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Abstract

Phase transitions waves in atomic chains with double-well potential play a fundamental role in
materials science, but very little is known about their mathematical properties. In particular, the
only available results about waves with large amplitudes concern chains with piecewise-quadratic
pair potential. In this paper we consider perturbations of a bi-quadratic potential and prove that
the corresponding three-parameter family of waves persists as long as the perturbation is small
and localised with respect to the strain variable. More precisely, we introduce an anchor-corrector
ansatz, characterise the corrector as a fixed point of a nonlinear and nonlocal operator, and show
that this operator is contractive in a small ball of a certain function space.

Keywords: phase transitions in lattices, heteroclinic travelling waves,
FPU-type chains, kinetic relations
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1 Introduction

Many standard models in one-dimensional discrete elasticity describe the motion in atomic chains
with nearest neighbour interactions. The corresponding equation of motion reads

üj(t) = Φ′(uj+1(t)− uj(t))− Φ′(uj(t)− uj−1(t)) , (1)

where Φ is the interaction potential and uj denotes the displacement of particle j at time t.
Of particular importance is the case of non-convex Φ, because then (1) provides a simple dy-

namical model for martensitic phase transitions. In this context, a propagating interface can be
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described by a phase transition waves, which is a travelling wave that moves with subsonic speed and
is heteroclinic as it connects periodic oscillations in different wells of Φ. The interest in such waves
is also motivated by the quest to derive selection criteria for the näıve continuum limit of (1), which
is the PDE ∂ttu = ∂xΦ′(∂x). This equation is ill-posed for nonconvex Φ due to its elliptic-hyperbolic
nature, and one proposal is to select solutions by so-called kinetic relations [AK91, Tru87] derived
from travelling waves in atomistic models.

Combining the travelling wave ansatz uj(t) = U(j − ct) with (1) yields the delay-advance-
differential equation

c2R′′(x) = ∆1Φ′(R(x)), (2)

where R(x) := U(x + 1/2) − U(x − 1/2) the (symmetrised) discrete strain profile and ∆1F (x) :=
F (x+ 1)−2F (x) +F (x−1). Periodic and homoclinic travelling waves have been studied intensively,
see [FW94, SW97, FP99, Pan05, Her10] and the references therein, but very little is known about
heteroclinic waves. The authors are only aware of [HR10, Her11], which prove the existence of
supersonic heteroclinic waves, and the small amplitude results from [Ioo00]. In particular, there
seems to be no result that provides phase transitions waves with large amplitudes for generic double-
well potentials.

Phase transition waves with large amplitudes are only well understood for piecewise quadratic
potentials, and there exists a rich body of literature on bi-quadratic potentials, starting with [BCS01a,
BCS01b], or tri-quadratic potentials [Vai10]. For the special case

Φ(r) = 1
2r

2 − |r| , Φ′(r) = r − sgn(r) (3)

the existence of phase transition waves has been established by two of the authors using rigorous
Fourier methods. In [SZ09] they consider subsonic speeds c sufficiently close to 1, which is the speed
of sound, and show that (2) admits for each c a two-parameter family of waves. These waves have
exactly one interface and connect different periodic tail oscillations, see Figure 2 for an illustration.

In this paper we allow for small perturbations of the potential (3) and show that the phase
transition waves from [SZ09] persist provided that the perturbation is sufficiently small and localised.
Our approach is in essence perturbative and reformulates the travelling wave equation with perturbed
potential in terms of a corrector profile S. The resulting equation can be written as

MS = A2G(S) + η , (4)

where η is a constant of integration. Moreover, M and A are linear integral operators and G a
nonlinear superposition operator to be identified below. The analysis of (4) is rather delicate since
the Fourier symbol of M has real roots. In our existence proof, we first eliminate the singularities
and derive an appropriate inversion formula for M. Afterwards we introduce a class of admissible
functions S and show that the properties of A and G guarantee that A2G(S) is compactly supported
and sufficently small. These fine properties are illustrated in Fig. 4 and allow us to define a nonlocal
and nonlinear operator T such that

MT (S) = A2G(S) + η(S)

holds for all admissible S with some η(S) ∈ R. In the final step, we show that T is contractive in
some ball of an appropriately defined function space.

We further remark that each phase transition wave satisfies Rankine-Hugoniot conditions for
the macroscopic averages of mass, momentum, and total energy [HSZ12], which imply nontrivial
restrictions between the wave speed and the tail oscillations on both sides of the interface. Although
these conditions do not appear explicitly in our existence proof, they can (at least in principle) be
computed because the tail oscillations are given by harmonic waves, see again Fig. 2. For general
double-well potentials, however, it is much harder to evaluate the Rankine-Hugoniot conditions and
thus it remains unclear which tail oscillations can be connected by phase transition waves. Closely
related to the jump condition for the total energy is the kinetic relation, which specifies the transfer
between oscillatory and non-oscillatory energy at the interface and determines the configurational
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force that drives the wave. In the final section we discuss how the kinetic relation changes to leading
order under small perturbation of the potential (3).

