
Universität des Saarlandes

U
N IV

E R S IT A
S

S
A

R A V I E N S
I S

Fachrichtung 6.1 – Mathematik

Preprint Nr. 244

Partial regularity for minimizers of
splitting-type variational integrals under
general growth conditions part 2: the

non-autonomous case

Dominic Breit

Saarbrücken 2009





Fachrichtung 6.1 – Mathematik Preprint No. 244
Universität des Saarlandes submitted: September 2, 2009

Partial regularity for minimizers of
splitting-type variational integrals under
general growth conditions part 2: the

non-autonomous case

Dominic Breit

Saarland University
Department of Mathematics

P.O. Box 15 11 50
66041 Saarbrücken

Germany
Dominic.Breit@math.uni-sb.de



Edited by
FR 6.1 – Mathematik
Universität des Saarlandes
Postfach 15 11 50
66041 Saarbrücken
Germany

Fax: + 49 681 302 4443
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/



Abstract

In [Br] we prove partial regularity (and full regularity in 2D) for minimizers of
splitting-type variational problems under general growth conditions, which is
the corresponding generalization of the results due to splitting-type problems
with power growth conditions from Bildhauer and Fuchs [BF1], [BF2]. In this
article we extend the statements from [Br] for an additional x-dependence
without severe restrictions.

1 Introduction

The study of regularity properties of minimizers u : Ω → RN of energies

I[u,Ω] :=

∫
Ω

F (∇u) dx, (1.1)

where Ω denotes an open set in Rn and where F : RnN → [0,∞) satisfies an
anisotropic growth condition, i.e.

C1|Z|p − c1 ≤ F (Z) ≤ C2|Z|q + c2, Z ∈ RnN (1.2)

with constants C1, C2 > 0, c1, c2 ≥ 0 and exponents 1 < p ≤ q < ∞,
was pushed by Marcellini (see [Ma1] and [Ma2]). The research of Espotisto
Leonetti and Mingione [ELM] shows that the statements do not stay true if
one allows an additional x-dependence and considers minimizers of function-
als

J [u,Ω] :=

∫
Ω

F (·,∇u) dx, (1.3)

for F : Ω × RnN → [0,∞). This is not only a technical extension of the
autonomous situation and additional assumptions are often necessary.
In the autonomous case it is already well-known, that we have no hope for
regularity of minimizers of (1.1), if p and q are too far apart (compare the
counterexamples of [Gi] and [Ho]). To get better results one needs additional
assumptions. Therefore Bildhauer, Fuchs and Zhong consider decomposable
integrands, which means we have

F (Z) = f(Z̃) + g(Zn)

for Z = (Z1, ..., Zn) with Zi ∈ RN and Z̃ = (Z1, ..., Zn−1). They assume
power growth conditions for the C2-functions f and g and get a very general
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theory in the case p ≥ 2 (see [BF1], [BF2] and [BFZ]). In [Br] we have
generalized this statements under the assumption

f(Z̃) = a(|Z̃|) and g(Zn) = b(|Zn|)

for N -functions a and b. Thereby the main assumptions are (h stands for a
or b)

h′(t)

t
≈ h′′(t)

and superquadratic growth of h. The results of [Br] (where higher integra-
bility theorems from [BF3] built the basic) are

• full C1,α-regularity for n = 2;

• partial C1,α-regularity in general vector case, if

b(t) ≤ ctωa(t) and a(t) ≥ ϑt
ω
2
(n−2) (1.4)

for an ω ≤ 2 and big values for t;

• full C1,α-regularity for N = 1 if b(t) ≤ ct2a(t) and a(t) ≤ ct2b(t) for
t� 1.

If one has a look at the statements in the power growth situation you see
that the conditions quoted above are natural generalizations to the case of
N -functions (except of the case N = 1, see [BF1], [BF2] and [BFZ]).
From now on we consider minimizers of

T [w] :=

∫
Ω

[
a(·, |∇̃w|) + b(·, |∂nw|)

]
dx. (1.5)

where a and b are of class C2(Ω× [0,∞), [0,∞)) with the properties (h = a
or h = b):

h(x, ·) ist strictly increasing and convex with

lim
t→0

h(x, t)

t
= 0 and lim

t→∞

h(x, t)

t
= ∞.

(A1)

for all x ∈ Ω. Furthermore we assume for all t ≥ 0:

ε̂
h
′
(x, t)

t
≤ h

′′
(x, t) ≤ ĥ

h
′
(x, t)

t
(A2)
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uniformly in x ∈ Ω, with constants ε̂, ĥ > 0. Let

a(x, t) ≤ c1b(x, t) for all x ∈ Ω and big t (A3)

for a c1 > 0. For having superquadratic growth we suppose

h
′
(x, t)

t
≥ h0 > 0 for all t ≥ 0 (A4)

and all x ∈ Ω. To handle the terms involving derivatives after the spatial
variable we need:

|∂γh
′
(x, t)| ≤ c2h

′
(x, t) for all (x, t) ∈ Ω× R+

0 (A5)

and all γ ∈ {1, ..., n} with a constant c2 ≥ 0.

Remark 1.1 • The conditions (A1)-(A4) are the generalizations from
those of [Br] for a x-dependence. So it is possible to show a (p, q)-
growth condition as in (1.2) for the function F .

• A simple example is given by ((x, Z) ∈ Ω× RnN)

F (x, Z) := α(x)a(|Z̃|) + β(x)b(|Zn|)

for functions a and b of class C2([0,∞), [0,∞)) satisfying the autonomous
assumptions from [Br] and strictly positive functions α, β ∈ C1(Ω).

