
Universität des Saarlandes

U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Fachrichtung 6.1 – Mathematik

Preprint Nr. 257

Zero distribution and decay at infinity of
Drinfeld modular coefficient forms

Ernst-Ulrich Gekeler

Saarbrücken 2010





Fachrichtung 6.1 – Mathematik Preprint No. 257
Universität des Saarlandes submitted: January 20, 2010

Zero distribution and decay at infinity of
Drinfeld modular coefficient forms

Ernst-Ulrich Gekeler

Saarland University
Department of Mathematics

P.O. Box 15 11 50
66041 Saarbrücken

Germany
gekeler@math.uni-sb.de



Edited by
FR 6.1 – Mathematik
Universität des Saarlandes
Postfach 15 11 50
66041 Saarbrücken
Germany

Fax: + 49 681 302 4443
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/



Abstract

Let Γ = GL(2,Fq[T ]) be the Drinfeld modular group, which acts
on the rigid-analytic upper half-plane Ω. We determine the zeroes of
the coefficient modular forms a`k on the standard fundamental domain
F for Γ on Ω, along with the dependence of |a`k(z)| on z ∈ F .

MSC 2010: 11F52, 11G09
Keywords: Drinfeld modular form, rigid-analytic contour integration, mod-
ular invariant

Introduction. In this article we study Drinfeld modular forms on the full
modular group Γ = GL(2,F[T ]), where F is a finite field with q elements.
Such forms arise from different sources, e.g.

• coefficients of the “defining equations” of Drinfeld modules,

• Eisenstein series,

• para-Eisenstein series (coefficients of the exponential functions of rank-
2 lattices),

• coefficients of the division polynomials of Drinfeld modules.

As in the case of classical elliptic modular forms for SL(2,Z), the basic inter-
est is in their relations, expansions at infinity, congruence properties, zeroes,
special values.

Serious work about such questions for the first two types of modular forms
started in the late seventies (see e.g. [?], [?], [?]) and was continued with the
description of their expansions at infinity and congruence properties modulo
primes [?]. Later, Cornelissen [?] and the author [?] described the zeroes of
Eisenstein series as well as the corresponding j-invariants. Like their classical
counterparts, the zeroes z in the natural fundamental domain F of Γ satisfy
|z| = 1.

Motivated from arithmetical questions like the determination of the rami-
fication of Galois representations attached to Drinfeld modules, the third
family of modular forms (baptized para-Eisenstein series in [?]) was studied
in [?]. In the present paper, making use of techniques introduced in [?] and
[?] (which relate the growth/decay of modular forms with their zero distribu-
tion pattern via non-archimedean contour integration), we start the study of
the fourth group of modular forms a`k, where a ∈ A = F[T ], 0 ≤ k ≤ 2 deg a,
see (1.15) for the precise definition. These forms are crucial for the under-
standing of the interplay between the arithmetic of a Drinfeld module and



the geometry of the lattice by which it is uniformized. They are the coeffi-
cients of the division polynomial φa of a “generic” Drinfeld module φ, and
are thus referred to as coefficient forms.

We succeed in determining the absolute values |z| of the zeroes z of a`k in F
(Theorem 5.1) as well as of the associated |j(z)| (Theorem 4.11). In contrast
with the case of Eisenstein series (but similar to para-Eisenstein series), these
|z| are in general larger than 1, but always of shape q` with 0 ≤ ` ≤ k−1. The
crucial part of the proof is in section 4, where, by a complicated induction
argument, we determine the Newton polygon of the companion polynomial
(see Definition 1.13) of the form T d`k.

As a by-product of our study, but of independent interest, we find the
description Theorem 3.4 of the modular j-invariant function restricted to
Fk = {z ∈ F | |z| = qk}.
We apply the results about the zeroes to derive the decay properties of the

a`k on the fundamental domain F . In Theorems 6.7 and 6.11 we give precise
formulas for the spectral norm (the supremum, which in fact is a maximum,
and in most cases even the constant absolute value) of a`k on Fn, in case
k ≤ d = deg a (where |a`k| becomes eventually constant), and in case k > d
(where a`k is a cusp form and thus decreases fast at infinity), respectively. As
a consequence we find (Theorem 6.16) that, after a suitable normalization,
the a`k for deg a→∞ tend to the para-Eisenstein series of weight qk − 1.

The present paper seems to be the first one that systematically studies the
zero patterns and growth/decay properties of families of Drinfeld modular
forms. It possibly sheds new light also to similar questions about classical
modular forms.

The paper was finished in the fall of 2009, when I was on sabbatical leave
at the National Center for Theoretical Sciences in Hsinchu, Taiwan. With
great pleasure I acknowledge the hospitality of that institution, and I would
like to heartily thank the colleagues in Hsinchu and in particular the director
of the NCTS, Professor Wen-Ching Li, both for valuable discussions and for
their support during my visit.

Notation. Throughout the paper, we use without further definition the fol-
lowing notation, which is largely compatible with e.g. the articles [?] [?] [?]
[?].

F is the finite field with q elements, with algebraic closure F,
F(k) the extension of degree k of F in F,
A = F[T ] the polynomial ring in an indeterminate T , with field of fractions
K = F(T ) and K∞ = F((T−1)), its completion at infinity,
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| . | the absolute value on K∞ normalized by |T | = q and uniquely extended
to C∞, the completed algebraic closure of K∞,
| . |i the “imaginary part” function on C∞, |z|i = infx∈K∞ |z − x|,
Ω = P1(C∞)− P1(K∞) = C∞−K∞ the Drinfeld upper half-plane, equipped
with the action of Γ = GL(2, A) through fractional linear transformations,
C∞{τ} the non-commutative polynomial ring over C∞ with commutation
rule τx = xqτ for x ∈ C∞, identified with the ring of F-linear polynomials∑
aiX

qi (τ i = Xqi).

Similar notation will be used for R{τ} (“polynomials” with coefficients in
the subring R of C∞) and C∞{{τ}} (“power series” in τ).

The following denote special elements of A = F[T ]:
[k] = T q

k − T , k = 0, 1, 2, . . .
Dk = [k][k − 1]q · · · [1]q

k−1
, k = 1, 2, . . ., D0 := 1.