We now present our main result in greater detail.

1.1 Overview and main result

We study an atomic chain with interaction potential

Φδ(r) = 1
2r

2 −Ψδ(r) , Ψδ(0) = 0 ,

where Ψ′δ is a perturbation of Ψ′0 = sgn in a small neighbourhood of 0. The travelling wave equation
therefore reads

c2R′′ = 41

(
R−Ψ′δ(R)

)
(5)

and depends on the parameters c and δ. In order to show that (5) admits solutions for small δ we
rely on the following assumptions on Ψ′δ, see Figure 1 for an illustration.

Assumption 1. Let (Ψδ)δ>0 be a one-parameter family of C2-potentials such that

(i) Ψ′δ coincides with Ψ′0 outside the interval (−δ, δ),

(ii) there is a constant CΨ independent of δ such that∣∣Ψ′δ(r)∣∣ ≤ CΨ ,
∣∣Ψ′′δ (r)∣∣ ≤ CΨ

δ

for all r ∈ R.

The quantity

Iδ := 1
2

ˆ
R

(
Ψ′δ(r)−Ψ′0(r)

)
dr

plays in important role in our perturbation result as it determines the leading order correction.
Notice that our assumptions imply

Iδ = 1
2

ˆ δ

−δ
Ψ′δ(r) dr = −1

2(Φδ(+1)− Φδ(−1)) and hence |Iδ| ≤ CΨδ .

As already mentioned, the case δ = 0 has been solved in [SZ09]. The main result can be summarised
as follows.

Proposition 2 ([SZ09], Proof of Theorem 3.11). There exist 0 < c0 < 1 such that for every c ∈ [c0, 1),
there exists a two-parameter family of solutions R0 ∈ W2,∞(R) to the travelling wave equation (5)
with δ = 0 such that

(i) R0(0) = 0 ,

(ii) ‖R0‖∞ ≤ D0

(
1− c2

)−1
,

(iii) R0(x) > r0 for x > x0 and R0(x) < −r0 for x < −x0 ,

(iv) R′0(x) > d0 for |x| < x0 ,

for some constants x0, r0, d0 and D0 which depend only on c0. For any such profile R0 there exists
constants α± and β± such that

lim
x→±∞

∣∣±rc + α±(1− cos (kcx)) + β± sin (kcx)−R0(x)
∣∣ = 0 ,

where rc and kc > 0 are uniquely determined by c. Moreover, any two profiles R0 and R̃0 satisfy

R0 − R̃0 ∈ span {sin (kc·), 1− cos (kc·)} .
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Figure 1: Sketch of Ψ′δ and Φδ for δ = 0 (grey) and δ > 0 (black). Since Φ0 is symmetric, −Iδ is just
half the energy difference between the two wells of Φδ.

graph of R

Figure 2: Sketch of the waves for δ = 0 (grey) and δ > 0 (black) as provided by our perturbation
result; the shaded region indicates the spinodal interval [−δ, +δ], where Ψ′δ differs from Ψ′0. Both
waves differ by the constant Iδ = O(δ) and a small oscillatory corrector S of order O

(
δ2
)
. The tail

oscillations of both waves do not penetrate the spinodal region and are generated by harmonic waves
with wave number kc. Notice that the phase shifts, amplitudes, and local averages are different on
both sides of the interface and depend on δ.

The main result of this article can be described as follows.

Theorem 3. For all c1 ∈ (c0, 1) there exists δ0 > 0 such that for any 0 < δ < δ0, any speed
c0 < c < c1, and any given wave R0 as in Proposition 2 there exists a solution R to (5) with

R = R0 − Iδ + S,

where Iδ = O(δ) and the corrector S ∈W2,∞(R)

(i) vanishes at x = 0,

(ii) is small in the sense of

‖S‖∞ = O(δ2), ‖S′‖∞ = O(δ), ‖S′′‖∞ = O(1).

Moreover, for small δ there exists only one R with these properties.

Concerning these assertions, we emphasise that:

(i) Our existence proof implies that different choices of R0 provide different waves R, see Lemma 15.

(ii) All constants derived below depend on c1 and c0 but for notational simplicity we do not write
this dependence explicitly. It remains open whether δ0 can be chosen independently of c1.