A first step is to get results on higher integrability, where no results are
known until now. We have

THEOREM 1.1 Higher integrability:
Suppose (A1)–(A5) and consider a local minimizer u ∈ W 1,2

loc ∩ L∞loc(Ω,RN)
of (1.5), then:

(a) b(·, |∂nu|)|∂nu|2 belongs to the space L1
loc(Ω)

(b) If we have

b(x, t) ≤ ctωa(x, t) for large t (A6)

and an ω ≤ 2, then a(·, |∇̃u|)|∇̃u|2 belongs to the space L1
loc(Ω). Fur-

thermore we have u ∈ W 2,2
loc (Ω,RN).
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Remark 1.2 • The main problem in the proof of Theorem 1.1 is the
regularization procedure: if we work with the ordinary regularization
in this topic (see [BF1] for example), we do not have a convergence
uδ → u (uδ is the minimizer of the regularized problem) because of the
x-dependence (it is the same problem described in [BF4] and [Br2]).
The approach of [Br2] using a regularization from below with a function
hM ≤ h (h = a or h = b, M � 1) does not solve the problem because
it is not possible to get a uniform variant of (A2) for the function hM .
Therefore we use a variant of regularization described in [BF5].

• Note that in the non-autonomous situation superquadratic growth is
already needed for higher integrability different from the autonomous
case (compare [BF3]).

• In comparison to [BF3] we need (A6) to get higher integrability. The
reason for this is that the assumption

b(x, t) ≤ ct2a(x, t2) (for large t)

stated in [BF3] does not extend to the regularized functions aM and bM .

Analogous to the proof from [Br] we need further assumptions in the general
vector case (x ∈ Ω arbitrary, h = a or h = b):

h′(x, t)

t
≤ h′′(x, t) for t ≥ 0, if ω < 1, (A7)

as well as

a(x, t) ≥ ϑt
ω
2
(n−2) for large t (A8)

for an ϑ > 0, where ω is defined in (A6).

THEOREM 1.2 Partial C1,α-regularity:

(a) Assume (A1)-(A6) for an ω < 2, (A7) and (A8). Furthermore we
suppsoe for all B b Ω

argminy∈B a(y, t) is independent of t and (A9)

a(x, t) ≤ θ1 t
θ2|x−y|a(y, t) for all t� 1 and all x, y ∈ B (A10)

with constants θ1 > 0 and θ2 ≥ 0. Then for any local minimizer u ∈
W 1,2

loc ∩ L∞loc(Ω,RN) of (1.5) exists an open subset Ω0 of Ω such that
Ln(Ω0 − Ω) = 0 and u ∈ C1,α(Ω0,RN) for all α < 1.
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(b) If n = 2 then we have Ω0 = Ω without (A3), (A6)-(A10) and the
assumption u ∈ L∞loc(Ω,RN).

(c) If we have (A1), (A2) and (A4)–(A6) for an ω ≤ 2 as well as N = 1,
then any local minimizer u ∈ W 1,2

loc ∩ L∞loc(Ω) of (1.5) belongs to the
space C1,α(Ω) for all α < 1, provided we assume

a(x, t) ≤ ct2b(x, t) for large t (A11)

uniformly in x ∈ Ω.

Remark 1.3 • The results about partial regularity from [Br] extend to
the case of non-autonomous with the only restriction that we have to
assume b(x, t) ≤ ctωa(x, t) for an ω really smaller than 2. The reason
for this is that we can not prove a uniform variant of b(t) ≤ ctωa(x, tω)
to our regularization (see section 2).

• The results for n = 2 or N = 1 extend completely.

• As mentioned in [Br], section 4, we can remove the assumption u ∈
L∞loc(Ω,RN) if n = 2.

Remark 1.4 • From (A9) we get the existence of y∗ ∈ B such that
a(y∗, t) ≤ a(y, t) for all (y, t) ∈ B × [0,∞). This is necessary to prove
the continuous growth condition in the iteration of the blow up. If we
have a look at interesting examples for densities (see [Br2]), (A9) and
(A10) are natural conditions for a x-dependence.

• In [ELM] sharp conditions for regularity of minimizers of non-autonomous
anisotropic variational integrals are provided. The authors use a con-
dition of the form (A9) (see (74)) and so we can proceed that this
assumption is necessary to get regularity.

• Note that we are not able to consider minimizers of∫
Ω

[
(1 + |∇̃w|2)

p(x)
2 + (1 + |∂nw|2)

p(x)
2

]
dx

for p, q ∈ W 1,∞
loc (Ω, [2,∞)), since the functions

a(x, t) :=
(
1 + t2

) p(x)
2 − 1 and b(x, t) :=

(
1 + t2

) q(x)
2 − 1

do not satisfy condition (A5).
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2 Preparations and higher integrability

First we define the regularization. Let (h = a or h = b and t ≥ 0)

hM(x, t) :=

∫ t

0

sgM(x, s) ds

where M � 1 and

gM(x, t) := g(x, 0) +

∫ t

0

η(s)g
′
(x, s) ds, g(x, t) :=

h
′
(x, t)

t
.

Here η ∈ C1([0,∞)) denotes a cut-off function with the properties 0 ≤ η ≤ 1,
η
′ ≤ 0, |η′| ≤ c/M , η ≡ 1 on [0, 3M/2] and η ≡ 0 on [2M,∞).

Lemma 2.1 For the sequence (hM) we have:

• hM ∈ C2(Ω× [0,∞)), hM(x, t) = h(x, t) for all t ≤ 3M/2 and

lim
M→∞

hM(x, t) = h(x, t) for all (x, t) ∈ Ω× R+
0 ;

• hM ≤ h, gM ≤ g and from (A2) follows h
′′
M ≤ c(M) on Ω× R+

0 ;

• condition (A1) implies the same for hM ;

• By (A2) we get

ε
h
′
M(x, t)

t
≤ h

′′

M(x, t) ≤ h
h
′
M(x, t)

t

uniformly in M ;

• inequality (A3) extends uniformly to aM and bM :

aM(x, t) ≤ c1bM(x, t) for all x ∈ Ω and large t;

• By (A4) we deduce the same inequality for hM uniform in M :

h
′
M(x, t)

t
≥ h0 > 0 for all t ≥ 0

if we assume additionally (A2);

• (A5) extends to hM uniformly in M :

|∂γh
′

M(x, t)| ≤ c2h
′

M(x, t) for all (x, t) ∈ Ω× R+
0

and all γ ∈ {1, ..., n};
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• if we have

b(x, t) ≤ ctωa(x, tω) for big t,

then the same is true for aM and bM uniformly in M .