1. Basic concepts [?] [?]. An A-lattice Λ in C∞ is a finitely generated
(hence free) discrete A-submodule of C∞ of some rank r ∈ N. With Λ we
associate its exponential function

z 7−→ eΛ(z) = z
∏

06=λ∈Λ

(1− z

λ
),

an entire, surjective and F-linear function from C∞ to C∞ with kernel Λ. It
may be expanded as

(1.1) eΛ(z) =
∑
k≥0

αkz
qk ,

which we regard as the element
∑
αkτ

k of C∞{{τ}}. (Note that the non-
commutative multiplication f ◦ g in C∞{{τ}} corresponds to inserting the
function g(z) into f(z).) It satisfies the functional equation

(1.2) eΛ(Tz) = φT (eΛ(z))

with some polynomial φT ∈ C∞{τ} of shape

(1.3) φT (X) = TX + g1X
q + · · ·+ grX

qr = T + g1τ + · · ·+ grτ
r,

where r = rank(Λ) and gr 6= 0. The F-algebra homomorphism

(1.4)
φ : A −→ C∞{τ}

a 7−→ φa

uniquely determined by φT yields a Drinfeld A-module of rank r over C∞,
and the above describes bijections between the sets of A-lattices of rank r in
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C∞, of polynomials φT of shape (1.3), and of Drinfeld A-modules of rank r
over C∞, respectively.

(1.5) The most simple example is the Carlitz module ρ given by ρT = TX +
Xq = T + τ , i.e., when the attached lattice Λ = πA =: L has rank one. Here
the constant π ∈ C∞, determined up to a q − 1-th root of unity (i.e., up to
an element of F∗), is such that (1.2) holds, that is,

eL(Tz) = TeL(z) + eL(z)q.

Comparing coefficients, we find

(1.6) eL(z) =
∑
k≥0

D−1
k zq

k

.

The reader should think of π as an analogue of 2πi, with π = 3.14159 . . ..
We have (see [?] 4.9–4.11 for similar formulas)

(1.7) πq−1 = −[1]
∏
i≥1

(1− [i]/[i+ 1])q−1,

in particular, |πq−1| = qq. For later purposes, we put

(1.8) t(z) :=
1

eL(πz)
=

1

πeA(z)
, s(z) = t(z)q−1,

which are invertible holomorphic functions on the Drinfeld upper half-plane
Ω.

Rank-two lattices Λ are up to scaling of the form Λω = π(Aω + A), where
ω ∈ Ω. The associated polynomial (1.3) is

(1.9) φ
(ω)
T = T + g(ω)τ + ∆(ω)τ 2,

where g and ∆ are holomorphic functions of Ω with ∆ invertible. In fact, they
are modular forms of respective weights q − 1 and q2 − 1. Here a Drinfeld
modular form of weight k for the group Γ = GL(2, A) is a holomorphic
function f : Ω −→ C∞ subject to

(1.10) f(
az + b

cz + d
) = (cz + d)kf(z) for

(
a b

c d

)
∈ Γ

and that has an expansion (convergent for small values of s, i.e., large values
of |z|i)

(1.11) f(z) =
∑
k≥0

aks(z)k
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in the uniformizer s(z) at infinity. We often abuse notation and write simply
f =

∑
aks

k. The form f is a cusp form if its zeroth coefficient a0 vanishes.
The modular forms of weight k form a C∞-vector space Mk(Γ); we write
M(Γ) = ⊕kMk(Γ) for the algebra of all modular forms. Then M(Γ) is the
polynomial ring C∞[g,∆] in the algebraically independent forms g ∈ Mq−1

and ∆ ∈Mq2−1(Γ). The modular invariant is defined as

(1.12) j(ω) := g(ω)q+1/∆(ω);

it is invariant under Γ and yields a biholomorphic identification j : Γ\Ω
∼=−→

C∞ of the quotient space Γ \ Ω with the affine line over C∞. Each modular
form of weight k has a unique presentation

(1.13) f(z) = ϕf (j(z))∆(z)ag(z)b

with a polynomial ϕf ∈ C∞[X], a ∈ N0, 0 ≤ b ≤ q, and a(q2−1)+b(q−1) = k.
We call ϕf the companion polynomial of f . The j-values j(z) where f(z) = 0
(i.e., the zeroes of ϕf (X), and j = 0 if b > 0) are briefly called j-zeroes of f .

The main examples of modular forms are:

(1.14) The forms g, ∆ as above. They are normalized such that their s-
expansions have coefficients in A, with starting terms

g = 1− [1]s− [1]sq
2−q+1 + · · · , ∆ = −s+ sq − [1]sq+1 + · · ·

(see [?] 10.11, 10.3. The present normalization agrees with gnew, ∆new loc.
cit. 6.4).

(1.15) More generally, let φ(ω) be the Drinfeld module corresponding to ω ∈ Ω
(i.e., to the lattice Λω, cf. (1.9)), let a ∈ A, and write

φ(ω)
a =

∑
0≤k≤2 deg a

a`k(ω)τ k.

Then a`k is modular of weight qk−1 for Γ, a coefficient form. The purpose of
the present paper is to determine its zeroes, j-zeroes, and decay properties.

(1.16) The Eisenstein series of weight k

Ek(ω) :=
∑

(0,0)6=(a,b)∈A2

1

(aω + b)k

is well-defined (i.e., convergent) and non-zero if 0 < k ≡ 0(q−1), and defines
an element of Mk(Γ) [?].
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(1.17) Write the exponential function eω of Λω as

eω(z) =
∑
k≥0

αk(ω)zq
k

.

Then αk(ω) is modular of weight qk − 1, a so-called para-Eisenstein series.

The principal arithmetical properties of the Ek (mainly when k = qi − 1 for
some i) and the αk and their zeroes are studied in [?], [?], [?] and [?]. Except
for section 6 (Theorem 6.16), they play no major role in the present article.

2. The fundamental domain F . We put

(2.1)
F := {z ∈ Ω | |z| = |z|i ≥ 1}, and for n ∈ N0,
Fn := {z ∈ Ω | |z| = |z|i = qn},

which are open analytic subspaces of Ω. Further, for a holomorphic function
f on Fn, we let

‖f‖n := sup{|f(x)| | z ∈ Fn} = max{|f(z)| | z ∈ Fn}

be the spectral norm on Fn (see [?], our general reference for rigid analytic
geometry). Due to the presence of many elements of finite order in Γ =
GL(2, A), we cannot expect a fundamental domain for Γ on Ω in the proper
sense (i.e., a subset of Ω with a “reasonable” topological structure and which
maps bijectively onto Γ \ Ω). However:

2.2 Proposition.

(i) Each element z of Ω is Γ-equivalent to at least one and at most finitely
many elements of F .