(iii) The surprisingly simple leading order effect, that is the addition of −Iδ to R0, implies that
the kinetic relation does not change to order O(δ). Notice, however, that the kinetic relation
depends on the choice of R0, cf. [SZ].

(iv) The travelling wave equation (5) is, of course, invariant under shifts in x but fixing R0 and S
at 0 removes neutral directions in the contraction proof.
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This paper is organised as as follows. In §2 we reformulate (5) in terms of integral operators A and
M and show that it is sufficient to prove the existence of waves for the special case Iδ = 0. In Section
3 we then study the equation for the corrector S. We first establish an inversion formula forM and
investigate afterwards the properties of the nonlinear G. These result then allow us to establish the
fixed point argument for the operator T . Finally, we discuss the kinetic relation in §4.

2 Preliminaries and reformulation of the problem

In this section we reformulate the travelling wave equation (5) in terms of integral operators and
show that elementary transformations allow us to assume that Iδ = 0 holds for all δ > 0.

2.1 Reformulation as integral equation

For our analysis it is convenient to reformulate the problem in terms of the convolution operator A
and the operator M defined by

(AF )(x) :=

x+1/2ˆ

x−1/2

F (s) ds , MF := A2F − c2F .

The travelling wave equation can then be stated as

MR = A2Ψ′δ(R) + µ . (6)

Lemma 4. A function W ∈ W2,∞(R) solves the travelling wave equation (5) if and only if there
exists a constant µ ∈ R such that (R, µ) solves (6).

Proof. By definition of A, we have d2

dx2
A2 = 41. Equation (5) is therefore, and due to the definition

of M, equivalent to

(MR)′′ = P ′′ , P := A2Ψ′δ(R) . (7)

The implication (6) =⇒ (5) now follows immediately. Towards the reversed statement, we integrate
(7)1 twice with respect to x and obtain MR = P + λx + µ, where λ and µ denote constants of
integration. The condition R ∈ L∞(R) implies MR, Ψ′δ(R), P ∈ L∞(R), and we conclude that
λ = 0.

We next summarize some properties of the operator A.

Lemma 5. For any 1 ≤ p ≤ ∞ we have A : Lp(R)→W1,p(R) ∩ BC(R) with

‖AF‖Lp(R) ≤ ‖F‖Lp(R), ‖(AF )′‖Lp(R) ≤ 2‖F‖Lp(R), ‖AF‖BC(R) ≤ ‖F‖Lp(R)

for all F ∈ Lp(R), where (AF )′ = ∇F = F
(
·+ 1

2

)
− F

(
· − 1

2

)
. Moreover, suppF ⊂ [x1, x2] implies

suppAF ⊂ [x1 − 1
2 , x2 + 1

2 ].

Proof. All assertions follow immediately from the definition of A and Hölder’s inequality.

Some of the arguments in our existence proof rely on Fourier transform (in the space of tempered
distributions), which we normalise as follows

F̂ (k) =
1√
2π

ˆ
R
eikxF (x) dx , F (x) =

1√
2π

ˆ
R
e−ikxF̂ (k) dk .

In particular, the operators A and M diagonalise in Fourier space and have symbols

a(k) =
sin (k/2)

k/2
and m(k) = a(k)2 − c2 ,

respectively.
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2.2 Transformation to the special case Iδ = 0

The key observation that traces the general case Iδ 6= 0 back to the special case Iδ = 0 is that any
shift in Ψ′δ can be compensated by adding a constant to R.

Lemma 6. The family (Ψ̃δ̃)δ̃>0 defined by

δ̃ = δ(1 + CΨ), Ψ̃′
δ̃
(r) = Ψ′δ(r − Iδ)

satisfies Assumption 1 with constant C̃Ψ = CΨ(1 + CΨ) as well as

Ĩδ̃ = 1
2

ˆ
R

Ψ̃′
δ̃
(r)−Ψ′0(r) dr = 0 for all δ̃ > 0.

Moreover, each solution (R̃, µ̃) to the modified travelling wave equation

MR̃ = A2Ψ̃′
δ̃
(R̃) + µ̃ (8)

defines a solution (R, µ) to (6) via R = R̃− Iδ and µ = µ̃−
(
c2 − 1

)
Iδ and vice versa.

Proof. Due to |Iδ| ≤ CΨδ and our definitions we find Ψ̃′
δ̃
(r) = Ψ′0(r) at least for all r with |r| ≥ δ̃, as

well as ∣∣∣Ψ̃′
δ̃
(r)
∣∣∣ ≤ CΨ ≤ C̃Ψ ,

∣∣∣Ψ̃′′
δ̃
(r)
∣∣∣ ≤ CΨ

δ
=
CΨ

δ

1 + CΨ

1 + CΨ
=
C̃Ψ

δ̃
for all r ∈ R .

