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Abstract

Electrostatic halftoning is a high quality method for stippling,
dithering, and sampling, but it suffers from a high runtime. This made
it difficult to use this technique for most real-world applications. A
recently proposed minimisation scheme based on the non-equispaced
fast Fourier transform (NFFT) lowers the complexity in the particle
number M from O(M2) to O(M logM). However, the NFFT is hard
to parallelise, and the runtime on modern CPUs lies still in the orders
of an hour for about 50’000 particles, to a day for 1 million particles.
Our contributions to remedy this problem are threefold: We design the
first GPU-based NFFT algorithm without special structural assump-
tions on the positions of nodes, we introduce a novel nearest-neighbour
identification scheme for continuous point distributions, and we opti-
mise the whole algorithm for n-body problems such as electrostatic
halftoning. For 1 million particles, this new algorithm runs 50 times
faster than the most efficient technique on the CPU, and even yields
a speedup of 7000 over the original algorithm.

1 Introduction

Digital image halftoning is the task of approximating images with continuous
tones using a finite number of small discs. It is frequently used to binarise
grey-scale images for printers or fax machines, or to create non-photorealistic
renderings. Halftoning algorithms distribute points in such a way that, within
each image part, the appearance of the binary image is close to that of the
continuous original. These methods can be used for a variety of applica-
tions. Besides classic halftoning applications such as stippling [Sec02], these
algorithms even cover tasks from completely different contexts such as ob-
ject placement [DHL+98], multi-class sampling [Wei10], ray-tracing [PH04],
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image-based lighting using high dynamic range images [KK03], geometry
processing [SAG03], or numerical integration such as Quasi-Monte Carlo
methods [Hal60, Coo86]. A prominent numerical method for many of these
applications was recently proposed by Balzer et al. [BSD09].
Schmaltz et al.[SGBW10] presented a new method called electrostatic
halftoning, which achieves state-of-the-art results. It sets up on the sim-
ple idea to understand circular dots as small charged particles which repulse
each other, but which are at the same time attracted by the image they
are supposed to approximate. In the arising particle system, the solution is
found in an iterative process. Each iteration consists of an evaluation of the
interactions between all pairs of particles and the image, and a movement
of particles based on the computed forces. As it turns out, this procedure
is simple to implement, but very expensive to compute. A straightforward
implementation possesses a runtime complexity of O(M2) in the number of
particles M . Hence, even on a modern CPU, a system with 1 million parti-
cles requires almost 2.5 hours for one iteration. This article introduces a new
parallel algorithm for GPUs, which has runtime complexityO(M logM), and
which thus reduces this runtime to about 1 second per iteration.
Particle systems based on the Coulomb potential possess a high influence
in the near surrounding, but a low effect over large distances. This means
that particles which are close together repulse each other significantly, while
the force drops off rapidly the further particles are apart. A number of al-
gorithms exploit this fact by approximating far-field interactions by a num-
ber of simplifications. This results in a lower runtime complexity, typically
O(M logM).
The first algorithm of this type was the particle-particle/particle-mesh
(P3M) method for molecular dynamics introduced by Hockney and East-
wood [HE81]. It performs a subdivision of the domain into cells, and assigns
the charge density of each cell to a virtual super-particle in its centre. The
interaction between these super-particles can then be efficiently computed
by a fast Fourier transform (FFT). A more simple yet efficient method was
introduced by Barnes and Hut [BH86] based on an idea of Appel [App85].
It decomposes the image into a quadtree, and uses the accumulated charges
in each subregion to estimate the influence of all particles in the region.
Although this method has only an accuracy up to about 99%, it is still fre-
quently used in astrophysical simulations due to its simplicity.
Over the last two decades, a new class of algorithms became popular. These
algorithms also possess a runtime complexity of O(M logM) or even O(M)
for potentials with special characteristics. However, different to the afore-
mentioned methods, these techniques approximate the exact solution up to a
predetermined, arbitrarily small error. As shown by Fenn and Steidl [FS02],
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these methods are closely related to each other, although they target differ-
ent applications. One prominent member of this class is the fast multipole
method [GR87] which uses multipole expansions to compute interactions be-
tween many particles over large distances. This operation can be interpreted
as a matrix-vector multiplication, where the advantageous runtime of the
method follows from a sparsification of the huge operator [SP01]. Since this
technique is data-parallel, it can be implemented for a variety of massively
parallel architectures, such as the Intel Paragon [KK95], or GPUs [GD08]. In
the literature, one finds algorithms based on similar ideas under the names
fast mosaic-skeleton approximations [Tyr96] and fast H-matrix multiplica-
tions [Hac99].
Besides these, there are a number of related methods for the fast computation
of matrix-vector products that differ from the aforementioned class only by
details. Beylkin et al. [BCR91] proposed to compute the interactions in the
wavelet domain. This even allows to use kernels whose analytical properties
are unknown. Beylkin and Cramer [BC03] suggested an algorithm which uses
an approximation step followed by a correction step. While the approxima-
tion can be computed efficiently by fast Fourier transforms, the correction
takes only place in a local neighbourhood around a particle. This strategy
makes this approach very efficient.
For this paper, we use a related technique that exploits the convolution theo-
rem to efficiently compute interactions between particles [PSN04, FS04]. In-
stead of evaluating the radial potential function for all pairwise interactions,
it transfers the problem into the frequency domain where this expensive con-
volution reduces to a simple point-wise multiplication. An efficient way to
handle points that do not reside on a regular grid is given by non-equispaced
fast Fourier transforms (NFFTs) (see [DR93, PST00]). Recently, Teuber et
al. [TSG+11] showed that this method can be used to significantly accel-
erate electrostatic halftoning on the CPU. However, a parallelisation of this
technique for GPUs is not straightforward and involves many algorithmically
extensive and time-critical operations.
In the following, we propose a novel parallel GPU algorithm based on the se-
quential algorithm from Teuber et al. [TSG+11]. Our work addresses several
bottlenecks and shortcomings that make the original algorithm inefficient on
parallel hardware, and introduces new concepts to handle these issues. The
contributions are the following:

1. We design a new parallel NFFT algorithm that does not suffer from the
limitations present in related parallel NFFT schemes from the literature
[SSNH08, Gre08], and which is thus better suited for applications like
electrostatic halftoning.
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2. We introduce a novel nearest-neighbour identification scheme for con-
tinuously placed particles that allows highly efficient near-field com-
putations on parallel devices such as GPUs. Unlike previous methods
such as the one by Gumerov and Duraiswami [GD08], our method does
not require to sort the particle vector after every iteration.

