores. Branching should be avoided wherever possible, and loop
unrolling strategies furthermore help exploiting both pipelines.

3. Memory exchanges need to be issued in time and under use of data
locality, where possible. Bursts to the memory flow controller should
meanwhile be reduced to a minimum.

In the following sections, we go more into detail about these issues.

5 Memory Level Parallelisation Concepts

5.1 Distribution to the Processor Cores

A crucial aspect for the successful acceleration of the algorithm using the
modern Cell architecture is a good parallelisation strategy. At this point,
traditional methods often rely on domain splitting schemes: The image do-
main is split into regions of about equal size which are henceforth assigned to
single cores. These strategies are indeed successful when it comes to iterative
solvers [23], but it unfortunately turns out that they are much less suited for
our non data parallel problems computed with multigrid solvers:
Working on a shared memory architecture, boundaries between areas pro-
cessed by different cores need to be protected by a semaphore system to
ensure the integrity of the data. Being frequently synchronised by such sys-
tem, the cores are tied into a perfectly parallel schedule, thereby performing
similar tasks at exactly the same time. While this state is desirable from
a theoretical point of view, it is entirely impractical in context of the high
data throughput involved: Bursty access to the Memory Interface Controller
causes bus contentions, and involved memory delays lower the overall frame
rate significantly.
A second disadvantage of domain splitting approaches is the fluctuating size
of the processed grids within a multigrid algorithm: For smaller representa-
tions, splits are much more costly than processing a whole small area by one
single core. Hence, the success or failure of such a strategy strongly depends
on a suitable heuristic defining when and where to split and how to distribute
the resulting areas to the available cores, which creates an additional com-
putational overhead to the problem. Even more important, several cores are
meant to be idle for meaningful periods of time this way, thereby furthermore
decreasing the overall performance.
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As a remedy, the problem should not be divided spatially, but in a temporal
manner. Since a splitting of the algorithm into stages and implementation
of a distributed processing pipeline [27] does not match the structure of
the solver nicely as well, we decided to shift this splitting to a macroscopic
level: A typical application scenario for optic flow computation requires a
whole video stream, often gathered from an external camera device, to be
transcoded into optic flow information in real-time. It is hence feasible to
process whole frames on single cores, where the respective kernels can run
locally optimised and without any interference with other cores. In partic-
ular are memory requests expected to occur offset in time, thus ensuring
rather homogeneous traffic amounts on the memory bus. Meanwhile, our
method provides at least the same data throughput as any other strategy,
by potentially accepting a slightly higher per-frame latency.
In our concrete implementation, we start the SPU kernels only once together
with the main programme, which saves initialisation time during the further
programme run. The kernels then only pick up incoming frames from the
input queue, and place their results into the output queue. In contrast, the
PPU does not perform any computations in this respect, but takes care of
input and output management, as well as of message passing between the
cores.

5.2 Synchronisation

Thanks to our chosen parallelisation strategy, there is no need to enforce a
strict synchronisation among the cores at all. However, since all frames are
of equal size, the computation on any core is expected to take about as long
as on any other, which allows for an optimisation by avoiding redundancies
in the computations:
Both input frames needed to compute one flow frame are to be presmoothed
by a convolution with a Gaussian kernel of standard deviation σ (cf. Section
2). Since one frame always occurs in context of two flow fields, it only needs
to be presmoothed once by one SPU, and the other can already access this
data. Therefore, we establish a linear order of assignments of frame pairs
to processor cores, and ensure furthermore that the regarded presmoothed
frame is already entirely processed by the predecessing SPU.