(ii) If γ ∈ Γ satisfies γ(Fn) ∩ F 6= ∅ then γ(Fn) = Fn and γ ∈ Γn,
where Γ0 = GL(2,F) and Γn = {

(
a b
0 d

)
∈ Γ | a, d ∈ F∗, deg b ≤ n}, n ≥

1. Conversely, each γ ∈ Γn stabilizes Fn.

Proof. [?] 6.5.

It is important to understand the behavior of some basic functions on F .
The following table is a compilation of [?] 2.13–2.18, as far as g, ∆, j are
concerned, and follows for s by direct calculation from its definition. It gives
the values logq ‖f‖n for the functions f = s, g,∆ and j.

2.3 Table.
f s g ∆ j

logq ‖f‖n −qn+1 0 −qn+1 qn+1
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Each of the above |f | is constant on Fn (n = 0, 1, 2, . . .) with the exception of
f = g or j on F0, in which case we have only the inequalities logq |g(z)| ≤ 0
and logq |j(z)| ≤ q for z ∈ F0.

2.4 Remark. For our given functions f , the values of logq |f | “interpolate
linearly” for z ∈ F , z 6∈

⋃
Fn. Viz, let |z| = |z|i = qn−ε with n ∈ N0,

0 < ε < 1; then a tedious but straightforward calculation gives e.g.

logq |s(z)| = −qn+1(1− q − 1

q
ε),

and similar formulas hold for the other functions under consideration. This
can best be understood by relating Ω with the Bruhat-Tits tree T of K∞,
where F corresponds to the standard fundamental domain of Γ on T and
the distinguished subsets Fn to its vertices, see [?] sect. 1. It will turn out
that, moreover, the modular forms we consider have their zeroes in F in fact
in
⋃
Fn (see (2.5), (2.6) below). This justifies to focus attention to the Fn.

2.5 Example. Let gk be the Eisenstein series of weight gk − 1, normalized
with absolute term 1 in its s-expansion. Then ([?], [?] Theorem 8.5):

(i) All the zeroes of gk are simple;

(ii) if z ∈ F is a zero of gk then z ∈ F0;

(iii) for each z0 ∈ F(k+1) − F ⊂ F0 there exists a unique zero z ∈ F0 of gk
with |z − z0| < 1, and these are all the zeroes of gk in F .

2.6 Example. Let αk be the para-Eisenstein series of weight qk − 1 (see
(1.17)). Then ([?] Corollary 8.12):

(i) All the zeroes of αk are simple;

(ii) if z ∈ F is a zero of αk then z ∈ Fn, where 0 ≤ n ≤ k−1, n ≡ k+1 (2);

(iii) for each n as in (ii) there exist precisely (q − 1)qk zeroes of αk in Fn.

3. Description of j restricted to Fn.

3.1 Definition. Let z ∈ C∞ satisfy |z| = qn with n ∈ Z. Then z =
T n · u · (1 + x) with well-defined u ∈ F− {0} and x ∈ C∞, |x| < 1. We call
L(z) := u the leading coefficient of z.

The map L : F0 −→ F− F is well-defined and surjective, as is

L : {z ∈ C∞ | logq |z| = qn} =: Uqn −→ F− {0}.
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Since moreover T n : F0

∼=−→ Fn and j maps Fn onto Uqn+1 if n ≥ 1, we may
define a map jn : F− F −→ F through the commutative diagram

(3.2)

Fn
j−→ Uqn+1

L ↓ ↓ L

F− F jn−→ F ,

provided that L(j(z)) depends only on L(z). In case n = 0, we must replace
(3.2) by

(3.3)

F0 −→ U ′q := {z ∈ C∞ | logq |z| ≤ q}
L ↓ ↓ L′

F− F j0−→ F ,

where L′ restricted to Uq agrees with L and L′(z) = 0 for logq |z| < q.

The goal of the present section is to derive the following explicit description
of jn.

3.4 Theorem. The maps jn are well-defined and given by

jn(z) = (zq − z)q
n(q−1) for n ≥ 1

=
(zq

2 − z)q+1

(zq − z)q2+1
for n = 0.

Remark. The formula for n = 0 differs in sign from [?] 3.6, due to a different
normalization taken there.

For the proof we need to collect a number of facts about the functions in
question.

(3.5) The power series ∆/s and g−1
[1]

belong to A[[s]] and, writing ∆/s or g−1
[1]

as
∑

i≥0 ais
i, the ai satisfy deg ai ≤ i ([?] Proposition 6.7). In particular,

the series converge on F (see (2.3)) and yield the right values g(z), ∆(z),
respectively.

Suppose that z ∈ Fn with n > 0. We see by (2.3) and (3.5) that in both
g = 1−[1]s−[1]sq

2−q+1+· · · and ∆ = −s+sq−[1]sq+1+· · · the leading terms
1 resp. −s dominate and thus determine L(g(z)) and L(∆(z)). Therefore,
for z ∈ Fn with n ≥ 1,

(3.6) L(j(z)) = L(
gq+1(z)

∆(z)
) = L(−s−1(z)) = −L(s−1(z))
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holds. Let’s next consider z ∈ F0, where some more terms must be taken
into account. We need the following sharpening of (3.5).

3.7 Lemma. Write g =
∑

i≥0 ais
i with ai ∈ A. Then for i ≥ 2, the strict

inequality deg ai < i+ q holds.

Proof. This follows from combining the following facts from [?] (with the
notation given there, which we will not repeat here):

• g = 1− [1]
∑

a∈A monic

tq−1
a (loc. cit. 6.4)

•
∑

a∈A monic
of degree d

tq−1
a = sq

d
∑

(1/fa)
q−1 (by definition (4.6) of fa)

• fa and 1/fa as power series in s satisfy property (∗) of (6.7).

3.8 Corollary. For z ∈ F0 we have L′(g(z)) = L′(1− [1]s(z)). (Here again
as in (3.3) we write L′(w) = L(w) if the argument w has maximal possible
absolute value 1 and L′(w) = 0 otherwise.)

Proof. By (3.7) and (2.3) the higher terms ais
i(z) of the s-expansion of g(z)

don’t contribute to L′(g(z)).

Since |∆(z)| is constant on F0 with dominating term −s, we have L(∆(z)) =
L(−s(z)) = −L(s(z)) for z ∈ F0, and so

(3.9) L′(j(z)) = −L′(1− [1]s(z))q+1/L(s(z)).

We are thus reduced to determining the right hand sides of (3.6) for n ≥ 1
and of (3.9) for n = 0, respectively, on Fn.

Let’s start with the case n ≥ 1 .