3. By a careful manual optimisation of the whole system, we obtain a
speedup of about 50 over the CPU-based method from Teuber et
al. [TSG+11], and a speedup of more than 7000 over the algorithm
from Schmaltz et al. [SGBW10] when using one million particles. This
performance is remarkable considering that this algorithm is highly
memory-bound.

While there are a number of other GPU-based algorithms for halftoning and
importance sampling in the literature, all of them differ quite significantly
from our work. In the context of importance sampling for rendering, the
algorithm presented by Nguyen (see [Ngu07], Ch. 20) uses the fact that the
underlying density function is constant and that is possesses characteristic
mathematical properties. However, this is not the case for halftoning where
the underlying image may be completely random. The greedy algorithm pro-
posed by Chang et al. [CLH+08] performs importance sampling on arbitrary
density functions, but does not preserve so-called blue noise properties (see
[Uli88]). As a consequence, the resulting samples reveal striking regularity
artefacts. Most closely related to our work is the direct summation approach
for electrostatic halftoning by Schmaltz et al. [SGBW10]. As mentioned
before, however, this algorithm suffers from inadmissible runtimes for large
images.
Our article is organised as follows: In Sections 2, 3, and 4, we start with a
short recapitulation of electrostatic halftoning [SGBW10], the fast summa-
tion technique introduced by Teuber et al. [TSG+11], and the NFFT [PST00],
respectively. Section 5 gives details about our GPU-based implementation
of NFFT-based electrostatic halftoning, which we evaluate in Section 6. The
article is concluded with a summary in Section 7 with a summary.

2 Electrostatic Halftoning

A good halftoning method distributes points homogeneously over flat image
regions. The key idea behind electrostatic halftoning is thus to maximise
distances between inkblots by means of electrostatic forces [SGBW10]. In this
model, inkblots take the role of small, massless particles with negative unit
charge. Since their charges have the same sign, they repel each other such
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that the distances between particles are mutually maximised. In contrast,
the underlying image is regarded as a positive charge density which attracts
particles proportionally to the image darkness at the respective point. As a
result, the converged state of the particle system forms a good halftone of
the original image.
Given a grid Γ = {0, . . . , nx − 1} × {0, . . . , ny − 1} and a grey-valued input
image u : Γ → [0, 1], we thus search for a finite set of points {pα} with
α ∈ {1, . . . ,M} =: P that best approximates the density described by u. As
it was shown by Teuber et al. [TSG+11], this problem can be formulated in
terms of an energy which has to be minimised by the sought solution. In
Schmaltz et al. [SGBW10], the authors propose a halftoning scheme which
minimises such an energy by an iterative approach driven by the forces acting
on a particle at a certain time step. By an abstraction from underlying phys-
ical properties such as velocity and acceleration, this simplified minimisation
strategy finds a steady state of the particle system in which the forces are in
an equilibrium. It does so by transporting particles a small time step along
the vector of force acting on them. This yields the update equation

pk+1
α = pkα + τ

(∑
x∈Γ
x6=pα

1− u(x)

|x−pα|
eα,x −

∑
β∈P

pβ 6=pα

1

|pβ−pα|
eα,β

)
= pkα + τ

(
F (A)
α − F (R)

α

)
, (1)

where pkα denotes the location of particle α at time level k, and τ represents
a small time step which is typically chosen as τ = 0.1. Moreover, eα,β and
eα,x are the unit vectors from pα to pβ and from pα to x, respectively:

eα,β :=
pβ−pα
|pβ−pα|

, eα,x :=
x−pα
|x−pα|

. (2)

The minuend F
(A)
α in (1) describes the attractive forces originating from the

discrete grid points, and the subtrahend F
(R)
α denotes the repulsive forces

between particles. For more details about this approach, we refer to Schmaltz
et al. [SGBW10].

3 Fast Summation

In Schmaltz et al. [SGBW10], the authors evaluate the sum in the subtrahend
of (1) by a direct summation approach. This means that, for every particle
pα, the arising repulsive force is accumulated from the interactions with all
other particles pβ 6= pα. Although this algorithm is simple and easy to
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parallelise, it has a major drawback: Its runtime scales quadratically in the
number of particles. This makes it infeasible for large images containing
many particles, even on modern massively parallel hardware such as GPUs.
As one solution to this problem, Teuber et al. proposed to compute this
sum by means of a fast summation technique [TSG+11]. By this, the com-
putational complexity in the number of particles M drops from O(M2) to
O(M log(M)). However, if we compare the actual runtime of this CPU im-
plementation with the GPU algorithm for the direct summation technique,
we see that the better runtime class only pays off if the number of particles
is large; see Figure 6. In this article, we thus develop an efficient parallel al-
gorithm for fast summation based halftoning on graphics cards, and evaluate
its performance against the existing approaches.
Before we go into detail about the parallel design of this algorithm, let us
briefly sketch its idea. In Teuber et al. [TSG+11], the authors decompose the
second sum of (1) into three sums:

−
∑
β∈P

pβ 6=pα

1

|pβ−pα|
eα,β

= −
∑
β∈P

pβ 6=pα

pβ−pα
|pβ−pα|2

= pα
∑
β∈P

pβ 6=pα

1

|pβ−pα|2
−
(

1

0

) ∑
β∈P

pβ 6=pα

pβ,x

|pβ−pα|2
(3)

−
(

0

1

) ∑
β∈P

pβ 6=pα

pβ,y

|pβ−pα|2
.