We also have

Ĩδ̃ = 1
2

ˆ
R

(
Ψ′δ(r − Iδ)−Ψ′0(r)

)
dr = 1

2

ˆ
R

(
Ψ′δ(r)−Ψ′0(r + Iδ)

)
dr

= 1
2

ˆ
R

(
Ψ′δ(r)−Ψ′0(r)

)
dr + 1

2

ˆ
R

(
Ψ′0(r)−Ψ′0(r + Iδ)

)
dr = Iδ − Iδ = 0 .

Finally, the equivalence of (6) and (8) is obvious.

3 Proof of the existence and uniqueness result

We now show that for fixed c the two-parameter family of phase transitions for δ = 0 persists under
the perturbation Ψ0  Ψδ provided that δ is sufficiently small. To this end we proceed as follows.

(i) We fix c with c0 < c < c1 < 1 with c0 and c1 as in Proposition 2 and Theorem 3. Then there
exists a unique solution kc > 0 to a(kc) = c, and this implies m(±kc) = 0, m′(±kc) 6= 0, and
m(k) 6= 0 for k 6= ±kc. We emphasise again that all constants derived below can be chosen
independently of c but are allowed to depend on c0 and c1.

(ii) Thanks to Proposition 2 and Lemma 4, we fix (R0, µ0) from the two-parameter family of
solutions to the integrated travelling wave equation (6) for δ = 0 and given c. Recall that R0

is normalised by R0(0) = 0.

(iii) In view of Lemma 6, we assume that Iδ = 0 holds for all δ > 0. To avoid unnecessary
technicalities we also assume from now on that δ is sufficiently small.

In order to find a solution (R, µ) to the integrated travelling wave equation (6) for δ > 0, we further
make the anchor-corrector ansatz

R = R0 + S , µ = µ0 + η ,
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and seek correctors (S, η) such that

MS = A2G+ η , G = G(S) . (9)

Here, the nonlinear operator G is defined by

G(S)(x) = Ψ′δ
(
R0(x) + S(x)

)
−Ψ′0

(
R0(x)

)
.

A natural ansatz space for S is given by

X :=
{
S ∈W2,∞(R) : S(0) = 0

}
,

where we impose the constraint S(0) = 0 in order to eliminate the non-uniqueness resulting from the
shift invariance of the travelling wave equation (6). In fact, without this normalisation condition any
corrector S provides a whole family of other possible correctors via S̃ = S(·+ x0) +R0(·+ x0)−R0

with x0 = O(δ2).

3.1 Inversion formula for M

Our first task is to construct for given G a solution (S, η) to the affine equation (9)1. In a preparatory
step, we therefore derive an appropriate inversion formula for the operator M. Recall that there
does not exist a unique inverse of M as the corresponding Fourier symbol, which is the function m,
has real roots at k = ±kc.

graph of Yi graph of MYi graph of

bYi

+kc
5.0

5.0 �kc1.0

Figure 3: Properties of Y1 (grey) and Y2 (black).

As illustrated in Figure 3, we introduce two functions Y1, Y2 ∈ L∞(R) by

Y1(x) :=

√
2π

m′(kc)
cos (kcx)sgn(x) , Y2(x) :=

√
2π

m′(kc)
sin (kcx)sgn(x) ,

and verify by direct computations the following assertions.

Remark 7. We have

(i) MYi ∈ L∞(R) with suppMYi ⊆ [−1, 1] ,

(ii) Ŷ1(k) = +
2i

m′(kc)

k

k2 − k2
c

and Ŷ2(k) = − 2

m′(kc)

kc
k2 − k2

c

,

(iii) mŶi ∈ L2(R) ∩ BC1(R) with lim
k→±kc

m(k)Ŷ1(k) = ±i and lim
k→±kc

m(k)Ŷ2(k) = −1.

Using Y1 and Y2, we can establish the following linear and continuous inversion formula for M.

Lemma 8. Let Q be given with Q̂ ∈ L2(R) ∩ BC1(R). Then there exists Z ∈ L2(R), which depends
linearly on Q, such that

M

(
Z − i

Q̂(+kc)− Q̂(−kc)
2

Y1 −
Q̂(+kc) + Q̂(−kc)

2
Y2

)
= Q , (10)
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and

‖Z‖2 ≤ D
(
‖Q̂‖2 + ‖Q̂‖1,∞

)
for some constant D independent of Q.