5.3 Caching

Because of the missing cache hierarchy and the meagre extent of the Lo-
cal Stores, an evolved strategy is needed to reduce memory latencies to a
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minimum. Besides a sufficiently early fetch of relevant data, and a back-
synchronisation to RAM, data should also be held in cache as long as possi-
ble, if this saves external memory requests.
For the present implementation, we split the code into dedicated memory
management functions on the one hand and procedures containing the ac-
tual algorithm computing the problem on the other. The memory related
functions are thereby responsible for the DMA transfers between RAM and
the Local Store of the respective SPU, and hide memory latencies by ac-
tive use of the double buffering technique: Here, not only a current working
copy of the global memory is represented in the cache, but several instances
thereof exist simultaneously. While one of those vectors is processed by the
algorithm, the others can already be filled with data for the next time step,
or can be read out to the main memory if they contain newly computed
data from a previous iteration. For stencil based operations, like they are
frequently performed by our algorithm, this concept involves ring buffers of
sufficient size, and data can automatically be reused without any additional
requests to the RAM.
All such operations are thereby performed on memory lines of fixed size,
which coincide with the columns in the rectangular image domain Ω. Though
dependent on the actual size of the input frames, this dimensioning has
proved to be a good estimate to keep the algorithm as general as possible and
thereby to reduce branching to a minimum, while still maintaining memory
blocks of reasonable size to hide latencies behind computations. Meanwhile,
by processing an image from left to right, a whole neighbourhood can stay
cached, which renders each date only to be transferred once per operation.
Note that this property is not universally valid for arbitrary partitions: A
size-independent structure of fixed-size tiles for instance, which is desirable
for larger image sizes, does in general not offer this opportunity and requires
at least data along the inner boundaries to be synchronised multiple times
during an operation. This in turn would make the algorithms strongly de-
pending on the chosen tile size, and requires in particular a non-canonical
ordering of data in the memory.
In order to know which memory line is to be fetched next, our functions
are equipped with a prediction logic, which is in particular important during
presmoothing convolution steps and on image or partition boundaries: Here,
the access pattern is no longer linear and requires hence a more evolved
strategy.
Throughout the design of our algorithm, the lifetime of cached variables is
a crucial aspect for a high performance. While a sufficient cache validity
can be trivially established by construction for many values involved in the
process, others need a more detailed examination and planning:
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Due to discretisation, our algorithm strongly depends on frequent stencil
operations. Sometimes, like for the computation of the nonlinear weight
ψ′s, several operations of such type are even dependent on each other. This
situation, however, bears a severe performance threat: While intermediate
results do usually not need to be written back to RAM by processing a whole
pipeline of operations upon one pixel and writing back only the final result,
the lack of data locality makes a similar approach nontrivial for dependent
stencil operations.
One approach to this problem is to expand the single steps to one large
stencil operation, and thus to make the final result immediately depend on
the input data. This way, however, many redundancies in the computations
are implicitly involved.
Instead, we maintain the initial structure of many small stencils, but main-
tain a spatial offset amongst them to satisfy data dependencies. Thereby,
all intermediate values can still be kept entirely cached, only an essential
minimum of intermediate data is synchronised with the RAM, and requests
to the memory interface controller are reduced to a minimum.
Meanwhile, this advantage is bought with a more complicated special case
handling at image boundaries, since the different offset operation steps will
reach boundary locations to different points in time. Thanks to our memory
management functions, however, this drawback can be handled in a both
elegant and well-performing manner.

6 Instruction Level Parallelisation Concepts

6.1 Convolutions

Most of the setup phase for the equation system is dominated by convolution
operations for derivative approximations and presmoothing. Because those
are usually of high computational complexity, they deserve further attention
with respect to their implementation on the Cell platform.
Thanks to their separability, the problem can be decomposed into axis-
aligned components, which are then processed apart from each other. One
of those operations is hereby following the major memory direction, while
the remaining one is just perpendicularly oriented. In other words, while the
first of both operations applies a convolution mask to a coherent memory
block, the latter one connects remote memory cells, and renders in return
neighbouring cells independent from each other.
Consequently, we designed two different approaches. On the one hand, we
use a scalar implementation for the version alongside the memory direction,
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and perform any of those steps for four columns in parallel to hide pipeline
latencies. Since the convolution kernel size is usually unknown, working on
misaligned vectors is quite expensive, and branching is costly as well, this
solution turned out to perform better than a vector-based version. Reflecting
Neumann boundaries are thereby physically established, i.e. after DMA load
into a sufficiently large cache representation, data is first extended by the
respective boundary pixels, and afterwards given into the algorithm.
On the other hand, we exploit the full SIMD resources for convolutions in
the perpendicular direction, since vectors are internally independent and can
thus be treated as atomary elements. By processing the data on a per-column
basis, we can reduce the total number of DMA transactions to a minimum,
and are furthermore able to hide pipeline latencies: A loop unrolling scheme
over four such SIMD vectors of one column provides enough independent op-
erations to be scheduled by the compiler. Reflecting boundary conditions do
not need to be considered in a per-value sense at all: The memory manage-
ment function already keeps track of these special cases and fetches vectors
from the respective locations within the image domain, which it declares
to be boundary values. Particularly for small convolution kernels, this also
causes the first vectors of the image domain itself to be already cached from
before, such that this operation in general only generates marginal overhead
and is thus way faster than a version based on copying.