Proof: By definition of hM we get part 1 and the the first two statements
of part 2. For the rest we need the equity

h′M(x, t)

t
= gM(x, t) = η(t)

h′(x, t)

t
+

∫ t

0

{
−η

′(s)

s

}
h′(x, s) ds (2.1)

for (x, t) ∈ Ω×R+
0 . By definition of g we get g(x, 0) = h′′(x, 0) and therefore

gM(x, t) = h′′(x, 0) +

∫ t

0

η(s)

{
h′′(x, s)

s
− h′(x, s)

s2

}
ds

= η(t)
h′(x, t)

t
+

∫ t

0

{
−η

′(s)

s

}
h′(x, s) ds.

We have

h′′M(x, t) = gM(x, t) + tg′M(x, t)

and so we obtain

tg′M(x, t) = tη(t)g′(x, t) = η(t)

[
h′′(x, t)− h′(x, t)

t

]
.

By (2.1) and (A2) follows for ε := min {1, ε̂}

h′′M(x, t) = η(t)h′′(x, t) +

∫ t

0

{
−η

′(s)

s

}
h
′
(x, s) ds

≥ ε
[
η(t)

h′(x, t)

t
+

∫ t

0

{
−η

′
(s)

s

}
h′(x, s) ds

]
= εgM(x, t) = ε

h′M(x, t)

t
.

By (A2) and (2.1) we get for h := max
{

1, ĥ
}

h′′M(x, t) =
h′M(x, t)

t
+ η(t)

[
h′′(t)− h′(x, t)

t

]
≤ h′M(x, t)

t
+
[
ĥ− 1

]
η(t)

h′(x, t)

t
≤ h

h′M(x, t)

t
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which proves part 4. Now one sees

h
′′

M(x, t) ≤ cgM(x, t) ≤ cg(x, 0) + c

∫ 2M

0

|g′(x, s)| ds ≤ c(M).

By hM(x, 0) = 0 we receive

lim
t→0

hM(x, t)

t
= h′M(x, 0) = 0.

Furthermore we obtain

lim
t→∞

1

t

∫ t

0

sgM(x, s) ds = lim
t→∞

tgM(x, t) = ∞,

noting

lim
t→∞

gM(x, t) =

∫ 2M

3M/2

{−η′(s)} g(x, s) ds > 0

which follows by (2.1) and monotonicity of h. Using (A3) we deduce a
′
(x, t) ≤

cb
′
(x, t) für t ≥ t0 from (A2). So we have for t ≥ t0 by (2.1)

a′M(x, t)

t
= η(t)

a′(x, t)

t
+

∫ t

0

{
−η

′(s)

s

}
a′(x, s) ds

≤ c

[
η(t)

b′(x, t)

t
+

∫ t

0

{
−η

′(s)

s

}
b′(x, s) ds

]
= c

b′M(x, t)

t
,

if we assume 3M/2 ≥ t0. Part 6: für t ≤ 3M/2 we deduce from (A1) and
(A4)

h′′M(x, t) ≥ h0.

In case 3M/2 < t < 2M follows

h′′M(x, t) ≥ εgM(x, t) ≥ ε

[
h0η(t) + h0

∫ t

3M/2

{−η′(s)} ds
]

= h0ε

and for t > 2M we get

h′′M(x, t) ≥ εh0

∫ 2M

3M/2

{−η′(s)} ds = h0ε.
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The proof of the estimation for ∂γhM can be found in [BF5] (p. 14). For the
last part we deduce from (A6) and (A2)

b′(x, t) ≤ ctωa′(x, t) for t ≥ t0.

By (2.1) this delivers for t ≥ t0 assuming 3M/2 ≥ t0 (note η
′
(t) = 0 for

t ≤ 3M/2)

b′M(x, t)

t
= η(t)

b′(x, t)

t
+

∫ t

0

{
−η

′(s)

s

}
b′(x, s) ds

≤ ctω
[
η(t)

a′(x, t)

t
+

∫ t

0

{
−η

′(s)

s

}
a′(x, s) ds

]
= ctω

a′M(x, t)

t
for all t ≥ t0.

Remark 2.2 • By [BF4] (Lemma A.1) (A1) and (A2) show

h(x, 2t) ≤ 2
bh+1h(x, t) for all t ≥ 0. (2.2)

Thus we get by Lemma 2.1 (part 3 and 4) an uniform ∆2-condition for
hM . From the same quotation we deduce

h′(x, 2t) ≤ 2
bhh′(x, t) for all t ≥ 0,

such that this extends to hM uniformly, too.

• By monotonicity of h′ (A1) and (A2) imply for µ := 2
bh+1

µ−1th′(x, t) ≤ h(x, t) ≤ th′(x, t) for all t ≥ 0

which extends to hM uniformly.

After these preparations we define uM as the unique minimizer of (B :=
BR(x0) b Ω arbitrary)

TM [w] :=

∫
B

FM(·,∇w) dx :=

∫
B

[
aM(·, |∇̃w|) + bM(·, |∂nw|)

]
dx

in u+W 1,2
0 (B,RN). The regularization uM has the following properties:

Lemma 2.3 Suppose (A1)-(A5). Then we have:

• uM belongs to the space W 2,2
loc (B,RN);
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• aM(·, |∇ũM |)|∇̃uM |2 and bM(·, |∂nuM |)|∂nuM |2 are elements of L1
loc(B);

• if n = 2 or N = 1, then we obtain uM ∈ W 1,∞
loc (B,RN);

• for γ ∈ {1, ..., n} ∂γuM solves∫
B

D2
PFM(·,∇uM)(∇w,∇ϕ) dx

+

∫
B

∂γDPFM(·,∇uM) : ∇ϕdx = 0 for all ϕ ∈ W 1,2
0 (B,RN)

with spt(ϕ) b B.