Proof. Thanks to our assumptions on Q and the properties of m and Y1,2, the function Z ∈ L2(R) is
well defined by

Ẑ(k) :=
Q̂(k) + i

Q̂(+kc)− Q̂(−kc)
2

m(k)Ŷ1(k) +
Q̂(+kc) + Q̂(−kc)

2
m(k)Ŷ2(k)

m(k)
∈ L2(R) ∩ BC(R)

and satisfies (10) by construction. Moreover, with J := [−2kc, +2kc] we readily verify the estimates

‖Ẑ‖L2(R\J) ≤ ‖m−1‖L∞(R\J)‖Q̂‖L2(R\J) +
(∣∣Q̂(+kc)

∣∣+
∣∣Q̂(−kc)

∣∣)(‖Ŷ1‖L2(R\J) + ‖Ŷ2‖L2(R\J)

)
≤ D

(
‖Q̂‖L2(R) + ‖Q̂‖BC(R)

)
and ‖Ẑ‖C(J) ≤ D‖Q̂‖C1(J).

We note that the constant D in Lemma 8 is uniform in c0 < c < c1 but will grow with c1 → 1,
due to the definition of Y1 and Y2 and the properties of m.

3.2 Solution operator to the linear subproblem

We are now able to prove that the affine problem (9)1 has a nice solution operator on the space of
all compactly supported functions G.

Lemma 9. Let G ∈ L∞(R) be given, with supp G ⊆ [−1, 1]. Then there exist S ∈ X and η ∈ R, both
depending linearly on G, such that

MS = A2G+ η .

Moreover, we have

(i) |η| ≤ CM‖A2G‖∞ ,

(ii) ‖S‖∞ ≤ CM‖A2G‖∞ ,

(iii) ‖S′‖∞ ≤ CM‖AG‖∞ ,

(iv) ‖S′′‖∞ ≤ CM‖G‖∞.

for some constant CM > 0 independent of G.

Proof. The function Q := A2G satisfies supp Q ⊆ [−2, 2], and using

∣∣∣Q̂(k)
∣∣∣+

∣∣∣∣ ddk Q̂(k)

∣∣∣∣ ≤ C
2ˆ

−2

(
1 + |x|

)
|Q(x)| dx ≤ C‖Q‖L∞(R)

as well as ‖Q̂‖2 = ‖Q‖2, we easily verify that

‖Q̂‖2 + ‖Q̂‖1,∞ ≤ C‖Q‖∞ .

Using Lemma 8, we now define S̃ := Z + f1Y1 + f2Y2 such that MS̃ = Q, where Z ∈ L2(R), and

‖Z‖2 + |f1|+ |f2| ≤ C‖Q‖∞ = C‖A2G‖∞ . (11)

8



By definition of M, Q, and S̃ we have

c2S̃ = −A2G+A2S̃ = −A2G+A2
(
Z + f1Y1 + f2Y2

)
, (12)

and the properties of A imply

‖A2Z‖∞ ≤ ‖Z‖2, ‖A2Yi‖∞ ≤ ‖Yi‖∞ .

Combining these estimates with (11) and (12), we arrive at S̃ ∈ L∞(R) with

‖S̃‖∞ ≤ C‖A2G‖∞ .

Moreover, differentiating the first identity in (11) with respect to x, we get

c2S̃′ = ∇
(
−AG+AS̃

)
, c2S̃′′ = ∇∇

(
−G+ S̃

)
,

where the discrete differential operator ∇ is defined as ∇U = U
(
·+ 1

2

)
− U

(
· − 1

2

)
, cf. Lemma 5.

This implies

‖S̃ ′‖∞ ≤ C‖AG‖∞ , ‖S̃ ′′‖∞ ≤ C‖G‖∞

thanks to ‖A2G‖∞ ≤ ‖AG‖∞ ≤ ‖G‖∞ and ‖AS̃‖∞ ≤ ‖S̃‖∞. We finally define S(x) = S̃(x)− S̃(0)
and η =

(
1− c2

)
S̃(0). All assertions now follow by taking CM as the maximum of all constants C

in this proof.

While we will work in a subset of W2,∞, we remark that the regularity of the equation
(Lemma 9 (iv)) would allow us to start the iteration with S ∈W1,∞.

3.3 Properties of the nonlinear operator G

We say that S ∈ X is δ-admissible if there exist two number x− < 0 < x+, which both depend on S
and δ, such that

(i) R0(x±) + S(x±) = ±δ ,

(ii) R0(x) + S(x) < −δ for x < x− ,

(iii) R0(x) + S(x) > +δ for x > x+ ,

(iv) 1
2R
′
0(0) < R′0(x) + S′(x) < 2R′0(0) for x− < x < x+ ,

Notice that the properties of R0 implies that the set of admissible correctors is not empty for all
sufficiently small δ.