We have s(z)−1 = eL(πz)q−1, where eL(z) is given by (1.6), thus

s(z)−1 = πq−1(
∑
i≥0

πq
i−1

Di

zq
i

)q−1.

3.10 Lemma. Write di for πq
i−1

Di
zq

i
. Then for z ∈ Fn,

(i) |dn| = |dn+1| = |dn + dn+1|;
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(ii) if i is different from n, n+ 1, then |di| < |dn|.

Proof. |dn| = |dn+1| > |di| for i 6= n, n + 1 follows from logq |z| = n ≥ 1,
logq |Di| = iqi and logq |πq−1| = q. By (1.7) we have L(πq−1) = −1, thus

L(di) = (−1)iL(z)q
i
. Since L(z) 6∈ F, no cancellation can take place in

dn + dn+1, so |dn + dn+1| = |dn| = |dn+1|.

By the lemma and (3.6) we have

L(j(z)) = −L(s(z)−1) = +(L(dn) + L(dn+1))q−1

= ((−1)nL(z)q
n

+ (−1)n+1(L(z)q
n+1

)q−1 = (L(z)q − L(z))q
n(q−1),

which at the same time shows the well-definedness of jn and the formula
asserted by the thoerem for n ≥ 1.

There remains the case n = 0 .

For z ∈ F0 we write s(z) = π1−qeA(z)1−q = π1−q∑
a∈A

1
(z−a)q−1 ([?] 2.2(v)+3.4(v)).

Now L(
∑

a∈A
1

(z−a)q−1 ) = L(
∑

a∈F
1

(z−a)q−1 ),
∑

a∈F
1

(z−a)q−1 = ( 1
zq−z )q−1, π1−q[1] =

−1+ smaller terms, hence from (3.9),

L′(j(z)) = L′(1 + (
1

zq − z
)q−1)q+1/L((

1

zq − z
)q−1).

This shows first that L′(j(z)) depends only on L(z), so j0 is well-defined. If
further z = L(z), i.e., z ∈ F − F, we get

L′(j(z)) = (1 + (
1

zq − z
)q−1)q+1(zq − z)q−1,

which, upon simplifying and recollecting terms, equals (zq
2−z)q+1

(zq−z)q2+1
. Theorem

3.4 is proved. �

3.11 Corollary. For z ∈ F we have the following equivalences:

(i) logq |j(z)| < q ⇔ z ∈ F0 and L(z) ∈ F(2)

(ii) logq |j(z)| = q and L(j(z)) = 1⇔ z ∈ F0 and L(z) ∈ F(3)

(iii) logq |j(z)| = q and L(j(z)) 6= 1⇔ z ∈ F0 and [F(L(z)) : F] ≥ 4

(iv) logq |j(z)| = qn+1 (n ≥ 1) and L(j(z)) = −1⇔ z ∈ Fn and L(z) ∈ F(2)

(v) logq |(j(z)| = qn+1 (n ≥ 1) and L(j(z)) 6= −1 ⇔ z ∈ Fn and L(z) 6∈
F(2).
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Proof. (iii) is a consequence of (i) and (ii), (v) a consequence of (iv).
(i) By (2.3), logq |j(z)| ≤ q ⇔ z ∈ F0. We have strict inequality if and only

if j0(L(z)) = 0, which is equivalent with L(z) ∈ F(2).
(ii) For z ∈ F0, L′(j(z)) = 1 ⇔ j0(L(z)) = 1 ⇔ L(z) ∈ F(3), where the last
equivalence results from an easy calculation.
(iv) As logq |j(z)| = qn+1 ⇔ z ∈ Fn, we are reduced to showing that for z ∈
F − F, the equivalence jn(z) = −1⇔ z ∈ F(2) holds. Now jn(z) = ( z

q2−zq
zq−z )q

n

equals −1⇔ zq
2−zq
zq−z = −1⇔ zq

2
= z.

4. The polynomials βd,k(X) and their Newton polygons. We wish to
determine the zeroes of the forms a`k defined in (1.15). To this end, we study
their companion polynomials aϕk, restricting first to the case where a = T d.

4.1 Definition. Let X be an indeterminate, let φ be the Drinfeld module
over the polynomial ring A[X] defined by φT = T +Xτ + τ 2, and write

φT d =
∑

0≤k≤2d

βd,k(X)τ k.

The first few of the polynomials βd,k are given by
(4.2)
β1,k = T,X, 1 for k = 0, 1, 2,

β2,k = T 2, (T q + T )X,Xq+1 + (T q
2

+ T ), Xq2 +X, 1 for k = 0, 1, . . . , 4

β3,k = T 3, (T 2q + T q+1 + T 2)X, (T q
2

+ T q + T )Xq+1 + (T 2q2 + T q
2+1 + T 2),

Xq2+q+1 + (T q
3

+ T q
2

+ T )Xq2 + (T q
3

+ T q + T )X,

Xq3+q2 +Xq3+1 +Xq+1 + (T q
4

+ T q
2

+ T ), Xq4 +Xq2 +X, 1
for k = 0, 1, . . . 6.

As we will see in a moment, βd,k almost agrees with the companion polyno-
mial ϕf of f = T d`k. Its elementary properties are given in the next propo-
sition. We always write “deg” for the degree of a ∈ A in T , and “degX” for
the degree of a polynomial in X.

4.3 Proposition. Putting βd,k = 0 for k < 0, we have for d, k ≥ 0:

(i) (recursion I) βd+1,k = T q
k
βd,k +Xqk−1

βd,k−1 + βd,k−2;

(ii) (recursion II) βd+1,k = Tβd,k +Xβqd,k−1 + βq
2

d,k−2;

(iii) βd,k(X) = Xχ(k)ϕd,k(X
q+1) with a polynomial ϕd,k ∈ A[X], where

χ(k) = 0 (resp. 1) if k is even (resp. odd);

11



(iv) degX βd,k ≤ dk := qk−1
q−1

;

(v) suppose k ≤ d. Then equality holds in (iv), and the leading coefficient
of βd,k is monic of degree (d− k)qk as an element of A;

(vi) suppose k ≥ d. Then βd,k is monic of degree

degX βd,k = dk −
q2(k−d) − 1

q − 1
;

(vii) if k is even, the absolute term of βd,k is monic of degree (d− k
2
)qk, if k

is odd, the linear term of βd,k is monic of degree (d− k+1
2

)qk.

Proof. (i) and (ii) follow from comparing coefficients in φT d ◦ φT = φT d+1 =
φT ◦ φT d , respectively. The proofs of (iii) to (vii) are excercises in induction,
using (i) and (ii).