• uM is in W 1,2(B,RN) uniformly bounded and we have

sup
M

∫
B

FM(·,∇uM) dx <∞;

• if we have u ∈ L∞loc(Ω,RN) then supM ‖uM‖∞ <∞.

The first part follows from [BF4] (Lemma 2.5) and part 3 is proved in [BF5],
Thm. 1.1 (ii) and (iii), with p = q = 2. For part 5 we quote [Br2] Lemma
1.2.
Part 2: Minimizing TM is a variational problem with splitting condition and
power growth conditions with p = q = 2. As remarked in [BF3] (Remark
3 b)) it is no problem to extend the approach from [BF3], Thm. 1, to the
non-autonomous situation and we get ∇uM ∈ L4

loc(B,RnN). By quadratic
growth of aM and bM we receive the required statement.
Surely ∂γuM is the solution if we only allow test-functions ϕ ∈ C∞

0 (B,RN).
But we have boundedness of D2

PFM(·,∇uM) (compare Lemma 2.1, part 2)
and ∂γDPFM(·,∇uM) ∈ L2(B,RnN). The latter follows from Lemma 2.1
(part 2 and 4) in combination with (A5). Now we get part 4 by approxima-
tion.
Uniform boundedness of uM is obtained by the maximum-principle of [DLM].

Proof of Theorem 1.1: Let

ΓM := 1 + |∇uM |2, Γ̃M := 1 + |∇̃uM |2 and Γn,M := 1 + |∂nuM |2.

We want to bound ∫
B

η2kbM(·, |∂nuM |)|∂nuM |2 dx

10



independent from M like in [BF3]. Thereby we consider η ∈ C∞
0 (B) with

0 ≤ η ≤ 1, η ≡ 1 on Br(x0) for r < R and |∇η| ≤ c/(R−r). After integrating
by parts and using the uniform bound on uM (see Lemma 2.3) the only term
of interest is ∫

B

η2k|∂n [bM(·, |∂nuM |)] ||∂nuM | dx. (2.3)

Here one can see

T2 ≤ c
∫

B

η2k|∂nbM(·, |∂nuM |)||∂nuM | dx

+ c

∫
B

η2kb′M(·, |∂nuM |)|∂nuM ||∂n∂nuM | dx

:=c T 1
2 + c T 2

2 .

By Lemma 2.1 (part 7) follows

|∂nbM(x, t)| =
∣∣∣∣∫ t

0

∂nb
′
M(x, s) ds

∣∣∣∣ ≤ c bM(x, t)

and thereby with Young’s inequality

T 1
2 ≤ τ

∫
B

η2kbM(·, |∂nuM |)|∂nuM |2 dx

+c(τ)

∫
B

η2kbM(·, |∂nuM |) dx.

Furthermore we get the inequality

T 2
2 ≤ τ

∫
B

η2kbM(·, |∂nuM |)|∂nuM |2 dx

+ c(τ)

∫
B

η2k b
′
M(·, |∂nuM |)
|∂nuM |

|∂n∂nuM |2 dx.

using Remark 2.2. If we absorb the τ -terms in (2.3) we get∫
B

η2kbM(·, |∂nuM |)|∂nuM |2 dx

≤ c(r) + c

∫
B

η2k b
′
M(·, |∂nuM |)
|∂nuM |

|∂n∂nuM |2 dx,
(2.4)

where c(r) is a constant with c(r) → ∞ for r → R, but independent from
M . Estimating the integral on the r.h.s. of (2.4) we need a Caccioppoli-type
inequality as in [BF3] and the only term which needs a comment is

−
∫

B

∂nDPFM(·,∇uM) : ∇
{
η2k∂nuM

}
dx.

11



A first estimation shows the bound

c

∫
B

|a′M(·, |∇̃uM |)||∇̃
{
η2k∂nuM

}
| dx

+c

∫
B

|b′M(·, |∂nuM |)||∂n

{
η2k∂nuM

}
| dx

:= c [W1 +W2]

by Lemma 2.1, part 7. Now we consider both terms separately:

W1 ≤ c
∫

B

η2k−1a
′

M(·, |∇̃uM |)|∇η||∂nuM | dx

+ c

∫
B

η2ka
′

M(·, |∇̃uM |)|∂n∇̃uM | dx

:= c
[
W1

1 +W2
1

]
.

By Young’s inequality we get

W2
1 ≤ τ

∫
B

η2k a
′
M(·, |∇̃uM |)
|∇̃uM |

|∂n∇̃uM |2 dx

+c(τ)

∫
B

η2ka
′

M(·, |∇̃uM |)|∇̃uM | dx

which can be handled as in [BF4] (section 3). As an upper bound for W1
1 we

obtain∫
B

η2ka
′

M(·, |∇̃uM |)|∇̃uM | dx+
∫

B

η2k−2|∇η|2a
′
M(·, |∇̃uM |)
|∇̃uM |

|∂nuM |2 dx.

We can estimate the second integral exactly as in [BF1] (section 3) because
all assumptions for a and b extend uniformly aM and bM . If we use Remark
2.2 and Lemma 2.3 (part 5) we can estimate the first one independent from
M . So we get ∫

B

η2kbM(·, |∂nuM |)|∂nuM |2 dx ≤ c(r). (2.5)

Now we want to bound∫
B

η2kaM(·, |∇̃uM |)|∇̃uM |2 dx. (2.6)

As before, after integrating by parts, the only difference to the calculations
of [BF4] is the integral∫

B

uMη
2k∂γ

[
aM(·, |∇̃uM |)

]
∂γuM dx.
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Here we estimate

U2 ≤ c
∫

B

η2k|∂γaM(·, |∇̃uM |)||∇̃uM | dx

+ c

∫
B

η2ka′M(·, |∇̃uM |)|∇̃uM ||∂γ∂γuM | dx

:=c U1
2 + c U2

2 .