6.2 Boundary Handling

As soon as a fully data-parallel operation alongside the major memory order
is performed, the mandatory manual caching of data (cf. Section 5.3) has
another advantage: To establish SIMD based processing, loop unrolling, or
both, it is often advantageous to have vectors of a certain length and align-
ment. For typical image sizes, these requirements are seldomly met, such
that a dedicated boundary handling on a scalar basis and under application
of branching would be necessary. Especially on small problem representations
in the multigrid pyramid, however, this fact would significantly reduce the
overall performance of the algorithm. Instead, we allow the locally cached
variant of all vectors to be not fully consistent in length to their RAM coun-
terparts, but pad them to a sufficient degree.
In our concrete setting, this modification grants a fully SIMD-based process-
ing order on all stages, including the boundary elements. This means, we
can process (valid) inner pixels and boundary elements, as well as (invalid)
padding values without discrimination: For a simplification of the smoothness
term notation, we maintain a 1 pixel zero frame around the image domain,
which then implicitly treats boundary cases in the correct way. Once invali-
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dated by a SIMD operation across the boundary, these values can easily be
re-established, namely by one single scalar write operation. In particular,
there is no need to introduce branching, neither for loop unrolling purposes,
nor for SIMD processing, such that we do not suffer from high branch miss
penalties. The additionally processed elements also do not deteriorate the
runtime performance, since the operations either come for free, like for the
SIMD application, or they are hidden by being scheduled into the processing
pipelines instead of using idle instructions (NOP). Thanks to these benefits,
we make active use of this technique throughout our implementation.

6.3 Binary Optimisations

Since the SPU kernels are only loaded onto their target cores once and they
remain online for the rest of the programme run, it is worthwhile to have
them optimised for a high throughput rather than for small binary sizes.
So, we compiled our programmes with an increased threshold for function
inlining, such that DMA management functions can be closer scheduled with
arithmetic operations, and latencies are thus more efficiently reused.

7 Experimental Results

In the following, we evaluate the runtime performance of our algorithms on
the Cell processor of a PlayStation 3. To this end, we use frames 8 and 9
of the popular Yosemite sequence created by Lynn Quam, as well as frames
22 and 23 from the famous Ettlinger Tor sequence by Kollnig et al. [28], to
benchmark the runtime performance of our developed algorithms.
One should note at this point that our methods implement the nonlinear and
linear CLG variants proposed by Bruhn et al. [11, 10] without restrictions,
such that we obtain the same error measures. In the nonlinear case, how-
ever, we additionally propose a fair tradeoff between quality and speed, and
evaluate our implementations against this modified parameter configuration.
To provide an intuitive measure for the obtained timing results, we denote
them in terms of the achieved frames per second (FPS ) count. The timing
has in all cases been issued over a whole programme run, and covers thus
both the preliminary setup of the equation system, as well as the solver
itself. Meanwhile, we exclude real one-off expenses from the measurements,
which are for instance related to an upload of the programme kernels to the
computing cores or a first initialisation thereof.
Since presmoothing convolutions are in the first place used to make the sys-
tem more robust with respect to noise and the amount of presmoothing is
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Figure 1: Visual quality of the linear (bottom left) and the nonlinear (bottom
right) CLG method, colour-coded. The input images, frames 8 and 9 of the
Yosemite sequence, are depicted in the upper row, respectively.

hence strictly dependent on the input data, we always present two mea-
surements: One characterises the peak performance without any additional
presmoothing applied. The other, in contrast, shows the performance for the
same algorithm with additional presmoothing of significant extent, as it is
necessary to achieve a good visual quality.