Since the X1modular invariant j equals gq+1/∆, property (iii) above shows
that ϕd,k is the companion polynomial ϕf of the modular form f = T d`k.
Hence knowing the zeroes of βd,k is as good as knowing the zeroes of T d`k
itself. We will determine the Newton polygon of βd,k over K∞.

In the following, we write k = 2m − 1 for odd and k = 2m for even k. If
βd,k 6= 0 then d ≥ m. We aim to describe βd,k for such d, k.

4.4 Definition. Let k =

{
2m− 1

2m

}
be given and m ≤ d ≤ k. A number

` ∈ N0 is a critical exponent for βd,k with associated critical degree δ if:

case k = 2m− 1 odd

l δ
1 (d−m)qk

qk−1 (d−m)qk

qk−1 + qk−2 + qk−3 (d−m− 1)qk  d−m rows
qk−1 + qk−2 + qk−3 + qk−4 + qk−5 (d−m− 2)qk

...
...

qk−1 + qk−2 + . . .+ q2(k−d) 0 · qk

12



case k = 2m even

l δ
0 (d−m)qk

qk−1 + qk−2 (d−m− 1)qk  d−m rows
qk−1 + qk−2 + qk−3 + qk−4 (d−m− 2)qk

...
...

qk−1 + qk−2 + . . .+ q2(k−d) 0 · qk

The critical exponents for βd,k with d > k are the same as those of βk,k, with
critical degrees augmented by (d− k)qk.

Note that the largest critical exponent of βd,k equals the degree degX βd,k.

For given (d, k) with d ≥ m, we produce a polygonal chain as follows: For
each critical exponent ` with critical degree δ, draw the critical point (`,−δ)
in the euclidean plane, and connect neighboring critical points through a
straight line. If is immediate from the definition that the slopes of these
lines strictly increase, i.e., for consecutive c.exponents `1 < `2 < `3, the slope
δ2−δ3
`3−`2 is strictly larger than δ1−δ2

`2−`1 . In other words, our polygonal chain is
convex, and will in fact turn out to be the Newton polygon of βd,k over the
valued field K∞ (we use the notation and conventions of [?] II sect. 6). More
precisely, βd,k enjoys the properties described in the next proposition, which
is our principal technical result.

4.5 Proposition. Let (d, k) with d ≥ m be as before, and write

βd,k(X) =
∑
`

b`X
`

with b` ∈ A.

(i) If ` is a critical exponent for βd,k with c.degree δ, then deg b` = δ, and
b` is monic as an element of A.

(ii) If ` is non-critical and `1 < ` < `2 with neighboring c.exponents `1, `2,
then deg b` interpolates sub-linearly:

deg b` ≤ deg b`1 +
`− `1

`2 − `1

(deg b`2 − deg b`1).

Proof. We induce on d, where the cases d = 1 and d = 2 may be directly
read off from (4.2). Let now be d ≥ 2 and assume the assertion is shown
for d′ ≤ d. We want to show that βd+1,k has the properties stated, where

13



without restriction k ≥ 1. Write k =

{
2m− 1

2m

}
as before.

If d+ 1 < m then βd+1,k = 0 and nothing has to be shown.

If d+ 1 = m then k =

{
2(d+ 1)− 1

2(d+ 1)

}
and the assertion is{

immediate
trivial

}
since βd+1,k =

{
X +Xq2 +Xq4 + · · ·+Xqk−1

1

}
.

Suppose m ≤ d ≤ k − 1 . We first treat the case k odd , using recursion I
of (4.3), labelled RI. Below we list the critical exponents/degrees for βd,k,
βd,k−1, βd,k−2, and βd+1,k. (Note that the quantity “m” for βd,k−1, and βd,k−2

must be replaced by m′ = m− 1. Further, if k = 1, the term βd,k−2 must be
omitted.)
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βd+1,k

c.exponents c.degrees

1 (d−m+ 1)qk

qk−1 (d−m+ 1)qk

qk−1 + qk−2 + qk−3 (d−m)qk
 d−m+ 1 rows...

...

qk−1 + . . .+ q2(k−1−d) 0 · qk

By induction hypothesis, the c.degrees of βd,k, βd,k−1, βd,k−2 are the degrees
of the coefficients with the corresponding c.exponents as subscripts. RI pre-
scribes that the c.exponents of βd,k−1 must be enlarged by qk−1 when enter-
ing into βd+1,k (the corresponding c.degrees remaining unchanged), while the
c.exponents of βd,k remain, but their c.degrees are enlarged by qk.

Comparing the four tables and taking RI into account shows that all the
critial coefficients of βd+1,k (those that corresponds to c. exponents) have
the degrees predicted. (Note that βd,k−2 can at most contribute to the linear
term of βd+1,k, but not to other c. coefficients.) Moreover, as by induction
hypothesis the critical coefficients of βd,k, βd,k−1, βd,k−2 are monic, the same
is true for βd+1,k.

Let now ` ∈ N satisfy `1 < ` < `2 with neighboring c.exponents `1 and `2 of
βd+1,k. Let for the moment r, s, t, u be the relevant coefficients of βd+1,k, βd,k,
βd,k−1, βd,k−2, corresponding to terms of order `, `, ` − qk−1, `, respectively.
By RI, we have

r = T q
k

s+ t+ u.

Distinguish the cases:

`1 = 1, `2 = qk−1 Here t = 0, deg u ≤ (d−m+1)qk−2 < deg(T q
k
s) (provided

s 6= 0), and the sublinear interpolation property SIP of deg s extends to deg r.

`1 = qk−1 + · · ·+ q2(k−d), `2 = `1 + q2(k−d)−1 + q2(k−1−d) Here s = 0 = u,
and the SIP extends from deg t to deg r.

all other cases Here still u = 0. Moreover, `1 and `2 are neighboring
c.exponents of βd,k, `1 − qk−1 and `2 − qk−1 are neighboring c.exponents of
βd,k−1 and the SIP of deg s and deg t is inherited by deg r.
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Still in the situation m ≤ d ≤ k− 1, the case k even is handled in the same
fashion: RI implies that the asserted properties of βd,k, βd,k−1, βd,k−2 turn
over to βd+1,k. We omit the details (which would require presenting a table
similar to (4.6) for even k).

There remains the case where d ≥ k . Here βd+1,k and βd,k have the same crit-
ical exponents and in particular the same degrees as polynomials in X. Again

distinguishing the subcases k odd/k even , RI shows that the degrees of the

coefficients at critical exponents are augmented by qk under βd.k  βd+1,k,
preserving monicity, and the degrees of the other coefficients still interpo-
late sublinearly. Hence βd+1,k enjoys the stated properties for all k, and the
induction step is finished.

