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Dual Toeplitz operators on the sphere
via spherical isometries

Michael Didas and Jörg Eschmeier

Abstract. We solve a characterization problem for dual Hardy-space
Toeplitz operators on the unit sphere Sn in Cn posed by Guediri in [9].
Our proof relies on the observation that dual Toeplitz operators on the
orthogonal complement H2(Sn)

⊥ of the Hardy space in L2 can be viewed
as Toeplitz operators with respect to a suitable spherical isometry. This
correspondence also allows us to determine the commutator ideal of the
dual Toeplitz C∗-algebra.

2010 Mathematics Subject Classification: 47A13, 47B20, 47B35, 47L80
Key words and phrases: dual Toeplitz operators, Hardy space, spherical
isometries

1 Introduction

Let Bn denote the open Euclidean unit ball in C
n, Sn = ∂Bn its boundary and σ

the normalized surface measure on Sn. Given an element ϕ ∈ L∞(σ), the Toeplitz
operator Tϕ with symbol ϕ acting on the Hardy space

H2(σ) = C[z1, . . . , zn]
‖·‖2

⊂ L2(σ)

is defined as the compression of the multiplication operator Mϕ : L2(σ) → L2(σ),
f 7→ ϕf onto H2(σ), that is,

Tϕ : H2(σ) → H2(σ), f 7→ PH2(σ)Mϕf.

By definition a dual Toeplitz operator on H2(σ)⊥ is an operator of the form

Sϕ : H2(σ)⊥ → H2(σ)⊥, f 7→ PH2(σ)⊥Mϕf.

In contrast to the case of ordinary Toeplitz operators wich have been introduced
more than half a century ago, the investigation of the dual case has just begun
– at least in the Hardy space situation (see the recent work [9] of Guediri). On
the Bergman space of the unit disc D, these operators have been introduced and
studied in detail by Stroethoff and Zheng [13] in 2002. A corresponding theory on
the Hardy space H2(∂D) over the unit disc contains nothing new, since there is a
natural isomorphism H2(∂D) ∼= H2(∂D)⊥, under which Toeplitz and dual Toeplitz
operators are equivalent. But in complex dimension n > 1, new phenomena occur
(see Proposition 1.3 and the subsequent remarks in [9], or [4] where it is shown that
Tz ∈ B(H2(σ))n is not even quasi-similar to Sz for n > 1).
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From now on, we suppose that n > 1. Given ϕ ∈ L∞(σ), the orthogonal decomposi-
tion L2(σ) = H2(σ)⊕H2(σ)⊥ yields a representation of the multiplication operator
Mϕ ∈ B(L2(σ)) as an operator-matrix of the form

Mϕ =

(
Tϕ H∗

ϕ

Hϕ Sϕ

)
,

where Hϕ : H2(σ) → H2(σ)⊥, f 7→ PH2(σ)⊥Mϕf , is the so-called Hankel operator
with symbol ϕ. Various algebraic relations connecting the operators Tϕ, Sϕ and
Hϕ (see the equations (2.1) and Lemma 2.1 in [9]) result from this representation.
Moreover, by M∗

ϕ =Mϕ it follows immediately that S∗
ϕ = Sϕ.

The aim of this note is to demonstrate that the theory of dual Toeplitz operators fits
into the more general context of Toeplitz operators with respect to spherical isome-
tries. To be more specific, the tuple T = (Sz1 , . . . , Szn) ∈ B(H2(σ)⊥)n is a spherical
isometry, and the dual Toeplitz operators on H2(σ)⊥ are precisely the associated
T -Toeplitz operators (see Proposition 2.1). This correspondence immediately leads
to some known results on dual Toeplitz operators and allows us to establish a short
exact sequence for the dual Toeplitz C∗-algebra C∗(Sf : f ∈ C(Sn)) (see Section
3). As another application we solve a problem posed by Guediri ([9], Remark 3.3)
concerning the characterization of dual Toeplitz operators (see Section 4). The fol-
lowing section contains the necessary background on spherical isometries and their
associated Toeplitz operators.

2 Spherical isometries and dual Toeplitz operators

Let H be a separable complex Hilbert space. A spherical isometry T ∈ B(H)n is a
commuting tuple of operators satisfying the algebraic condition

n∑

i=1

T ∗
i Ti = 1H

which is modelled after the relation
∑n

i=1 |zi|
2 = 1 describing the unit sphere in

C
n. Perhaps the most important example of a spherical isometry is given by the

Toeplitz tuple Tz = (Tz1 , . . . , Tzn) ∈ B(H2(σ))n on the Hardy space of the sphere.
The study of general spherical isometries has been initiated by Athavale in 1990 who
proved that they are subnormal and that their minimal normal extension is again a
spherical isometry (see [3]). Note that a normal tuple is spherically isometric if and
only if its spectrum is contained in the unit sphere. It is called a spherical unitary
in this case.