In this context, the indices x and y refer to the first and second entry of a
vector, and the vectors (1, 0)> and (0, 1)> are used to process components of
a vector separately:

pβ =

(
pβ,x
pβ,y

)
=

(
1

0

)
pβ,x +

(
0

1

)
pβ,y . (4)

Each of these sums can be computed by a convolution of a signal γ(β) with
a radial kernel K : R+→ R defined by

K(x) =
1

x2
, (5)

where x = |pβ−pα|. The vectors γ(β) take the instances

γ(β) ≡ 1 , γ(β) = pβ,x , and γ(β) = pβ,y (6)
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for the three sums from (3), respectively.
By the convolution theorem, each of these convolutions can be written as
a multiplication in the frequency domain. To this end, we shift and scale
the image domain into the circle with radius 1−εB

4
around (0, 0), and regu-

larise K near 0 and ±1
2

in each dimension using the small positive constants
εI , εB � 1. This yields a smooth 1-periodic kernel

KR(x) =


KI(|x|), |x| < εI

K(|x|), εI 6 |x| < 1−εB
2

KB(|x|), 1−εB
2

6 |x| < 1
2

KB(1
2
), 1

2
6 |x|

. (7)

As suggested by Fenn and Steidl [FS04] and Teuber et al. [TSG+11], we use
a two-point Taylor interpolation with polynomials of degree p̂ to obtain KI

and KB, where larger p̂ lead to smaller approximation errors. Moreover, the
kernel KR is approximated by its truncated Fourier series

KF (x) =
∑
j∈JN

bje
2πi〈j,x〉, (8)

bj =
1

N2

∑
k∈JN

KR
(
k

N

)
e−2πi

〈j,k〉
N , (9)

where JN = {−N
2
, . . . , N

2
− 1}2 with N even. If N is sufficiently large, it

holds that KF ≈ KR. Thus, by defining a near-field kernel

KN = K −KR, (10)

we finally obtain
K ≈ KF +KN . (11)

For εI < |x| 6 1−εB
2

, the near-field kernel KN(x) vanishes, because
K = KR ≈ KF . Moreover, because |pβ − pα| < 1−εB

2
, KN describes a purely

local interaction of particles within a small neighbourhood. Consequently,
the algorithm consists of two steps for each of the three sums in Equation (3):

1. Far-field interactions. First, we evaluate KF in the frequency do-
main, i.e. compute three sums of type

M∑
β=1

γ(β)KF (pβ−pα) (12)

=
∑
j∈JN

bj

(
M∑
β=1

γ(β)e2πi〈j,pβ〉

)
e−2πi〈j,pα〉 .
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The challenge in this part is that both pα and pβ are not residing on
a regular grid. This prevents us from using a standard fast Fourier
transform (FFT) to evaluate the two sums. As proposed in the
literature, we solve this problem by means of a non-equispaced fast
Fourier transform (NFFT) which approximates the Fourier transform
of a randomly sampled signal [PST00, TSG+11]. Such algorithms are
often highly efficient on sequential hardware, but hard to parallelise
for massively parallel architectures such as GPUs. As it turns out,
approaches from the literature such as Sørensen et al. [SSNH08] or
Gregerson [Gre08] are not applicable for electrostatic halftoning. They
require particles to be aligned in a particular order, which cannot be
guaranteed for this class of algorithms. Other efficient GPU algorithms
such as the ones by Gumerov and Duraiswami [GD08] can also not
be used for electrostatic halftoning, because they require the vector of
particle locations to be sorted. Since particles move, the vector must
be re-sorted in every iteration, which infers an additional operation
with complexity O(M logM). In the following section, we present an
approach that does not suffer from these problems.

2. Near-field interactions. The second part is the evaluation of the
near-field kernel KN , which comes down to a direct summation over
a small number of neighbours within a circle of radius εI . Albeit the
actual evaluation step is straightforward and similar in spirit to the al-
gorithm of Schmaltz et al. [SGBW10], the challenge lies in the retrieval
of the set of neighbours. We will discuss a massively parallel algorithm
for this purpose in Section 5.2.

Finally, let us consider the first sum from (1), which we have neglected so
far. In Schmaltz et al. [SGBW10], the authors suggest to precompute samples
for pα at grid locations at the beginning of the programme run. Intermedi-
ate values can then be obtained by bilinear interpolation which represents
a computationally inexpensive texturing operation on the GPU. We follow
a similar strategy, but precompute the force texture by a fast summation
approach. The arising terms are again of type (3), but the sampling points
corresponding to pα and pβ are now residing on a regular grid. We can thus
apply a standard FFT, and use the same implementation that we also need
in the course of the NFFT. Please see the next section for details.
To summarise this section, let us briefly sketch our algorithm. Each minimi-
sation step of our particle system looks as follows:

1. Compute far-field contributions from (12):
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a. Perform adjunct NFFT on all γ(x) from (6).

b. Scale coefficients by bj.

c. Use NFFT to transform scaled coefficients back.

2. Evaluate and add near-field contributions.

3. Retrieve and add attractive image forces.

4. Move particles according to the force acting on them.

5. If particles are moved off the image domain, project them back to the
nearest image point.

For more details, we refer the reader to the work of Teuber et al. [TSG+11].