We let NP (βd,k) be the Newton polygon of βd,k as described in (4.4), with
breaks (`,−δ), where ` is a critical exponent with corresponding critical
degree δ. We write (a, b) − (c, d) for the line segment that joins two points
(a, b) and (c, d) in the plane and NP + (a, b) for the Newton polygon shifted
by the vector (a, b).

We have actually shown (recall that k =

{
2m− 1

2m

}
):

(4.7)

d < m : βd,k = 0, NP (βd,k) = ∅
d = m, k = 2m even : βm,2m = 1, NP (βm,2m) = {(0, 0)}
d = m, k = 2m− 1 odd : NP (βm,2m−1) = (1, 0)− (qk−1, 0)
m ≤ d < k : NP (βd+1,k) results from appending the line
segment (degX βd,k,−qk)− (degX βd,k + q2k−2d−1 + q2k−2d−2, 0)
to NP (βd,k) + (0,−qk).
d ≥ k : NP (βd+1,k) = NP (βd,k) + (0,−qk)

4.8 Corollary.

(i) For d, k ≥ 0, the Newton polygon NP (βd,k) lies strictly above NP (βd+1,k).

(ii) Let a =
∑

i aiT
i (ai ∈ F) be an arbitrary element of A, of degree d, and

write φa =
∑

0≤k≤2d aβk(X)τ k for the Drinfeld module φ of (4.1). The
Newton polygon NP (aβk) of aβk(X) ∈ A[X] satisfies

NP (aβk) = NP (βd,k).

Proof. (i) results from the description given in (4.7). Therefore, the Newton
polygon of aβk =

∑
i aiβi,k depends only on the largest term adT

d, which
gives (ii).
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Together with the relation βd,k(X) = Xχ(k)ϕd,k(X
q+1) of (4.3)(iii) we find

that the companion polynomial aϕk of a`k is given by

(4.9) aϕk =
∑
i

aiϕi,k(X).

For the reader’s convenience, we list the ϕd,k for d ≤ 3, derived from (4.2).

(4.10)
ϕ1,k = T, 1, 1 for k = 0, 1, 2

ϕ2,k = T 2, T q + T, X + (T q
2

+ T ), Xq−1 + 1, 1 for k = 0, 1, . . . 4

ϕ3,k = T 3, T 2q + T q+1 + T 2, (T q
2

+ T q + T )X + (T 2q2 + T q
2+1 + T 2),

Xq + (T q
3

+ T q
2

+ T )Xq−1 + (T q
3

+ T q + T ), Xq2 +Xq2−q+1 +X+

(T q
4

+ T q
2

+ T ), Xq3−q2+q−1 +Xq−1 + 1, 1 for k = 0, 1, . . . 6.

Combining the preceding with the properties of the Newton polygon ([?] II
sect. 6), we arrive at the following description of the j-zeroes of a`k, counted
with multiplicity.

4.11 Theorem. Let a`k(z) be the coefficient modular form defined in (1.15),

where a ∈ A has degree d, and write k =

{
2m− 1

2m

}
. The pattern of j-zeros

of a`k as described below depends only on d.

If d < m then a`k = 0.

If m ≤ d ≤ k = 2m− 1 , there are

qk−1−1
q+1

j-zeroes x of a`k with logq |x| = 0

qk−3 ′′ = q3

qk−5 ′′ = q5

...
...

q2k−2d ′′ = q2d−k

and, not to forget, there is the trivial simple j-zero x = 0.

If m ≤ d ≤ k = 2m , there are

qk−2 j-zeroes x of a`k with logq |x| = q2

qk−4 ′′ = q4

...
...

q2k−2d ′′ = q2d−k.

These are all the j-zeroes of a`k.
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If d > k then we have the same pattern as with d′ = k. �

5. Location of the zeroes of a`k in F . We keep the notation of the last
section. The j-zeroes of a`k described in Theorem 4.11 correspond to z-zeros
in F which lie in Fn, where 0 ≤ n ≤ min(k−1, 2d−k−1), n ≡ k+1( mod 2).
The mapping j restricted to Fn is qn+1(q− 1) to 1 if n ≥ 1, (q2− 1)q to 1 on
non-elliptic points (i.e., j 6= 0) of F0, and (q − 1)q to 1 on elliptic points of
F0. Thus we get the next result.

5.1 Theorem. Let a`k be as in Theorem 4.11. Counted with multiplicities,
it has qk(q − 1) zeroes in Fn for each n that satisfies 0 ≤ n ≤ min(k −
1, 2d − k − 1), n ≡ k + 1(mod 2), and these are all the zeroes of a`k in F
(d = deg a). For k odd, these qk(q−1) zeroes z in F0 either satisfy |j(z)| = 1
((qk − q)(q − 1) many) or z ∈ F(2) − F (q2 − q many). �

¿From (3.11) we find:

5.2 Corollary. Let k be odd. The qk(q − 1) zeroes z of a`k in F0 satisfy
L(z) ∈ F(2). �

Let now again a ∈ A have degree d ∈ N, and suppose 2 ≤ k ≤ d. As follows
from Theorem 4.11, the form a`k has a unique j-zero axk with maximal
possible logq |axk|. It lies in K∞ and corresponds to the segment of width

1 and slope qk of NP (aϕk), i.e., the segment of width q + 1 and slope qk

q+1

rightmost to the Newton polygon of aβk, see (4.7). The two relevant breaks

of NP (aβk) = NP (βd,k) have abscissas `1 = qk−1
q−1
− (q + 1) and `2 = qk−1

q−1

and, as the coefficients b` of βd,k(X) with these indices are monic as elements
of A (see 4.5), we have L(axk) = −1. As a consequence of (3.11) we find:

5.3 Corollary. Let a ∈ A have degree d, where 2 ≤ k ≤ d, and let axk ∈ K∞
be the unique maximal j-zero of a`k as described above. Then L(axk) = −1,
and the corresponding z-zeroes z ∈ F lie in Fk−1 and satisfy L(z) ∈ F(2)−F.
�

In what follows we assume that k is odd and derive similar properties of the
j-zeroes of a`k with |x| = 1.

5.4 Lemma. Let k be odd and let 1 < ` < qk−1 be such that the degree deg b`
(where aβk(X) =

∑
b`X

`) interpolates linearly (i.e., we have equality in 4.5
(ii)). Then ` ≡ 0(mod q).