We are now able to derive the second key argument for our fixed-point argument.

Lemma 10. Let S be δ-admissible and G = G(S). Then we have

‖G‖∞ ≤ D, supp G ⊆ [−Dδ, Dδ],
ˆ
R
G(x) dx ≤ D

(
1 + ‖S′′‖∞

)
δ2

for some constant D independent of S and δ.

Proof. The first assertion is a consequence of ‖G‖∞ ≤ 1 + CΨ. Since S is δ-admissible, we have

suppG = [x−, x+] , ±δ = ±
ˆ x±

0

(
R′0(x) + S′(x)

)
dx

9



with x± as above, and this implies

1

2R′0(0)
δ ≤ |x±| ≤

2

R′0(0)
δ, suppG ⊆ 2

R′0(0)
[−δ, δ] . (13)

Using the Taylor estimate∣∣R′0(x) + S′(x)−R′0(0)− S′(0)
∣∣ ≤ (‖R′′0‖∞ + ‖S′′‖∞

)
|x| , (14)

we also verify that∣∣∣∣x± ∓ δ

R′0(0) + S′(0)

∣∣∣∣ ≤ |x±|22

‖R′′0‖∞ + ‖S′′‖∞
R′0(0) + S′(0)

≤ 4δ2 ‖R′′0‖∞ + ‖S′′‖∞
R′0(0)3 . (15)

A direct computation now yields

ˆ
R
G(x) dx =

ˆ x+

x−

Ψ′δ
(
R0(x) + S(x)

)
dx−

ˆ x+

x−

sgn(x) dx =

ˆ δ

−δ
Ψ′δ(r)

dr

z(r)
− |x+ + x−| , (16)

where z(R0(x) + S(x)) = R′0(x) + S′(x) for all x ∈ [x−, x+]. Thanks to (14), our assumption

Iδ =
´ +δ
−δ Ψ′δ(r) dr = 0, and the estimate z(r), z(0) ≥ 1

2R
′
0(0) we get

∣∣∣∣ˆ δ

−δ
Ψ′δ(r)

dr

z(r)

∣∣∣∣ ≤ ˆ δ

−δ

∣∣Ψ′δ(r)∣∣ |z(r)− z(0)|
z(r)z(0)

dr ≤ Dδ
(
|x+|+ |x−|

)(
‖R′′0‖∞ + ‖S′′‖∞

)
R′0(0)2 .

and combining this with (13), (15) and (16) gives∣∣∣∣ˆ
R
G(x) dx

∣∣∣∣ ≤ Dδ2 ‖R′′0‖∞ + ‖S′′‖∞
R′0(0)3 . (17)

By Proposition 2 (iv), R′0(0) is bounded from below. Moreover, combining Proposition 2 (ii) with
the equation for R′′0 , that is

c2R′′0 = ∆1R0 −∆1sgn ,

we find a constant D, which depends only on c0 and c1, such that ‖R′′0‖∞ ≤ D. The second and
third assertion are now direct consequences of these observations and the estimates (15) and (17).

Corollary 11. There exists a constant CG, which is independent of δ, such that

‖AG‖∞ ≤ CGδ , ‖A2G‖∞ ≤ CG
(
1 + ‖S′′‖∞

)
δ2 ,

holds with G = G(S) for all δ-admissible S.

Proof. Thanks to Lemma 10 and the properties of A, we find some constant D such that

|AG(x)| ≤ Dδ for |x± 1
2 | ≤ Dδ

AG(x) =
´
RG(x) dx for |x| ≤ 1

2 −Dδ ,
AG(x) = 0 for |x| ≥ 1

2 +Dδ ,

see Figure 4 for an illustration. The first estimate is now a consequence of the trivial estimate∣∣´
RG(x) dx

∣∣ ≤ |supp G| ‖G‖∞ ≤ Dδ, whereas the second one follows from

∣∣(A2G
)
(x)
∣∣ ≤ Dδ2 +

∣∣∣∣ˆ
R
G(x) dx

∣∣∣∣ for all x ∈ R

and the refined estimate
∣∣´

RG(x) dx
∣∣ ≤ D(1 + ‖S‖′′∞)δ2.

10
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Figure 4: Properties of G = G(S) for δ–admissible S. The shaded regions indicate intervals with
length of order O(δ).

In the general case Iδ 6= 0, one finds – due to
´
RG(x) dx = 2Iδ + O(δ2) – the weaker estimate

‖A2G‖∞ ≤ D(1 + ‖S′′∞‖)δ. This bound is still sufficient to establish a fixed point argument, but
provides only a corrector S of order O(δ). Recall, however, that Lemma 6 shows that shifting Ψδ

and changing R0 allows us to find correctors of order O(δ2) even in the case Iδ 6= 0.