4 Non-Equispaced Fast Fourier Transform

The core of our fast summation algorithm is an efficient GPU implemen-
tation of the 2-D non-equispaced fast Fourier transform (NFFT) of Potts
et al. [PST00]. In matrix-vector notation, the NFFT of f̂ ∈ CN at nodes
(xj)16j6M ⊂ Π2 := [−1

2
, 1

2
]2 yields f ∈ RM as

f = Af̂ , A :=
(
e−2πikxj

)
j=1,...,M ; k∈IN

. (13)

(see [KKP09]). Its adjoint is given by

ĥ = A
>
f . (14)

In this context, IN := {(k1, k2) ∈ Z2| − N
2
6 k∗ <

N
2
} describes the ‘shifted’

index set in the frequency space, M = |P| is again the number of nodes,

and A
>

denotes the conjugate transpose of A. For the current applica-
tion, we use the same ‘resolution’ in time and frequency domain, such that
N ∼

√
p̂M , where p̂ again refers to the degree of the Taylor polynomial from

the previous section. Moreover, we choose εI = p̂
n
∼ p̂

N
, 0 < εB � 1 in

accordance with Teuber et al. [TSG+11] andPotts et al. [PSN04].
The algorithm presented in Potts et al. [PST00] to compute (13) approxi-
mates A as

A ≈ BFD , (15)

with the complex-valued discrete 2-D Fourier transform

F :=

(
1

n2
e−2πik`/n

)
k,` ∈ In

, (16)
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a real-valued sparse matrix

B :=

(
ϕ̃

(
xj −

`

n

))
j=1,...,M ; ` ∈ In

, (17)

and a real-valued ‘diagonal’ scaling matrix

D :=
2⊗
t=1

(
O

∣∣∣∣∣ diag

(
1

ckt(ϕ)

)
kt ∈Z : −N

2
6kt<N

2

∣∣∣∣∣ O

)>
. (18)

Here, O denote zero matrices of size N × (n−N)/2,
⊗

denotes the tensor
product, and n = αN is the size of the Fourier plane oversampled by a
factor 2 6 α < 4 such that there exists a p : αN = 2p. Furthermore,
ϕ̃(x) := ϕ(x1)ϕ(x2), where ϕ denotes the 1-periodic continuation of the
Kaiser-Bessel window function [KS80] on a torus, and In,m(xj) := {` ∈ In :
nxj,t −m 6 `t 6 nxj,t + m, t ∈ {1, 2}} denotes a 2-D index set. Note that
indexing ϕ̃ by elements from In,m is equivalent to truncating the kernel at ±m

n

in both dimensions prior to periodisation. The choice of m thus comes down
to a trade-off between accuracy and speed. Finally, the ck denote the 2-D
Fourier coefficients which are given by ck := ck1ck2 due to their separability,
where ck∗ are the 1-D Fourier coefficients given by

ck∗(ϕ) =

∫
Π

ϕ(v)e2πik∗vdv (k∗ ∈ Z) . (19)

In this terminology, the adjoint NFFT A
>

is given by

A
> ≈D>F

>
B> . (20)

Please note that in the non-equispaced case, i.e. if the nodes xj are not

aligned on a regular grid, ĥ = A
>
Af̂ 6= f̂ . Still, ĥ is a good approximation

of f̂ , such that we can use the NFFT in the context of the fast summation
method.
To this end, each NFFT step in the algorithm from Section 3 works as follows:

1. Apply D: Scale input by 1
ck(ϕ̃)

, and call the result s. Create a zero

vector v of size n2 and copy s into v:

v(j+(n−N)/2)n+(n−N)/2+i = sjN+i (21)

for j ∈ {0, . . . , N − 1}, and i ∈ {1, . . . , N}.

2. Apply F : Call 2-D FFT on intermediate result v from Step 1. The
result is called g.
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3. Apply B: Compute the j-th entry of the output f as the sum

fj :=
∑

`∈In,m(xj)

g` ϕ̃(xj −
1

n
`) . (22)

Note that Step 3 only involves few multiplications and additions per entry.
It comes down to summing up weighted entries in a small square-shaped
neighbourhood around xj. We obtain the algorithm for the adjoint NFFT
by ‘reversing’ the operations from above:

1. Apply B>: Compute result g` as the sum

g` :=
∑

j∈I>n,m(`)

fj ϕ̃(xj −
1

n
`) . (23)

2. Apply F
>

: Call inverse 2-D FFT on result g` from 1.

3. Apply D>: Scale input by 1
ck(ϕ̃)

and call the result v. Extract output

s of size N2 from v by reversing (21).

Here, we use I>n,m(`) := {j = 0, . . . ,M − 1 : `t − m 6 nxj,t 6 `t + m, t ∈
{1, 2}}. Similar to before, we can compute Step 1 very efficiently if we exploit
the special structure of B>. Instead of computing each g`, we subsequently
fix one j, evaluate all ` ∈ In,m(xj), and accumulate the contributions of
fj ϕ̃(xj − 1

n
`) into the respective blocks of g. This operation saves many

multiplications with zero. Note that blocks written for different j can overlap,
such that this case must be explicitly handled by the algorithm. For more
details on the different steps, we refer the reader to the work of Keiner et
al. [KKP09].