Proof. Without restriction, a = T d. Then we proceed as in the proof of
(4.5), using induction on d and starting with d = m. Then βm,k = βm,2m−1 =

X + Xq2 + · · ·Xqk−1
, for which the assertion is true. Further, the assertion

is stable under d  d + 1, as follows from the argument used in the case
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`1 = 1, `2 = qk−1 in the second half of the proof of (4.5), where we showed
the stability of SIP under d d+ 1.

We now consider the polynomial aβk up to terms of order qk−1, which cor-
responds to the leftmost segment of NP (aβk) between the abscissas `1 = 1
and `2 = qk−1. Since the slope of that segment is zero,

aβk(X) =
∑

1≤`≤qk−1

b`X
` +

∑
`>qk−1

b`X
`

with b` ∈ K∞, |b1| = |bqk−1|, |b`| < |b1| for ` > qk−1, and for 1 < ` < qk−1,
either |b`| < |b1| or |b`| = |b1| and ` ≡ 0(mod q) holds. But this implies that
the qk−1 − 1 zeroes of aβk corresponding to this segment are simple and lie
in an unramified extension of K∞. (Divide the above equation by b1. The
resulting polynomial reduced modulo the maximal ideal of O∞ has constant
derivative 6= 0, and we may apply the trivial case of Hensel’s lemma.) Taking

aβk = Xaϕk(X
q+1) into account, where aϕk(X) is the companion polynomial

of a`k, we have shown our next result.

5.5 Theorem. Let k be odd.

(i) The qk−1−1
q+1

j-zeroes x of a`k with |x| = 1 are simple as zeroes of aϕk(x).

Correspondingly, the (qk−q)(q−1) zeroes z ∈ F0 of a`k with |j(z)| = 1
are all different and simple.

(ii) All the x in (i) lie in an unramified extension of K∞. �

Remark. This is at least partially analogous with properties of the zeroes of
Eisenstein series of weight qk − 1, see Example 2.5. On the other hand, each
of the zeroes z from 5.5 (i) with |j(z)| = 1 generates an extension of K∞ ram-
ified with index divisible by q+1, as is seen from 1 = |j(z)| = |g(z)|q+1/∆(z)
and |∆(z)| = q−q for z ∈ F0 (see 2.3). Quite generally, the fields K(x) (resp.
K∞(z)) generated over K (resp. K∞) by j-zeroes x (zeroes z) of such mod-
ular forms seem to deserve more investigation. Moreover, (5.5) raises the

5.6 Question. Are all the roots of aϕk simple, i.e., are the polynomials aϕk
separable?

6. The decay of a`k along F . We conclude with describing the decay of
the absolute value |a`k(z)| along the sets Fn ⊂ F , where we exploit the ideas
developed in [?] and [?] (especially (6.11) and (8.13) pp.).

Recall that ‖f‖n := sup{|f(z)| | z ∈ Fn} is the spectral norm of the holo-
morphic function f on Fn. It is, by standard properties of rigid geometry, in
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fact a maximum, which even agrees with the constant absolute value |f(z)|
for z ∈ Fn, provided that f has no zeroes on Fn [?] [?].

¿From now on we let f be a modular form of weight k subject to the condi-
tion:

(6.1) If f(z) = 0 for z ∈ F then z ∈
⋃
n∈N0
Fn.

Due to our results so far, all the forms gk (2.5), αk (2.6) and a`k satisfy (6.1).
As a consequence of (6.1), as follows from the considerations in [?] pp. 93–
94, and [?] 1.7.4, the quantity logq |f(z)| interpolates linearly (see (2.4)) for
z ∈ F , n < logq |z| = logq |z|i < n + 1 between its extreme points logq ‖f‖n
and logq ‖f‖n+1. We may therefore restrict to considering ‖f‖n for n ∈ N0.

For 0 6= f ∈Mk and n ≥ 0, define

(6.2) rn(f) := logq
‖f‖n+1

‖f‖n
,

which lies in Z and satisfies rn(f1 · f2) = rn(f1) + rn(f2). (To be in line with
[?], the present rn(f) is r(f)(en) as defined loc. cit. 6.9.)

We further put

(6.3)
zn(f) := number of zeroes of f on Fn,

counted with multiplicities.

¿From the formalism of rigid-analytic contour integration ([?] pp. 93–95) we
find the following relations between rn(f) and zn(f):

(6.4) z0(f) = (q + 1)r0(f) + qk

and for n ≥ 1

(6.5) zn(f) = rn(f)− qrn−1(f).

Details would require the introduction of a bulk of new objects and termi-
nology. Suffice it to say that the common source of both identities is [?] 6.11,
along with the description loc. cit. 7.5 of rn(cz + d) and the action of our
groups Γn (see (2.2)) on Fn and on the neighborhood of the vertex vn in the
Bruhat-Tits tree T (loc. cit. section 6).

Note in particular that the weight k enters in (6.4) only, but not in (6.5).
These formulas enable us to relate ‖f‖n and ‖f‖n′ for n < n′, provided we
know the zeroes “in between”.

To make this effective, we first observe:

6.6 Proposition. Let f ∈ Mk satisfy (6.1) and suppose that its zero-th
s-coefficient a0 = a0(f) doesn’t vanish. Let n0 be maximal such that Fn0

contains a zero of f . Then |f(z)| = |a0| for z ∈ F , |z| > qn0 and ‖f‖n0 = a0.
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Proof. In the neighborhood of ∞, that is for z ∈ F with s(z) small (or |z| =
|z|i large), we have |f(z)| = |a0| by standard non-archimedean properties.
But this means rn(f) = 0 for n� 0.
¿From (6.5) we find that actually rn(f) = 0 for n ≥ n0, which, together with
the properties stated after (6.1), gives the result.

(6.6) applies to the forms f = a`k with a ∈ A of degree d and k ≤ d . In
this case, the coefficient a0(a`k) is the corresponding coefficient of the Carlitz
module (1.5). That is, write

ρa = a+
∑

1≤k≤d
ackτ

k with ack ∈ A,

then ack = a0(a`k). Its degree is logq |a0(a`k)| = deg ack = (d− k)qk ([?] 4.5).
Combining the preceding, we find:

6.7 Theorem. Let a ∈ A have degree d. For 1 ≤ k ≤ d the modular form

a`k satisfies

logq ‖a`k‖n = (d− k)qk, n ≥ k − 1

= (d− k)qk −
k−2∑
i=n

ri(a`k), 0 ≤ n < k − 1.