We finally derive continuity estimates for G.

Lemma 12. There exists a constant CL independent of δ such that

‖A2G1 −A2G2‖∞ + ‖AG1 −AG2‖∞ + δ‖G1 −G2‖∞ ≤ CL
(
δ‖S′1 − S′2‖∞ + δ2‖S′′1 − S′′2‖∞

)
holds for all δ-admissible correctors S1 and S2 with G` = G(S`).

Proof. According to Lemma 10, there exists a constant D, such that G`(x) = 0 for all x with
|x| ≥ Dδ. For |x| ≤ Dδ, we use Taylor expansions for S1 − S2 at x = 0 to find

|S2(x)− S1(x)| ≤ ‖S′2 − S′1‖∞ |x|+ ‖S′′2 − S′′1‖∞ |x|
2 ,

where we used that S2(0)−S1(0) = 0. Combining this estimate with the upper bounds for |Ψ′′δ | gives∣∣G1(x)−G2(x)
∣∣ ≤ D

δ

∣∣S1(x)− S2(x)
∣∣ ≤ D(‖S′1 − S′2‖∞ + δ‖S′′1 − S′′2‖∞

)
,

and hence the desired estimate for ‖G2 −G1‖∞. We also have

‖A2G1 −A2G2‖∞ ≤ ‖AG1 −AG2‖∞ ≤ |supp(G2 −G1)| ‖G2 −G1‖∞ ≤ Dδ‖G2 −G1‖∞ ,

and this completes the proof.

3.4 Fixed point argument

Now we have prepared all ingredients to establish a suitable fixed point argument in the space

Xδ :=
{
S ∈ X : ‖S‖∞ ≤ C0δ

2, ‖S′‖∞ ≤ C1δ, ‖S′′‖∞ ≤ C2

}
with constants

C2 := CM(1 + CΨ), C1 := CMCG , C0 := CMCG(1 + C2) .

Lemma 13. For all sufficiently small δ there exists an operator

T : Xδ → Xδ

such that for any S ∈ Xδ we have

MT (S) = A2G(S) + η(S)

for some η(S) ∈ R with |η(S)| ≤ C0δ
2.
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Proof. Step 1: We first show that each S ∈ Xδ is δ-admissible provided that δ is sufficiently small.
According to Proposition 2, there exist positive constants r0, x0, and d0 such that∣∣R0(x)

∣∣ ≥ r0 for |x| > x0 , d0 < R′0(x) for |x| < x0 ,

and combining the upper estimate for ‖R0‖∞ with the equation for R0 we find ‖R′′0‖∞ ≤ D2 for some
constant D2. We now set

δ0 :=
1

2
min

{
d0

2D2
d0

+ C1

, x0d0,

√
r0

C0
, r0

}
, xδ :=

2

d0
δ

and assume that δ < δ0. For any x with |x| ≤ xδ ≤ x0, we then estimate∣∣R′0(x) + S′(x)−R′0(0)
∣∣ ≤ D2xδ + C1δ ≤

(
2D2
d0

+ C1

)
δ ≤ 1

2d0 <
1
2R
′
0(0) ,

and this gives 1
2R
′
0(0) ≤ R′0(x) + S′(x) ≤ 3

2R
′
0(0). Moreover, xδ ≤ |x| ≤ x0 implies

∣∣R0(x) + S(x)
∣∣ ≥ ∣∣∣∣ˆ x

0
R′0(s) ds

∣∣∣∣− ‖S′‖∞ |x| ≥ (d0 − C1δ) |x| > 1
2d0 ·

2

d0
δ = δ ,

whereas for |x| > x0 we find ∣∣R0(x) + S(x)
∣∣ ≥ r0 − C1δ

2 ≥ 1
2r0 ≥ δ .

Using

x− := max{x : R0(x) + S(x) ≤ −δ} , x+ := min{x : R0(x) + S(x) ≥ +δ} ,

we now easily verify that S is δ-admissible.
Step 2: We next show that Xδ is invariant under T for δ < δ0. Since each S ∈ Xδ is δ-admissible,

Corollary 11 yields

‖AG(S)‖∞ ≤ CGδ , ‖A2G(S)‖∞ ≤ CG(1 + C2)δ2 ,

and ‖G(S)‖∞ ≤ 1 + CΨ holds by definition of G and Assumption 1. Lemma 9 now provides T (S)
and η(S), as well as the estimates

‖T (S)‖∞ ≤ CMCG(1 + C2)δ2 = C0δ
2 ,

‖T (S)′‖∞ ≤ CMCGδ = C1δ ,
‖T (S)′′‖∞ ≤ CM(1 + CΨ) = C2 ,

and |η(S)| ≤ C0δ
2. In particular, we have T (S) ∈ Xδ.