Using 2.2 and Lemma 2.1 (part 7) we receive

U1
2 ≤ τ

∫
B

η2kaM(·, |∇̃uM |)|∇̃uM |2 dx

+c(τ)

∫
B

η2kaM(·, |∇̃uM |) dx

as well as

U2
2 ≤ τ

∫
B

η2kaM(·, |∇̃uM |)|∇̃uM |2 dx

+ c(τ)

∫
B

η2k a
′
M(·, |∇̃uM |)
|∇̃uM |

|∂γ∇̃uM |2 dx.

We absorb the first term in (2.6) and for the second one we need a Caccioppoli-
type inequality as in [BF3]. Thereby we only have to consider∫

B

∂γDPFM(·,∇uM) : ∇
{
η2k∂γuM

}
dx.

By Lemma 2.1 (part 7) we obtain the upper bound

c

∫
B

a′M(·, |∇̃uM |)|∇̃
{
η2k∂γuM

}
| dx

+c

∫
B

b′M(·, |∂nuM |)|∂n

{
η2k∂γuM

}
| dx

:=c [U1 + U2] .

It follows

U1 ≤ c

∫
B

η2k−1a′M(·, |∇̃uM |)|∇η||∂γuM | dx

+c

∫
B

η2ka′M(·, |∇̃uM |)|∂γ∇̃uM | dx

:= c
[
U1

1 + U2
1

]
.

13



By Young’s inequality one sees

U2
1 ≤ τ

∫
B

η2k a
′
M(·, |∇̃uM |)
|∇̃uM |

|∂γ∇̃uM |2 dx

+c(τ)

∫
B

η2kaM(·, |∇̃uM |) dx

which can be handled conventionally. Furthermore we get

U2 ≤
∫

B

η2k−1|∇η|b′M(·, |∂nuM |)|∇̃uM | dx

+

∫
B

η2kb′M(·, |∂nuM |)|∂γ∂nuM | dx.

For the second integral we deduce from Young’s inequality and Remark 2.2
the upper bound

τ

∫
B

η2k b
′
M(·, |∂nuM |)
|∂nuM |

|∂γ∂nuM |2 dx+ c(τ)

∫
B

η2kbM(·, |∂nuM |) dx

which is uncritical. For the observation of the first one we see∫
B

η2k−1|∇η|b′M(·, |∂nuM |)|∇̃uM | dx ≤
∫

B

η2k−2|∇η|2 b
′
M(·, |∂nuM |)
|∂nuM |

|∇̃uM |2 dx

+

∫
B

η2kbM(·, |∂nuM |) dx

which can be bound as in [BF3] (section 3). Note that we need there-
fore bM(x, t) ≤ ct2aM(x, t2), but we have the stronger inequality bM(x, t) ≤
ct2aM(x, t). So we get∫

B

η2kaM(·, |∇̃uM |)|∇̃uM |2 dx ≤ c(r). (2.7)

By Lemma 2.1 (part a and 6) we receive∫
B

η2|∇2uM |2 dx ≤
∫

B

D2
PFM(·,∇uM)(∂γ∇uM , ∂γ∇uM) dx.

Using a Caccioppoli-type inequality as in [BF3] we can bound this indepen-
dent from M (note that the r.h.s. of this inequality was bound in the rest
of the proof). So we obtain uniform boundedness of uM in W 2,2

loc (B,RN)
(remember Lemma 2.3, part 5) and as in [Br2] (end of section 2) we deduce

uM ⇁ u in W 2,2
loc (B,RN),

∇uM → ∇u in L2
loc(B,RnN),

∇uM → ∇u a.e.

(2.8)
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for M → ∞. This implies u ∈ W 2,2
loc (Ω,RN) and using Fatou’s Lemma (2.5)

and (2.7) points out the claim of Theorem 1.1. �

3 Partial C1,α-regularity

We define the excess as

E(x, r) := −
∫

Br(x)

|∇u− (∇u)x,r|2 dy + −
∫

Br(x)

a(·, |∇u− (∇u)x,r|) dy

for a(x, t) := a(x, t)tω with the ω ∈ (0, 2) from (A6). If r ≤ R0 such that
χ+θ2R0 ≤ 2, then Theorem 1.1 guarantees together with (A10) the existence
of E(x, r). To show this we estimate

−
∫

Br(x)

a(·, |∇u− (∇u)x,r|) dy ≤ −
∫

Br(x)

−
∫

Br(x)

a(y, |∇u(y)−∇u(z)|) dydz

≤ c −
∫

Br(x)

−
∫

Br(x)

a(y, |∇u(y)|) dydz

+ c −
∫

Br(x)

−
∫

Br(x)

a(y, |∇u(z)|) dydz.

For the second term we use (A10) and assume w.l.o.g. |∇u(z)| ≥ 1:

a(y, |∇u(z)|) ≤ c|∇u(z)|θ2|y−z||∇u(z)|ωa(z, |∇u(z)|)
≤ |∇u(z)|2a(z, |∇u(z)|).

If we distinguish into an integral over [|∂nu| ≤ |∇̃u|] and the complement we
see the existence of the excess.

LEMMA 3.1 Assume (A1)-(A10) for an ω < 2 and fix an L > 0. Then
there is a C∗(L), such that for every τ ∈ (0, 1/4) exists an ε = ε(τ, L) > 0
with the following property: if

|(∇u)x,r| ≤ L and E(x, r) + rγ∗ ≤ ε (3.1)

for a ball Br(x) b Ω this implies

E(x, τr) ≤ C∗τ 2[E(x, r) + rγ∗ ] (3.2)

where γ∗ ∈ (0, 2) is arbitrary.
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Proof: Now we extend the ideas of [Br]. For z ∈ B1 := B1(0) let

um(z) :=
1

λmrm

(
u(xm + rmz)− am − rmAmz

)
,

am := (u)xm,rm and Am := (∇u)xm,rm .