7.1 Scaling Over Varying SPU Counts

In a first experiment, we measure the run-time performance of our algorithm
over an varying number of participating SPUs. In the ideal case, one would
expect a linear increase in the performance depending on the SPU count,
but this theoretical estimate is in practice often significantly deteriorated:
Concurrent requests to the Memory Interface Controller and the Element
Interconnect Bus cause higher memory latencies, and the SPU kernels will
thus be stalled as long as the data dependencies cannot be met.
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7.1.1 Linear Setting

Table 1 and Figure 2 show the results of this experiment. We obtain 81.4
FPS on frames 8 and 9 of the original Yosemite sequence (with cloud motion
in the sky) to obtain the minimal average angular error (AAE) of 7.14◦. The
visual quality of the flow fields created by our algorithm is hereby depicted
in Figure 1. Here, we use a colour coding representing the direction like
depicted in the frame of the flow fields, and the magnitude given by the
intensity.
On the modified Yosemite sequence without clouds provided by Black et al.
on http://www.cs.brown.edu/~black/images.html, our algorithm provid-
es results with an AAE of 2.63◦, which is the same value Bruhn et al. describe
in [8].
Thereby, we beat an optimised sequential code using their suggested point-
wise coupled Gauß-Seidel relaxation step and running on a Pentium 4 3.2
GHz by more than a factor of 6.5.
In this context, we choose V (2, 1) cycles, since they let the solver already
fairly well converge: We compared this preliminary solution wp to the fully
converged solution wc using the same parameter set. To this extent, we
compute the quotient of the L2 norms of the error and the converged solution
as a relative convergence error:

erc :=
||wp −wc||2
||wc||2

(27)

For our V (2, 1) cycles, we obtain errors below 1 · 10−2, which proves that our
obtained solution is indeed very close at the best result achievable with the
method. Consequently, the AAE is already as low as 7.14◦ as well.
If we disregard both the presmoothing of the input frames by standard devia-
tion σ for a moment, as well as the local integration scale ρ, but still perform
the pure solver step as before, we can measure a peak performance of almost
210 FPS. This means, depending on the characteristics of the sequence and
the related presmoothing requirements, even much higher performance rates
can be expected.
Observing the growth rate of the total frame rate, however, we note a damp-
ing effect towards a higher SPU number, which is reflected in a sub-linear
increase in the performance. This effect is not visible in this extent when we
use pointwise coupled Gauß-Seidel relaxations formulated in a scalar man-
ner [23]: By profiling, we see that there is indeed time lost during the re-
laxation steps. We conclude that the much shorter runtime of our parallel
Jacobi steps, in combination with the almost identical memory bus load per
run, finally leads to a contention of the Memory Interface Controller. Since
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Table 1: SPU scaling on linear Full Multigrid cycles with presmoothing of
σ = 1.3, ρ = 2.3 (ps), and the peak performance without (no), on “Yosemite”
316× 252.

V (2,1)ps V (2,1)no

# t(ms) FPS t(ms) FPS

1 62.74 15.94 19.72 50.71
2 32.25 31.01 10.05 99.55
3 21.83 45.80 7.11 140.67
4 17.40 57.48 6.16 162.22
5 14.33 69.77 5.23 191.14
6 12.29 81.40 4.76 209.96
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Figure 2: SPU scaling on linear Full Multigrid cycles with presmoothing of
σ = 1.3, ρ = 2.3 (ps), and the peak performance without (no), in FPS on
“Yosemite” 316× 252.
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the resulting time gap cannot be hidden by means of double buffering any-
more, the SPUs waiting for the next memory line run into a stall, which is
immediately reflected in the performance. Nevertheless, this new approach
is still significantly faster than our previous sequential notation, and is thus
fully justified to be used.