Here the ri(a`k) may be recursively solved (stepping down from i = k − 1)
from (6.5) and (6.4), using rk−1(a`k) = 0 and zi(a`k) = 0 resp. qk(q − 1) if
i ≡ k(mod 2) resp. i 6≡ k(mod 2). �

With a bit of labor we can work out e.g. ‖a`d‖0 for the “middle” coefficient
form a`d, d = deg a, an exercise in summing up multiple geometric series.
Here is the result.

6.8 Example. Let a ∈ A have degree d ≥ 1. Then

‖a`d‖0 =
d

2
qd − q(q

d − 1

q2 − 1
), d even

=
d+ 1

2
qd − q(q

d+1 − 1

q2 − 1
), d odd.

The procedure just employed fails for a`k with k > d = deg a since then

a`k is a cusp form. However we know that its largest zeroes z ∈ F satisfy
logq |z| = 2d− k − 1. Hence ‖a`k‖n for n ≥ 2d− k − 1 is determined by the
equation

a`k(z) = aϕk(j(z))∆(z)µ(k)g(z)χ(k),

χ(k) = 0/1 if k is even/odd, µ(k) = qk−qχ(k)

q2−1
. Now
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• the companion polynomial aϕk is monic of degree (qk−q2(k−d)−χ(k)(q−
1))/(q2 − 1), as results from (4.3) (iv) and (4.9);

• logq ‖j(z)‖n = qn+1;

• |j(z)| ≥ |x| for all the zeroes x of aϕk if z ∈ Fn, n ≥ 2d− k − 1.

Putting these together, we find for n ≥ 2d− k − 1:

(6.9) logq ‖a`k‖n = −qn+1(
q2(k−d) − 1

q2 − 1
)

and consequently

(6.10) rn(a`k) = −qn+1(
q2(k−d) − 1

q + 1
).

This yields as in (6.7) the remaining spectral norms.

6.11 Theorem. Let a ∈ A have degree d. For d < k ≤ 2d the modular form

a`k satisfies

logq ‖a`k‖n = −qn+1(
q2(k−d) − 1

q2 − 1
), n ≥ 2d− k − 1

= logq ‖a`k‖2d−k−1 −
2d−k−2∑
i=n

ri(a`k), n < 2d− k − 1,

where the ri(a`k) may be recursively determined from (6.5) and (6.4). �

We restrict to presenting two examples, where the first is immediate from
(6.11).

6.12 Example. Let d ≥ 2 and k = 2d− 1. Then

logq ‖a`2d−1‖n = −q(q
2d−2 − 1

q2 − 1
) for n ≥ 0.

6.13 Example. Let d ≥ 3 and k = 2d − 2. For f = a`2d−2 we have

logq ‖f‖1 = −q2( q
2d−4−1
q2−1

) and r1(f) = −q2( q
2d−4−1
q+1

). As z1(f) = q2d−2(q − 1),

(6.5) yields r0(f) = −q( q2d−2−1
q+1

). (Alternatively, we could use (6.4) and the

facts z0(f) = 0, q2d−2 − 1 = weight of f .) Therefore,

logq ‖f‖0 = logq ‖f‖1 − r0(f) = (q2d − q2d−1 − q2d−2 + q)/(q2 − 1).

Our last result is about the relationship between the forms a`k and the αk
from (1.17). For d = deg a ≥ k, let a

˜̀
k be the normalized multiple of a`k;
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similarly, let α̃k be αk normalized, so that a
˜̀
k and α̃k have value 1 at infinity.

From the considerations preceding Theorem 6.7, we find

(6.14) a
˜̀
k = ac

−1
k a`k

with the coefficients ack of the Carlitz module. Similarly,

(6.15) α̃k = Dkαk,

as follows from (1.6).

6.16 Theorem. Write aϕ̃k (resp. µk) for the companion polynomial of a
˜̀
k

(resp. α̃k).

(i) As d = deg a tends to infinity, a ˜̀
k tends, locally uniformly on Ω, to the

para-Eisenstein series α̃k.

(ii) In the space of polynomials of degree less or equal to deg aϕ̃k = deg µk,
we have limd→∞ aϕ̃k = µk.

6.17 Remarks. (i) Both aϕ̃k and µk have their coefficients in K, hence the
convergence in (ii) takes place in a finite-dimensional vector space over the
locally compact field K∞.
(ii) The polynomial µk is known to be separable (see Example 2.6), which
thus holds too for aϕ̃k resp. aϕk if d = deg a is large enough. This gives a
partial (though insatisfactory) answer to Question 5.6. Proof of (6.16). Let
F (k) = {z ∈ F | |z| ≥ qk}, an open analytic subspace of F . The commutation
rule

eΛ(aw) = φa(eΛ(w))

for the generic Drinfeld module φ associated with the lattice Λ = Λz (see
(1.9)) implies the identity

(aq
k − a)αk =

∑
1≤i≤k−1

a`iα
qi

k−i + a`k.

For sufficiently large d, all the functions appearing have constant absolute
values on F (k) (for the αi, see [?] 8.13, note the different normalizations),
given by

logq ‖αi‖F(k) = logq |αi(∞)| = −iqi,
logq ‖a`i‖F(k) = logq |aci| = (d− i)qi, 1 ≤ i ≤ k.

Plugging in, we see that the logq of (aq
k − a)αk and of a`k grow of order

(d− k)qk with d −→∞, while the logq of the other terms grow of order less
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or equal to (d− k + 1)qk−1. That is, upon normalization (̃ ), a ˜̀
k tends to α̃k

uniformly on F (k). Since on the finite-dimensional C∞-vector space Mqk−1(Γ)
to which our forms belong all norms are equivalent, part (i) of the theorem
follows. (Consider spectral norms on affinoid subdomains of Ω!) Part (ii) is
then a trivial consequence. �

Concluding remark. The companion polynomials aϕk of the coefficient
forms a`k have integral coefficients, i.e., in A. If a = p is irreducible of degree
d, then pϕd reduced (modp) yields the supersingular polynomial (modp),
which encodes the supersingular invariants. This is but an example of its
interesting arithmetical properties. Thus, besides the ∞-adic study of the

aϕk carried out in the present paper, it is desirable to investigate their p-adic
properties and relate them e.g. to the results of [?], sect. 12.

Both the ∞-adic and the p-adic properties of Drinfeld modular forms par-
allel established or conjectured properties of modular forms in the classical
framework. Therefore, a better understanding of the present case could also
reveal properties of elliptic modular forms undetected so far.
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