Thereby (f)x,r denotes the mean value of the function f over the ball Br(x).
For λ2

m := E(xm, rm) + rγ∗
m we deduce from (3.1)

|Am| ≤ L, −
∫
B1

|∇um|2 dz + λ−2
m −
∫
B1

a(xm + rmz, λm |∇um|)dz + λ−2
m rγ∗

m = 1 (3.3)

Whereas (3.2) reads after scaling as

−
∫
Bτ

|∇um − (∇um)0,τ |2 dz

+λ−2
m −
∫
Bτ

a(xm + rmz, λm |∇um − (∇um)0,τ |)dz > C∗τ
2.

(3.4)

Using (3.3) we have after passing to subsequences

Am →: A, um ⇁: u in W 1,2(B1,RN), (u)0,1 = 0, (∇u)0,1 = 0 (3.5)

λm∇um → 0 in L2(B1,RnN) and a.e. on B1. (3.6)

If we have a look at the proof in [Br] it is no problem to verify the limit
equation and so we have to show

∇um → ∇u in L2
loc(B), (3.7)

lim
m→∞

λ−2
m −
∫
Br

a(xm + rmz, λm |∇um − (∇um)0,r|)dz = 0 for all r < 1. (3.8)

to end up the proof of Lemma 3.1. If we want to establish a Caccioppoli-type
inequality as in Lemma 2.1 from [Br] we have to bound additionally to the
estimations there the integral (P ∈ RnN is arbitrary)∫

B

∂γDPFM(·,∇uM) : ∇
{
η2 [∂γuM − P ]

}
dx.

Using Lemma 2.1 (part 7) leads us to the terms

T 1
M :=

∫
B

a′M(·, |∇̃uM |)|∂γ∇̃uM |η2 dx,

16



T 2
M :=

∫
B

a′M(·, |∇̃uM |)|∇uM − P |η|∇η| dx,

T 3
M :=

∫
B

b′M(·, |∂nuM |)|∂γ∂nuM |η2 dx,

T 4
M :=

∫
B

b′M(·, |∂nuM |)|∇uM − P |η|∇η| dx.

From Young’s inequality we deduce for τ > 0 from Remark 2.2

T 1
M ≤ τ

∫
B

a′M(·, |∇̃uM |)
|∇̃uM |

|∂γ∇̃uM |2η2 dx+ c(τ)

∫
B

aM(·, |∇̃uM |)η2 dx.

For T 2
M the same arguments show the upper bound

c(η)

∫
B

a′M(·, |∇̃uM |) dx+ c(η)

∫
B

aM(·, |∇̃uM |) dx

+c(η)

∫
B∩spt η

a′M(·, |∇̃uM |)
|∇̃uM |

|∂nuM |2 dx.

Similarly we get

T 3
M ≤ τ

∫
B

b′M(·, |∂nuM |)
|∂nuM |

|∂γ∂nuM |2η2 dx+ c(τ)

∫
B

bM(·, |∂nuM |)η2,

T 4
M ≤ c(η)

∫
B

b′M(·, |∂nuM |) dx+ c(η)

∫
B

bM(·, |∂nuM |) dx

+c(η)

∫
B∩spt η

b′M(·, |∂nuM |)
|∂nuM |

|∇̃uM |2 dx.

After absorption of the τ -integrals we have to justify that we can interchange
limes and integral for M →∞ in the remaining terms. We follow the argu-
mentation of [Br] and choose for an arbitrary κ > 0 subset S ⊂ B such that
∇uM → ∇u uniformly on S and Ln(B−S) ≤ κ (therefore we need (3.6) and
Egorov’s Theorem). Then we can show as in [Br] that the integrals over B−S
are smaller than cκµ. Furthermore we have to establish the convergence a.e.
from

ψ̃M :=

∫ |e∇uM |

0

√
a′M(x, t)

t
dt, ψ

(n)
M :=

∫ |∂nuM |

0

√
b′M(x, t)

t
dt

against ψ̃ and ψ(n) (with a suitable definition). From the end of section 2 we
know ∇uM → ∇u a.e. and so we have to establish the a.e.-convergence of

χ̃M(x, s) :=

∫ s

0

√
a′M(x, t)

t
dt, χ

(n)
M (x, s) :=

∫ s

0

√
b′M(x, t)

t
dt.
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By Lemma 2.1 (part 2) this follows by Lebesgue’s theorem on majorized
convergence. Note that additionally in our calculations we have the terms

ψ̃M,x :=

∫ |e∇uM |

0

∇x

√
a′M(x, t)

t
dt, ψ

(n)
M,x :=

∫ |∂nuM |

0

∇x

√
b′M(x, t)

t
dt.

But by Lemma 2.1 (part 7) we can bound them by ψ̃M und ψ
(n)
M (and these

can bound as in [Br]).
In the limit version of the essential Caccioppoli-type inequality we have to
add

T 1 :=

∫
B

a(·, |∇̃u|)η2 dx,

T 2 :=

∫
B

a′(·, |∇̃u|)|∇u− P |η|∇η| dx,

T 3 :=

∫
B

b(·, |∂nu|)η2 dx,

T 4 :=

∫
B

b′(·, |∂nu|)|∇u− P |η|∇η| dx

on the r.h.s. For the proof of (3.7) we get after scaling

T 1
m :=

r2
m

λ2
m

∫
B1

a(xm + rmz, |Ãm + λm∇̃um|)η2 dz,

T 2
m :=

r2
m

λ2
m

∫
B1

a′(xm + rmz, |Ãm + λm∇̃um|)|λm∇um|η
|∇η|
rm

dz,

T 3
m :=

r2
m

λ2
m

∫
B1

b(xm + rmz, |A(n)
m + λm∂num|)η2 dz,

T 4
m :=

r2
m

λ2
m

∫
B1

b′(xm + rmz, |A(n)
m + λm∂num|)|λm∇um|η

|∇η|
rm

dz

which we have to bound uniformly in M . We separate into the sets [|Ãm +

λm∇̃um| ≤ K] and [|Ãm + λm∇̃um| > K] and use uniform boundedness of
λ−2

m r2
m:

T 1
m ≤ c(K) + c(K)

∫
B1

a(xm + rmz, λm |∇um|)dz ≤ c(K)

by (3.3). Similarly we get by (A6) the same result for T 3
m. From Remark 2.2

we deduce

T 2
m ≤ c(η,K)

∫
B1

|∇um| dz + c(η,K)

∫
B1∩[...>K]

a(xm + rmz, λm |∇um|)dz
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≤ c(η,K) + c(η,K)

∫
B1

a(xm + rmz, λm |∇um|)dz

≤ c(η,K).

where we use the L2-bound for ∇um and (3.3). Analogously we estimate T 4
m

using (A6). Proving (3.8) we define

ψ̃m :=
1

λm

∫ | eAm+λm
e∇um|

| eAm|

√
a′(x, t)

t
dt, ψ(n)

m :=
1

λm

∫ |A(n)
m +λm∂num|

|A(n)
m |

√
b′(x, t)

t
dt.