7.1.2 Nonlinear Setting

Since our nonlinear method converges much slower than the linear variant,
we need to apply significantly more solver steps than before. Again using
the relative error measure from (27) as a discriminative criterion, we use two
V (2, 1)-cycles with two inner iterations per Full Multigrid stage. With these
settings, we again obtain relative errors below 1·10−2, and an average angular
error of 5.73◦ on the Yosemite sequence with clouds, depicted in Figure 1.
As a fair tradeoff between accuracy and speed, we additionally provide bench-
marks using only one V (2, 1) cycle with two inner iterations: Though running
significantly faster than our high quality solution, we still obtain an average
angular error of 5.76◦, and the relative error is below 2.2 · 10−2.
Thirdly, as for the linear case, we are interested in a peak performance mea-
sure, given no presmoothing needs to be applied at all. In this respect, we
again use one nonlinear V (2, 1) cycle with two inner iterations, but do not
presmooth the input frames or the motion tensor entries.
Table 2 and Figure 3 show the measurements from this experiment. Applying
optimal smoothness parameters, we obtain a maximal of 25.64 FPS for the
highest accuracy solution, and even 41.81 FPS for a visually equal result,
which is far beyond real-time. Our measured peak performance of 65.02 FPS
thereby additionally promises even higher performance, if the input data
requires less presmoothing.
Furthermore, one can see that due to the higher computational complex-
ity of the underlying model compared to the linear approach, a lower ratio
of memory transactions to arithmetic operations is established: Because of
fewer bus contentions, this approach scales better towards a larger number
of cores.

7.2 Scaling over Varying Frame Sizes

In a second experiment, we compute the scaling of our methods under changes
of the input image size. Here, we used frames 22 and 23 from the famous Et-
tlinger Tor sequence created by Kollnig et al., which can be downloaded from
http://i21www.ira.uka.de/image_sequences/, and resampled it from its
original size of 512× 512 pixels to 2562, 1282, and 642.
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It turns out that images of about 512× 512 pixels are the largest size com-
putable on the Sony PlayStation 3: During experiments with larger frames,
both RAM and Local Store requirements exceeded the available capacity of
256 MB and 256 kB, respectively, such that they cannot be computed in our
framework without major redesigns. Frames of VGA size (640 × 480) are
already too large to entirely fit into the RAM, while vertical dimensions over
600 pixels pose a problem to the cache partitioning.
To counter the frequent swapping processes to the hard disk for large frames
without hardware modifications, a different parallelisation strategy can be
proposed as a remedy, which comes under the cost of associated performance
losses, however. The restrictions on the cache can also be levelled of, namely
by a different memory layout - but this change is again immediately connected
to a significant runtime loss due to redundant DMA transactions in between
RAM and the Local Stores.
Since the amount of presmoothing is depending on the image size, we adapt
the standard deviation of our presmoothing steps to the downsampled frames,
such that an equal visual impression establishes: Here, we scale σ and ρ
linearly with one dimension of the regarded frames, i.e. if we use these for
frames of size 5122, we apply σ

2
and ρ

2
to frames of 2562 and so on.

7.2.1 Linear Setting

Table 3 lists the result of our experiments with the linear model from Section
2.2. Here, we used presmoothing with standard deviations σ = 1.2 and
ρ = 2.3 for the 5122 original version, which we then scaled in accordance to
the frame size. These values have been chosen as ideal with respect to the
visual quality of the flow field. The visual quality is hereby shown in Figure
4.
Frames of size 5122 can be computed entirely in real-time, which even out-
performs recent implementations on GPUs, like the one proposed by Zach et
al. [44], by more than a factor of five.
Observing the development of the runtime over the different frame sizes, one
notices a clear preference of larger frames, if no presmoothing is applied, but
an almost linear scaling with the number of pixels, if both the input frames
and the motion tensor are presmoothed. This characteristic can in the first
place be explained by the different ratio of memory transfers and arithmetic
operations, compared to the other stages of the algorithm: Convolutions
typically require a high data throughput with only a few computations in
between, and can additionally not be cached to a degree standard stencil
operations are, which is due to the restricted data locality.
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Table 2: SPU scaling on nonlinear Full Multigrid cycles with presmoothing
of σ = 1.6, ρ = 1.45 (ps) on two and one V cycle, and the peak performance
without presmoothing (no), on “Yosemite” 316× 252.