Theorem 14. For sufficiently small δ, the operator T has a unique fixed point in Xδ.

Proof. We equip Xδ with the norm ‖S‖# = ‖S‖∞+‖S′‖∞+δ‖S′′‖∞, which is, for fixed δ, equivalent
to the standard norm. For given S1, S2 ∈ Xδ, we now employ the estimates from Lemma 9 and
Lemma 12. This gives

‖T (S2)− T (S1)‖# ≤ CM
(
‖A2G(S2)−A2G(S1)‖∞ + ‖AG(S2)−AG(S1)‖∞ + δ‖G(S2)− G(S1)‖∞

)
≤ CMCLδ‖S2 − S1‖# ,

and we conclude that T is contractive with respect to ‖·‖# provided that δ < 1/(CMCL). The claim
is now a direct consequence of the Banach Fixed Point Theorem.

We now show that different anchors provide different waves.
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Lemma 15. Let (R0, µ0) and (R̃0, µ̃0) be two different travelling waves for δ = 0 and the same value
of c, and (S, η) and (S̃, η̃) be the corresponding correctors provided by Theorem 14. Then R0 + S0

and R̃0 + S̃ are different.

Proof. By construction, we have

S, S̃ ∈ U1 := span {Y1, Y2, 1} ⊕ L2(R) ,

while Proposition 2 guarantees that

R0 − R̃0 ∈ U2 := span {sin (kc·), 1− cos (kc·)} .

The claim now follows since U1 ∩ U2 = {0}.

4 Change in the kinetic relation

In this final section we show that the kinetic relation does not change to order O(δ). To this end
we denote by Rδ a travelling wave solution to (2) as provided by Theorem 3. The corresponding
configurational force, cf. [HSZ12], is then defined by Υδ := Υe,δ −Υf,δ with

Υe,δ := Φδ(r̄δ,+)− Φδ(r̄δ,−) , Υf,δ :=
Φ′δ(r̄δ,+) + Φ′δ(r̄δ,−)

2

(
r̄δ,+ − r̄δ,−

)
,

where the macroscopic strains r̄δ,± on both sides of the interface can be computed from Rδ via

r̄δ,± = lim
L→∞

1

L

ˆ +L

0
Rδ(±x) dx .

Lemma 16. Let Rδ be a travelling wave from Theorem 3, and R0 the corresponding wave for δ = 0.
Then we have Υδ = Υ0 +O(δ2).

Proof. By construction, we know that the only asymptotic contributions to the profile Rδ are due to
R0 − Iδ plus a small asymptotic corrector of order O(δ2) from span{1, Y1, Y2}. This implies

r̄δ,± = r̄0,± − Iδ +O(δ2) .

As r̄0,± and r̄δ,± are both larger than δ we know that

Ψ′δ(r̄δ,±) = ∓1 = Ψ′0(r̄δ,±).

Thus, we conclude

Φ′δ(r̄δ,±) = r̄δ,± ∓ 1 = Φ′0(r̄0,±)− Iδ +O(δ2) ,

and hence

Υf,δ = Υf,0 − Iδ(r̄0,+ − r̄0,−) +O(δ2) .

Moreover, we calculate

Υe,δ =

ˆ r̄δ,+

r̄δ,−

Φ′δ(r) dr =

ˆ r̄δ,+

r̄δ,−

(
r −Ψ′δ(r)−Ψ′0(r) + Ψ′0(r)

)
dr

=

ˆ r̄δ,+

r̄δ,−

Φ′0(r) dr −
ˆ r̄δ,+

r̄δ,−

(
Ψ′δ(r)−Ψ′0(r)

)
dr

= Φ0(r̄δ,+)− Φ0(r̄δ,−)− 2Iδ = 1
2(r̄δ,+ − 1)2 − 1

2(r̄δ,− + 1)2 − 2Iδ

= 1
2(r̄0,+ − Iδ − 1)2 − 1

2(r̄0,− − Iδ + 1)2 − 2Iδ +O(δ2)

= 1
2(r̄0,+ − 1)2 − 1

2(r̄0,− + 1)2 − Iδ(r̄0,+ − 1− r̄0,− − 1)− 2Iδ +O(δ2)

= Υe,0 − Iδ(r̄0,+ − r̄0,−) +O(δ2) .

Subtracting both results gives Υδ = Υ0 +O(δ2), the desired result.
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