If we follow the argumentation of [Br] we get uniform W 1,2
loc -bounds again

(additionally to the terms there we have T 1
m, ..., T

4
m, which are uncritical)

and can end up the proof of the blow up lemma just like in [Br]. Now we
can iterate this lemma as in [BF6] for example. The only problem is the
inequality

E(x0, r) ≤ c(τ)E(x0, τ
kR)

for τ k+1R ≤ r ≤ τ kR. But by (A9) we can show

E(x0, r) ≤ c(τ)E(x0, τ
kR) + c(τ)r. (3.9)

By convexity and ∆2-condition of a we obtain

−
∫

Br(x0)

a(y, |∇u(y)− (∇u)r,x0|) dy ≤ c −
∫

Br(x0)

a(y, |∇u(y)− (∇u)τkR,x0
|) dy

+c −
∫

Br(x0)

a(y, |(∇u)τkR,x0
− (∇u)r,x0|) dy.

For the first integral one directly sees the estimation

c(τ) −
∫

B
τkR

(x0)

a(y, |∇u(y)− (∇u)τkR,x0
|) dy.

For the second one we use

y∗ := argminBr(x0) a(y, t) (3.10)

which is independent from t by (A9) and get the bound

−
∫

Br(x0)

∣∣a(y, |(∇u)τkR,x0
− (∇u)r,x0|)− a(y∗, |(∇u)τkR,x0

− (∇u)r,x0 |)
∣∣ dy
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+ −
∫

Br(x0)

a(y∗, |(∇u)τkR,x0
− (∇u)r,x0|) dy.

The first term can be estimated by

sup
t∈[0,1]

∣∣∇xa
(
y + t(y∗ − y), |(∇u)τkR,x0

− (∇u)r,x0|
)∣∣ |y∗ − y| ≤ c(τ)r.

Remember (A5) and note the inequality

|(∇u)τkR,x0
− (∇u)r,x0 | ≤ −

∫
Br(x0)

|∇u− (∇u)τkR,x0
| dz

≤ c(τ) −
∫

B
τkR

(x0)

|∇u− (∇u)τkR,x0
| dz

≤ c(τ)
[
E(x0, τ

kR) + 1
]
≤ c(τ),

since E(x0, τ
kR) ≤ ε (this is a consequence of the iteration of the blow up

lemma, compare [BF6]). Jensen’s inequality and (A9) lead us to

−
∫

Br(x0)

a(y∗, |(∇u)τkR,x0
− (∇u)r,x0|) dy ≤ −

∫
Br(x0)

a(y∗, |∇u(y)− (∇u)τkR,x0
|) dy

≤ −
∫

Br(x0)

a(y, |∇u(y)− (∇u)τkR,x0
|) dy

≤ c(τ) −
∫

B
τkR

(x0)

a(y, |∇u(y)− (∇u)τkR,x0
|) dy

by the choice of y∗ and we receive (3.9). �
Proof of Theorem 1.2 b): As remarked in [Br] we can deduce the 2D-result
from the proof of [BF5]. �

4 Regularity statements for N = 1

Let N = 1. Firstly we show

Lemma 4.1 For all t <∞ and all Bρ b B we have

sup
M
‖∇uM‖Lt(Bρ) <∞.
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We want to estimate ∫
B

η2kbM(·, |∂nuM |)Γ
α+2

2
n,M dx (4.1)

for a cut-off function η ∈ C∞
0 (B) such that η ≡ 1 on Br(x0) for a ρ < R and

0 ≤ η ≤ 1. If we follow the lines of [BF3] we get after integrating by parts
(using uniform local bounds on uM , see Lemma 2.3, part 6))∫

B

η2kbM(·, |∂nuM |)Γ
α+2

2
n,M dx ≤ c(η) [1 + I1 + I2 + I3 + I4] (4.2)

where we have

I1 :=

∫
spt(η)

bM(·, |∂nuM |)Γ
α
2
n,M dx

I2 :=

∫
spt(η)

aM(·, |∇̃uM |)
|∇̃uM |2

[
bM(x, ·)−1

(
aM(·, |∇̃uM |)
τ |∇̃uM |2

)]α+2

dx

I3 :=

∫
B

η2k|∂nbM(·, |∂nuM |)|Γ
α+1

2
n,M dx

I4 :=

∫
B

|∂γDPFM(·,∇uM) : ∇[∂nuMη
2Γ

α
2
n,M ]| dx.

Note that the terms I3 and I4 are additionally to this one from [BF3] on
account of the x-dependence. Since we have aM(x, t) ≤ ct2bM(x, t) for large
t (see Lemma 2.1, part 6) we can bound I2 by

c(τ)

[
1 +

∫
spt(η)

aM(·, |∇̃uM |)Γ̃
α
2
M dx

]
,

whereby we use a uniform ∆2-condition for b−1
M . This follows from the uniform

version of (A2). We deduce from Lemma 1.1 (part 7) by Young’s inequality

I2 ≤ c

∫
B

η2kbM(·, |∂nuM |)Γ
α+1

2
n,M dx

τ

∫
B

η2kbM(·, |∂nuM |)Γ
α+2

2
n,M dx+ c(τ)

∫
B

η2kbM(·, |∂nuM |)Γ
α
2
n,M dx

and absorb the first term on the r.h.s. in (4.1). Furthermore we obtain

I4 ≤
∫

B

|η2∂γDPFM(·,∇uM) : ∂n∇uMΓ
α
2
n,M | dx

+2k

∫
B

|η2k−1∂γDPFM(·,∇uM) : ∇η∂nuMΓ
α
2
n,M | dx
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+α

∫
B

|η2k∂γDPFM(·,∇uM) : ∂n∇uMΓ
α−2

2
n,M∂nu

2
M | dx

:= I1
4 + I2

4 + I3
4 .