2V (2,1)ps 1V (2,1)ps 1V (2,1)no

# t(ms) FPS t(ms) FPS t(ms) FPS

1 197.57 5.06 100.53 7.70 81.16 12.32
2 100.53 9.95 62.73 15.94 40.28 24.83
3 68.19 14.67 42.89 23.32 27.89 35.86
4 52.79 18.94 32.60 30.67 21.75 45.98
5 43.27 23.11 27.08 36.92 17.76 56.31
6 39.01 25.64 23.91 41.81 15.38 65.02
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Figure 3: SPU scaling on nonlinear Full Multigrid cycles with presmoothing
of σ = 1.6, ρ = 1.45 (ps) on two and one V cycle, and the peak performance
without presmoothing (no), in FPS on “Yosemite” 316× 252.
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Figure 4: Visual quality of the linear (bottom left) and the nonlinear (bottom
right) CLG method on a real-world dataset, colour-coded. The input images,
frames 22 and 23 of the Ettlinger Tor sequence, are depicted in the upper
row, respectively.
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Table 3: Scaling of our linear method over image sizes with adapted pres-
moothing based on σ = 1.2, ρ = 2.3 for 5122 (ps), and the peak performance
without (no), on resampled versions of “Ettlinger Tor”.

V (1,2)ps V (1,2)no

Size t(ms) FPS t(ms) FPS

642 0.54 1835.24 0.40 2475.55
1282 1.85 540.86 1.19 840.93
2562 7.78 128.52 3.95 252.90
5122 39.33 25.43 14.37 69.59

Table 4: Scaling of our nonlinear method over image sizes with adapted pres-
moothing based on σ = 1.3, ρ = 1.0 for 5122 (ps), and the peak performance
without (no), on resampled versions of “Ettlinger Tor”.

2V (1,2)ps 1V (1,2)ps 1V (1,2)no

Size t(ms) FPS t(ms) FPS t(ms) FPS

642 2.65 377.24 1.48 677.00 1.31 765.61
1282 7.99 125.18 4.86 205.83 4.26 234.68
2562 28.66 34.89 16.63 60.15 12.98 77.01
5122 92.70 10.79 64.51 15.50 50.87 19.66

7.2.2 Nonlinear Setting

Table 4 shows the results of our benchmarks with the nonlinear model from
Section 2.3. Even with this approach, which gives much better results than
the simpler linear variant, we obtain results in real-time and outperform CPU
and GPU implementations of variational optical flow models significantly [44,
10]. Like for the linear case, the visual quality is shown in Figure 4. Since
this sequence does not contain ego-motion of the camera like for Yosemite,
one can immediately see the sharp edges of the moving cars, which are much
more bleeding out using the linear model.
Meanwhile, we observe a similar scaling pattern as in the linear case, though
presmoothing does not have as high effects on the runtime: To obtain the
respectively best results, the discontinuity-preserving nonlinear method typ-
ically requires in total less presmoothing to be applied than the linear one.
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8 Summary and Conclusion

In this paper, we have proposed two well-performing parallel algorithms for
the computation of the CLG optic flow model on the Cell processor of a Sony
PlayStation 3. By a combination of efficient multigrid solvers, adaptations
of data structures, an evolved cache strategy, and instruction-level parallel
formulations, we are able to exhaust the full potential of the underlying
architecture. Though the hardware is only about as expensive as modern
CPU-based computers, we still obtain a speedup factor of 6.5, which finally
comes down to an absolute number of 210 dense flow fields on image sequences
of size 316× 252 pixels. This way, we could prove that variational optic flow
approaches are indeed able to provide a remarkable performance while not
forfeiting their characteristic accuracy. In experiments with differently sized
images, we showed that the algorithm performs better the larger the image
sequence is. In this context, we found the small memory dimensioning of the
PlayStation 3 to be one main bottleneck for algorithms of this kind.
Since our algorithm represents a classic optimisation problem, our insights
might as well not only be relevant for the concrete application of optic flow,
but we rather hope that our work gives direction to a new point of view with
respect to variational models and their incorporation into real-time appli-
cations. With impressive speedups in prospect, it becomes more and more
worthwhile to invest some effort in a suitable adaptation to platforms like the
Cell processor, and to benefit from the true potential of these architectures.
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