5 GPU Implementation

In this section, we design an efficient parallel fast summation algorithm for
electrostatic halftoning on the GPU. Because our algorithm is designed for
modern graphics cards produced by NVidia, we consequently use the CUDA
framework. Nevertheless, our considerations mainly address general par-
allelisation aspects that can well be mapped to other frameworks such as
OpenCL, BrookGPU, or Stream SDK. Our algorithm consists of a far-field
computation and a near-field computation, both of which jointly replace the
basic direct-summation algorithm from Schmaltz et al. [SGBW10]. Since
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the optional extensions proposed in this paper do not need to be adapted
to our new algorithm, we consequently do not go into detail about them,
but refer to the original work. In this paper, the authors also introduced a
‘shaking’ procedure to avoid local minima. This works by slightly moving
particles into random directions. Due to a lack of efficient random number
generators on GPUs, the authors performed this shaking step on the CPU.
With the new cuRand library provided by NVidia, this operation can now
be efficiently realised on the GPU without the need to transfer data from
and to the device. This is very important for our fast summation algorithm,
since it computes much larger sets of points than direct summation in the
same amount of time. Data transfers via the PCI bus would unnecessarily
slow down the overall algorithm.
Following the design principles of graphics card programming, our algorithm
consists of comparably small data-parallel GPU programmes, so-called ker-
nels. Each kernel computes one data-parallel operation, such as the execution
of the operators B or D for the NFFT. Our kernels are executed on graphics
memory, but are dispatched and controlled by the CPU which takes care of
the programme flow. In addition to this, the CPU also handles memory copy
operations to and from the graphics card at the beginning and ending of the
programme run. Once a kernel is invoked, it first retrieves a bunch of data
from this GPU RAM to its fast on-chip memory, uses these data to compute
a result, and stores the results back to GPU memory. Since large bunches
of memory can be read faster than scattered values, memory access patterns
play an important role for the performance of our algorithm. We address
this issue later in this section. A second important performance criterion is
the degree of data parallelism of each operator. In order to achieve a good
performance, blocks of 32 variables in a row must be processed with exactly
the same operations at the same time. If partitions of these blocks are pro-
cessed differently, all conditional parts are processed sequentially, while the
unaffected partitions are idle. By rewriting affected operations, we avoid this
so-called warp divergence wherever this is possible. For example, we pad all
vectors such that their length is a multiple of the width of a CUDA block.
This allows to process them with all available threads, but does not destroy
the data integrity: During data read, CUDA textures are simply bound to
the actual size of the vector, such that surplus values are efficiently occluded.
Our framework consists of 18 custom kernels, plus calls to 16 CUDA library
functions for the Fourier transform, memory operations, and the CUDA ran-
domiser. Among our individual kernels are 8 which are exclusively called for
the initialisation, and 10 which are also executed during each iteration. This
accounts for the different data layouts and dependencies that are involved
in our process, such as the linear storage of point locations, the 2-D repre-
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sentation in the Fourier space, or the lookup map for the nearest-neighbour
identification scheme. As a side effect of this design, both the NFFT and its
adjoint are encapsulated as static pipelines of CUDA kernels, such that they
can easily be applied for applications other than fast summation approaches.

5.1 Far-Field Interaction

Let us first consider the far-field interactions. Here, some operations do not
need to be complex-valued in the case of fast summation over real values,
as can be seen from (8) and (12). The locations of the particles as well as
the computed forces are both real-valued. As the first specialisation of the
process, we thus use complex-to-real valued NFFTs and their real-to-complex
valued adjoint operations which require significantly less runtime than the
canonical complex-to-complex valued versions. Moreover, we should recall
that the matrices B and D are both sparse such that the number of effective
operations is much smaller than their size suggests. Moreover, note that
neither of the matrices B, F , and D are stored. Instead, we compute their
effect on the fly, as it is detailed in the following paragraphs.
Let us now detail on the single operators of standard and adjoint NFFTs.
For the central operation, the fast Fourier transform of length n described
by F , we apply version 4.0 of the cuFFT library provided by NVidia [NVi10].
This library still has a bad reputation for being slower than alternative imple-
mentations such as the approach of Govindaraju et al. [GLD+08]. However,
we cannot confirm this statement with our modern version of cuFFT which
might be due to the recent improvements in this library [NVi10].
Let us now have a look at the matrices D and D>. Their diagonal sub-
matrices of size N × N can be computed in parallel with each thread han-
dling one diagonal entry. Unlike suggested by Potts et al. [PST00], we do
not precompute ck(ϕ̃), as the GPU kernel is already strongly memory-bound
and further (random) lookups lead to severe memory bottlenecks. In our ex-
periments, evaluating ck(ϕ̃) on-the-fly turned out to be much less expensive.
In particular, since ck is a product of two 1-D functions, each thread re-uses
its value from on-chip memory by applying D or D> to four entries of the
vector in parallel. This design also helps to hide memory latencies behind
computations, and it accelerates the process significantly.
Finally, let us focus on B and B>. Both require the computation of ϕ̃,
which comes down to the evaluation of Chebychev polynomials. Like before,
we compute the values for ϕ̃ on-the-fly. This is particularly interesting since
the few coefficients for the Chebychev polynomials are cached and can thus
be read without additional latencies. Still, the application of B and B> is
the most expensive part of the NFFT (see Figure 8), which is due to the
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arising memory patterns and the high data throughput. While the multipli-
cation with B involves the load of patches of size (2m + 1)2 from random
positions in the input, the application of its adjoint requires to store patches
to random locations. In the first case, we can partly reduce the expensiveness
of this operation by reading data from textures. Whenever one cache miss
is encountered, following reads in the neighbourhood are likely to be cached.
However, the inverse operation which is required for the application of B>

can not be accelerated by similar ideas. As an additional challenge, it might
even happen that different threads write to the same memory locations at
the same time, which causes race conditions. Consequently, we use a CUDA
atomic operation for the addition of single floating point numbers. This
causes the application of B> to be slightly slower than the multiplication
with B, but is still reasonably efficient since writing operations on modern
graphics cards are buffered by linear L2 caches.