From splitting-structure and Lemma 2.1 (part 7) we deduce

I1
4 ≤ c

∫
B

η2ka′M(·, |∇̃uM |)|∂n∇̃uM |Γ
α
2
n,M dx

c

∫
B

η2kb′M(·, |∂nuM |)|∂n∂nuM |Γ
α
2
n,M dx.

For the first integral we obtain by Remark 2.2 the upper bound

τ

∫
B

η2k a
′
M(·, |∇̃uM |)
|∇̃uM |

|∂n∇̃uM |2Γ
α
2
n,M dx

+c(τ)

∫
B

η2kaM(·, |∇̃uM |)Γ
α
2
n,M dx.

For the second one we use the same arguments. The τ -terms can be absorbed
in a Caccioppoli-type inequality (compare [BF3], section 5). Similarly we see

I2
4 ≤ c

∫
B

η2k−2a′M(·, |∇̃uM |)|∇η|Γ
α+1

2
n,M dx

c

∫
B

η2k−1b′M(·, |∂nuM |)|∇η|Γ
α+1

2
n,M dx.

By Remark 2.2 we receive for the first term the estimation∫
B

η2kaM(·, |∇̃uM |)Γ
α
2
n,M dx+

∫
B

η2k−2a
′
M(·, |∇̃uM |)
|∇̃uM |

|∇η|2Γ
α+2

2
n,M dx.

The second one exactly corresponds to term S3 in [BF3] (section 3) and an
estimation of this leads us to I2. The second integral in the estimation of I2

4

is bounded by c(η) [1 + I1] (remember Lemma 2.3, part 5). Putting all this
estimations together we finally obtain∫

B

η2kbM(·, |∂nuM |)Γ
α+2

2
n,M dx

≤c(η)
[
1 +

∫
spt(η)

bM(·, |∂nuM |)Γ
α
2
n,M dx+

∫
spt(η)

aM(·, |∇̃uM |)Γ̃
α
2
M dx

]
+c

∫
B

η2kaM(·, |∇̃uM |)Γ
α
2
n,M dx

(4.3)
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if we use Remark 2.2. Now we have to separate the mixed integrand in the
last term =: I. Therefore we define for τ > 0 the N -function (we can neglect
the case α = 0)

Kτ (x, t) := τt
α+2

α bM(x, t
1
α ) (4.4)

and see the inequality

K∗
τ (x, s) ≤ ŝbM(x, ·)−1

(s
τ

)
with b̂M(x, t) := t

2
α bM(x, t

1
α )

for the conjugate function K∗
τ . By Lemma (4.3) (part 8) we obtain for t ≥ 1

aM(x, t)

τ
≤ ct2bM(x, t)

τ
=
ĉbM(x, tα)

τ
. (4.5)

Obviously we have

b̂M(x, t) = λM(x, t
1
α ) for λM(x, t) := t2bM(x, t),

b̂M(x, ·)−1(t) =
[
λM(x, ·)−1(t)

]α
.

Using Lemma 2.1 (part 4) one can show a uniform ∆2-condition for λM(x, ·)−1

and thereby for b̂M(x, ·)−1. So (4.5) implies

b̂M(x, ·)−1

(
aM(x, t)

τ

)
≤ c(τ)tα.

By Young’s inequality for N -functions we get

I ≤ c

[
1 +

∫
B

η2kKτ (|∂nuM |α) dx+

∫
B

η2kK∗
τ (aM(·, |∇̃uM |)) dx

]
≤ c

[
1 + τ

∫
B

η2kbM(·, |∂nuM |)|∂nuM |α+2 dx

+ c(τ)

∫
B

η2kaM(·, |∇̃uM |)|∇̃uM |α dx
]
.

Inserting this into (4.3) and absorb the τ -term we receive∫
B

η2kbM(·, |∂nuM |)|Γ
α+2

2
n,M dx

≤ c(η)

[
1 +

∫
spt(η)

bM(·, |∂nuM |)|Γ
α
2
n,M dx+

∫
spt(η)

aM(·, |∇̃uM |)Γ̃
α
2
M dx

]
.

(4.6)
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Note that the relation between aM and bM is symmetric and they have exact
the same properties. Therefore we can show by the same arguments∫

B

η2kaM(·, |∇̃uM |)|Γ̃
β+2

2
M dx

≤ c(η)

[
1 +

∫
B

bM(·, |∂nuM |)|Γ
β
2
n,M dx+

∫
B

aM(·, |∇̃uM |)Γ̃
β
2
M dx

]
.

(4.7)

Now we iterate (4.6) and (4.7) and use for the start of the induction α = 0
together with Lemma 2.3 (part 5). This gives the claim of Lemma 4.1.
Now we have to show

sup
M
‖∇uM‖L∞(Bρ) <∞ (4.8)

for Bρ b B to follow the result of Theorem 1.2 c). Note that we have the
growth estimates

λ|X|2 ≤ D2
PFM(x, Z)(X,X) ≤ Λ(1 + |Z|2)

q−2
2 |X|2,

|∂γDPFM(Z)| ≤ c(1 + |Z|2)
q−1
2

for all Z,X ∈ RnN , all x ∈ Ω and all γ ∈ {1, ..., n} uniformly in M . Using
this and Lemma 4.1 we can follow (4.8) by the arguments of [Br2] (Lemma
5.4). �
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