5.2 Near-Field Identification and Interaction

After having computed the interaction of all particles with all other nodes
that are sufficiently far away, we still have to compute the interaction with
particles in their direct neighbourhoods. Due to the potential, forces between
two particles that are close together are much higher than those between dis-
tant particles. As a consequence, these forces must be evaluated in a very
accurate way, i.e. by direct summation. Although the involved number of
computations is small due to the limited number of particles in a neighbour-
hood, the implementation still requires a careful algorithmic design: Only a
very limited number of candidates should be considered, and a k-d-tree as
in Teuber et al. [TSG+11] is no option on GPUs because of the arising bad
memory patterns and sequentialisation due to warp divergence.
As an alternative, we propose a new data-parallel approach which exploits
the texturing unit of graphics cards. It is motivated by the observation
that electrostatic halftoning locally preserves the average grey value. The
peak density of particles within a region of the result is thus the density
corresponding to plain black. This allows to allocate a 2-D map that is
large enough to absorb a completely black (i.e. saturated) image, and to
assign each particle to the closest unoccupied cell in its neighbourhood. This
cell will then contain the particle’s exact position as a two-element vector.
All unoccupied cells contain the empty pair. This is visualised in Fig. 1. In
CUDA, we denote the empty pair by the bitstring (164)2, a vector of two (non-
signalling) NaNs, which allows a fast initialisation by the use of cudaMemset
and does not conflict with an actual particle residing at position (0, 0)>.
During the near field evaluation, we can then resolve the rectangle occupied
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εI

Figure 1: Neighbourhood in a lookup map for the near-field of a particle (red):
Neighbours (blue) and false positives (black). Arrows indicate mappings.

by the near field of a particle (the solid area in Fig. 1), perform a texture
fetch at this point and, given a particle is inside, obtain its exact coordinates.
We then check whether the exact distance to this particle is smaller than
εI . If this is the case, we extend the sums from (3) by the respective near
field contributions. Otherwise, the given particle is a false positive and is
thus ignored. Fig. 1 visualises such mismatches by black dots. Please note
that texture fetches in a neighbourhood benefit from the 2-D aware texture
cache of graphics cards and can thus be performed very quickly. Moreover,
we touch only a constant neighbourhood per particle and obtain very few
false positives, such that this operation has linear runtime complexity in the
number of particles and scales well over the cores provided by the graphics
card.
Because the map changes in every iteration, the construction phase must
not be too expensive as well. Moreover, we must pay particular attention
to the case that two particles occupy the same cell (as in Fig. 1). For the
parallel insertion process, we thus follow an idea inspired by cuckoo hashing
[PR04]: A candidate is always placed in its designated cell, and pushes aside
any potential particle that is already there. If the cell to the right is not
empty, this process will be repeated until all particles found their place.
In CUDA, we realise this strategy by atomic, i.e. thread-safe, exchange
operations which we repeat with an incremented pointer until the empty
pair is returned. This allows to insert many particles in parallel. Because
there is no such operation for a float2 vector type available, we use the
atomicExch operation for unsigned long long types instead which works
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Figure 2: Test image Trui, 256×256 pixels. Left: Original. Right: Stippling
with 30150 dots. This image serves as a basis for our quantitative evaluation.
Runtime on GeForce GTX 480: 33.6 ms per iteration, or 6.72 s for 200
iterations.

on equally long data chunks.
Since particles can be mapped outside the area covered by the near field, we
extend the search window by a few optional positions to the right (the dashed
cells in Fig. 1). Experimentally, our heuristic nearest-neighbour detection
scheme works well even on very saturated images. Using the initialisation of
the point locations as proposed in Schmaltz et al. [SGBW10], a bound of two
pixels is sufficient to offer enough extra space for potentially offset particles.
However, our algorithm is also robust against sub-optimal initialisations. In
such cases, particles in over-saturated image regions might not be found dur-
ing the first iterations of the algorithm. Nevertheless, the rough estimate
obtained in this case suffices to let the algorithm gradually converge. Once
the over-saturated regions disappear, our neighbour-identification scheme re-
habilitates and yields the exact results.

6 Experiments

6.1 Examples

Let us first show some examples for the performance of our algorithm. Fig-
ure 2 shows a stippling of the test image Trui, 256×256 pixels, where the
size of the dots has been chosen such that each dot covers the area of one
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Figure 3: Top: Stippling with 647770 dots on test image Tiger, 1024×1024
pixels (License: TeryKats, flickr.com, CC-BY). Bottom, left to right:
Original, zoom into original, zoom into result. Runtime on GeForce GTX
480: 820 ms per iteration, or 164 s for 200 iterations.
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pixel. This leads to a total of 30150 particles. The resulting halftone has the
same quality as the results from Schmaltz et al. [SGBW10] and the ‘logarith-
mic’ version from Teuber et al. [TSG+11], and shows no perceptible artefacts
compared to the original. Because this image is small enough that it can still
be processed by the algorithm from Balzer et al. [BSD09] in a reasonable
time, we use it as a basis of evaluation in the next section.
As a second experiment, we computed a halftoning of the test image Tiger
(1024×1024 pixels). This experiment on real-world data with high contrast,
fine structures, and flat regions demonstrates the very good performance
of our algorithm with respect to both approximation quality and runtime.
Figure 3 shows the result with 647770 dots. The halftoning result is not
only very accurate and almost indistinguishable from the original but also
computed in a very fast way. An NFFT-based fast summation algorithm
on an NVidia GeForce GTX 480 computes the required 420·109 interactions
per iteration in less than 820 milliseconds. Given that 200 iterations already
suffice to obtain a high quality, our algorithm takes less than 3 minutes to
yield a result such as the one shown in Figure 3.
A small shortcoming of fast summation approaches is their high memory
consumption. The Fourier plane used for (16) must have a power-of-two side
length (see Section 4 and Potts et al. [PST00] for details). Given a graphics
card such as our GTX 480 with 1.5 GB of RAM, or a 32-bit CPU, this limits
both the image size and the number of particles to 220 ≈ 1 million, each.
Although this problem vanishes if we consider 64-bit systems with sufficient
physical memory, it still seems to represent a drawback compared to direct
summation approaches. They require only one vector that contains the two
float coordinates of each pixel. Thus, direct summation algorithms can in
principle deal with sets containing more than 65 million particles. However,
since each iteration requires about five days on the GPU, and more than a
year on the CPU, this is infeasible in practise.

6.2 Quality

After these first impressions, we now evaluate the approximation quality
of the proposed algorithm, and compare it against the direct summation ap-
proach from Schmaltz et al. [SGBW10], and against the capacity-constrained
approach of Balzer et al. [BSD09]. A comparison against the CPU algorithm
from Teuber et al. [TSG+11] is not shown in this experiment, as these results
are equivalent to the ones of our GPU algorithm.
While the near-field is always computed accurately, the approximation qual-
ity of the far-field can be controlled by two parameters, namely the degree
of the polynomials p̂ (see Page 7) and the cutoff parameter m (see Page 10).
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Figure 4: Peak signal to noise ratio between blurred original and blurred
halftone using different standard deviations σ.

Table 1: Runtime comparison for 1 iteration with different numbers of par-
ticles, and speedup factors. All times are given in seconds. Speedup factors
describe the parallelisation benefit (vertical), the difference between runtime
classes (horizontal), and the overall improvement of the fast summation GPU
method over the original CPU direct summation technique (total).

Particles Direct Fast Speedup Total Speedup

CPU 2.12 0.84 2.54
16384 GPU 0.03 0.02 1.62

Speedup 70.67 41.12 104.38

CPU 33.90 3.65 9.28
65536 GPU 0.43 0.07 6.69

Speedup 78.84 56.00 519.85

CPU 542.64 14.74 36.81
262144 GPU 6.62 0.28 24.06

Speedup 81.97 53.58 1972.48

CPU 8853.46 57.95 152.78
1045876 GPU 103.61 1.20 86.17

Speedup 85.45 48.20 7363.50
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Figure 5: Radially averaged power spectra (RAPS) (top) and anisotropy
measures in decibels (bottom). Blue: Proposed method using m̂ = 3, m̂ = 4,
and m̂ = 5, respectively. Black dotted: Reference measurement using the
direct summation approach. The two dashed lines in each graph correspond
to the two principal frequencies.
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Without going into detail about the theoretical background of these two pa-
rameters, we regard both as one abstract tradeoff parameter m̂ = m = p̂.
In the following, we evaluate the effect of this parameter on the similarity
of the halftone to the original image, as well as on the spectral properties of
the halftone. While the first measure tells us how well the grey value of a
given image is approximated at any point in the image domain, the second
criterion measures the freedom of artefacts.
To this end, we first blur both the original image and the halftoning result
by Gaussian convolution with the same standard deviation σ. This mimics
the human visual system under a certain viewing distance, and can be used
to compute the visual similarity of both results to a human observer. As
a measure for similarity between both images, we apply the peak signal to
noise ratio (PSNR). Because σ depends crucially on the viewing distance
and the resolution of the halftone, we preserve the generality of this exper-
iment by computing the similarity for many standard deviations simultane-
ously. The higher the PSNR is, the better is the performance for a specific
standard deviation. Figure 4 shows the results of this experiment. As ex-
pected, higher values of m̂ yield better approximations of the original. Using
m̂ = 3, our method already yields solutions that clearly surpass the ones of
Balzer et al. [BSD09]. With m̂ > 4, the results are almost indistinguishable
from those obtained with the direct summation approach from Schmaltz et
al. [SGBW10].
Secondly, let us measure the spectral properties of the results. Because this
evaluation requires uniform images, we generate a halftone with the average
grey value of 0.85, and analyse the regularity of the found point set in the
frequency domain with respect to two criteria. Both are computed from the
power spectrum of the result, as described by Ulichney [Uli88]. While the
radially averaged power spectrum (RAPS) is obtained from an averaging over
concentric circles, the anisotropy results from the variance on these circles.
Good halftones are supposed to possess blue noise properties, i.e. the RAPS
should contain a single peak at the principle frequency fg, it should vanish
below fg, the transition region between both regions should be steep, and the
interval above fg shall be flat. The expected principle frequency depends on
the average grey value and on whether the underlying grid is rectangular or
hexagonal. Since our method produces hexagonal structures on a rectangular
grid, we expect fg to lie between these extremes (see [Uli88]). Consequently,
we depict both frequencies by vertical lines in the plot. Moreover, blue noise
characteristics cause a flat and low anisotropy. Due to background noise,
the theoretical limit for this measure lies at -10dB. The closer a method
approaches this limit, the better it is.
Figure 5 shows the results of this experiment for tradeoff parameters
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m̂ ∈ {3, 4, 5}. In each graph, the result for the direct summation method
from Schmaltz et al.[SGBW10] is superposed as a black dotted curve. Both
for m̂ = 3 and m̂ = 4, we observe striking artefacts. In the case m̂ = 3,
the method slightly adapts to a rectangular grid, which explains the RAPS
peak at the dashed line. Surprisingly, even the case m̂ = 4 contains striking
artefacts. Here, we obtain an almost regular hexagonal grid which explains
the peaks in the RAPS and the very unsatisfying anisotropy measure. This
behaviour changes drastically if we choose m̂ > 5. For these choices, we ob-
tain a result that is equivalent to the one obtained by the direct summation
approach. The insights obtained in this evaluation complement the previ-
ous experiment, and tell us to set m̂ = 5 if we require artefact-free results.
Consequently, all further experiments in this article are conducted with this
configuration.

6.3 Runtime

In this section, we evaluate the runtime of the proposed method on an NVidia
GeForce GTX 480 graphics card, and compare it to the direct summation
method on the GPU and the CPU (see [SGBW10]), and to the fast summa-
tion method on the CPU (see [TSG+11]). The CPU-based experiments were
conducted on the same Intel Core 2 Duo E8200 CPU with 2.66 GHz, and
could entirely be computed within physical memory.
Table 1 shows the runtime of a single iteration with 214, 216, 218, and 220 parti-
cles, and the corresponding speedups obtained. Note that ‘speedup’ columns
refer to the parallelisation gain, while the corresponding row refers to the
numerical improvement by the NFFT algorithm on the respective architec-
tures. The overall benefit obtained by both the algorithmic and numerical
improvements is indicated in the bottom row.
Compared to the naive implementation on the CPU, our method obtains
speedups of more than 7000 for one million particles. This is both due to the
efficient numerics, and due to our parallelisation efforts. While the NFFT
algorithm already yields a factor of up to 150 over direct summation, the
parallelisation yields another speedup of 50. The latter is impressive, consid-
ering that some operations such as the near-field evaluation or the execution
of the operators B and B> are very time-consuming and hard to parallelise.
However, the speedup of the proposed approach over the direct summation
method on the GPU is only about half as high as it is for the corresponding
problems on the CPU. This indicates that the process is memory-bounded.
Figure 6 shows the scaling behaviour of the analysed methods over a varying
number of particles. We can easily see the different complexity classes which
lead to a better asymptotic behaviour of the fast summation approach. On
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both the CPU and the GPU, this method clearly outperforms the direct
summation method for large particle sets. However, the fast-summation
method also possesses an overhead that results in a worse performance for
very few particles. For the CPU-based method from Teuber et al. [TSG+11],
this means that the direct summation approach on the GPU is still faster until
the number of particles exceeds about 620’000. With our new parallelisation,
this break-even point is drastically lowered to around 11’500 particles.
A second important property for real-world applications is the initialisation
time of the process. For direct summation algorithms, it corresponds to the
time required to precompute the attractive image forces F (A). This number
depends only on the number of pixels of the input image. In fast summation
approaches, it is additionally necessary to compute the Fourier transform
of the radial kernel in the frequency space. Moreover, the CPU-based fast
summation method also precomputes samples for the function ϕ̃. Our GPU
algorithm computes these values on the fly (see Section 5.1 for details). In
Figure 7, we thus depict total initialisation times with solid lines, and the
time required to set up the attractive force field with dashed lines. The latter
operation can be exchanged with a direct summation initialisation, which is
again beneficial for small images.
The jumps visible in the total initialisation time for the fast summation
algorithm occur whenever the image width or height reaches a power of two.
This is because the image plane in the frequency space grows with the image,
but the radial kernel cannot be efficiently evaluated and sampled in parallel.
A large array of either of these sizes is thus still filled on the CPU and then
uploaded to the GPU, which in turn creates the observed runtimes behaviour.
Since we used quadratic images to create the graphs shown in Figure 7, jumps
appear whenever the number of pixels exceeds a power of four.

6.4 Profiling

Finally, we detail on the time required for each individual operator of our
algorithm on the graphics card. This gives insights about bottlenecks and
shortcomings of our parallelisation approach. Using the CUDA profiler on a
halftoning process for Trui, we measure the runtime over 100 iterations and 10
shaking operations, and normalise them to one iteration and one shaking step,
each. Figure 8 shows the result of this experiment. Red denotes contributions
that scale with the number of iterations, yellow depicts those which scale with
the application of the shaking procedure, blue denotes one-off expenses such
as initialisation, and green are one-off memory copy operations between CPU
and GPU which are not required if the problem already resides on the GPU.
The CUDA profiler reports 34 different kernels, out of which 18 are custom-
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built and 16 represent callbacks to CUDA libraries. Because many of these
calls do not significantly affect the overall runtime, we grouped them into 15
meaningful units.
As can be seen in Figure 8, executing the operators B and B> dominates the
runtime of each iteration, and thus of the whole process. This is caused by
the expensive convolution at random positions in the image domain, which
leads to undesired memory patterns and a strong memory-boundedness of the
algorithm. However, other operations with complex memory patterns, such
as the computation of near-field interactions or the fast Fourier transform,
do not represent a bottleneck of the algorithm. Compared to the original
approach from Schmaltz et al. [SGBW10], the time required for the shaking
step almost vanishes in the overall runtime of the process. This is a conse-
quence of the GPU-based perturbation of particles, and the resulting absence
of additional memory copy operations.

7 Summary and Conclusion

This article presents a highly efficient GPU implementation of the fast sum-
mation algorithm (see [TSG+11]) for electrostatic halftoning. It introduces
the first parallel algorithm of the non-equispaced Fourier transform (NFFT)
on the GPU that does not assume special structural arrangements of nodes,
and extends it by novel concepts such as a fast parallel nearest-neighbour
retrieval for a continuous placement of points. Our sophisticated algorithm
improves the runtime of the naive CPU algorithm for electrostatic halftoning
by a factor of more than 7000 without constraining its quality.
These results set new standards for the computation of state-of-the-art
halftones with very large numbers of dots in a small runtime. While the
overall runtime of several hours to days prevented electrostatic halftoning
from being used in real-world applications, our new approach opens the doors
for the application in interactive systems. Moreover, our algorithm enjoys a
broad applicability beyond halftoning or sampling, as the NFFT nowadays
represents a standard tool for many applications. We are confident that our
contribution helps researchers in all of these areas to obtain highly qualitative
results in a fraction of the usual runtime.
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