Inspired by the prototypical example Tz, Prunaru developed a general theory of
Toeplitz operators for spherical isometries which – in many respects – parallels the
classical theory of Hardy-space Toeplitz operators on the sphere. Following Prunaru,
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we call an operator X ∈ B(H) a Toeplitz operator with respect to a given spherical
isometry T ∈ B(H)n (T -Toeplitz operator, for short) if the identity

n∑

i=1

T ∗
i XTi = X

holds. Let U ∈ B(K)n be the minimal normal extension of T and let

ΨU : L∞(µ) →W ∗(U)

be the von Neumann algebra isomorphism associated with a scalar spectral measure
µ of U . By a result of Prunaru (Theorem 1.2 in [11]) the set TT of all T -Toeplitz
operators is given by

TT = PH(U)′|H,

where (U)′ is the commutant of U in B(K) and PH denotes the orthogonal projection
from K onto H. In particular, for f ∈ L∞(µ), the operator

Tf = PHΨU (f)|H

is a T -Toeplitz operator. We call Tf the T -Toeplitz operator with symbol f . If
W ∗(U) ist maximal abelian, then

TT = {Tf ; f ∈ L∞(µ)}.

Details can be found in [11] or [7].

Let T ∈ B(H)n again be an arbitrary spherical isometry. In analogy with the
classical case, we define the Toeplitz C∗-algebra associated with T by

TC(T ) = C∗(Tf : f ∈ C(Sn)).

We now want to point out how dual Toeplitz operators fit into this context. Towards
this end, we assume in addition that the spherical isometry T ∈ B(H)n is pure in
the sense that there is no non-zero reducing subspace M ⊂ H for T such that T |M
is normal. Generalizing a concept introduced by Conway [5] for a single subnormal
operator, Athavale defines in [2] the dual T̃ ∈ B(H⊥)n of a pure subnormal tuple
T ∈ B(H)n with minimal normal extension U ∈ B(K)n as

T̃ = U∗|H⊥ where H⊥ = K ⊖H.

The assumption on T to be pure guarantees that U∗ is the minimal normal extension
of T̃ (see [2], Remark 3). As the restriction of the spherical unitary U∗ to an invariant
subspace, T̃ is a also spherical isometry and hence possesses an associated space of
Toeplitz operators T

T̃
in the sense defined above.

Let us now, for later use, determine a formula for T̃f in terms of the functional
calculus ΨU . For a set A ⊂ C

n, let A∗ = {z : z ∈ A} denote the set obtained from
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A by complex conjugation. If we define a Borel measure µ̃ on σ(U∗) = σ(U)∗ by
setting µ̃(A) = µ(A∗) for every Borel subset A ⊂ σ(U∗), then the map

L∞(µ̃) → L∞(µ), f 7→ f̃ where f̃(z) = f(z)

is a conjugate linear isomorphism of von Neumann algebras, and hence the compo-
sition

L∞(µ̃) ∋ f 7→ ΨU (f̃)
∗ ∈W ∗(U)

is an isomorphism of von Neumann algebras. Since it maps zi to U
∗
i for i = 1, . . . , n,

the measure µ̃ is (mutually absolutely continuous with respect to) a scalar-valued
spectral measure of U∗ and the map described above is the canonical L∞-functional
calculus ΨU∗ : L∞(µ̃) → W ∗(U∗) = W ∗(U) of the normal tuple U∗. Therefore, the
T̃ -Toeplitz operator with symbol f ∈ L∞(µ̃) is given by the formula

T̃f = PH⊥ΨU (f̃)
∗|H⊥.

Applying the above observations to the Hardy space multiplication tuple T = Tz ∈
B(H2(σ))n, which is a pure spherical isometry, we are now able to identify the dual

Toeplitz operators as the Toeplitz operators associated with the dual tuple T̃z. To
simplify the notation, we set T = Tz, T̃ = T̃z and write T̃f for the Toeplitz operator

with symbol f ∈ L∞(σ̃) with respect to the spherical isometry T̃ . Note that in this
case the measures σ̃ and σ coincide.

2.1 Proposition. (a) The dual T̃ of Tz is the tuple Sz = (Sz1 , . . . , Szn) on
H2(σ)⊥, which is a spherical isometry with empty point spectrum.

(b) We have the identity T̃f = Sfc where f c(z) = f(z) for every f ∈ L∞(σ).

(c) An operator X is a dual Toeplitz operator if and only if
∑n

i=1 SziXSzi = X.

Proof. It is well known that the minimal normal extension U of T = Tz is the
multiplication tuple Mz = (Mz1 , . . . ,Mzn) ∈ B(L2(σ))n. Since the scalar-valued
spectral measure σ̃ of U∗ does not have one-point atoms, we have ∅ = σp(U

∗) ⊃
σp(Sz), as desired. Moreover, from the very definition of the dual tuple, we have

T̃ = U∗|H⊥ =Mz|H
2(σ)⊥ = Sz ∈ B(H2(σ)⊥)n,

as stated in part (a). More generally, since the canonical L∞-functional calculus of
U is given by ΨU (f) = Mf (f ∈ L∞(σ)), it follows by the considerations preceding

the proposition that T̃f = PH2(σ)⊥M
∗
f̃
|H2(σ)⊥ = Sfc (f ∈ L∞(σ̃)). This proves part

(b). To prove part (c), recall that S∗
zi

= Szi for i = 1, . . . , n. Hence by definition

an operator X ∈ B(H2(σ)⊥) is a T̃ -Toeplitz operator with respect to the spherical
isometry T̃ = Sz if

X =

n∑

i=1

SziXSzi .
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Since W ∗(U∗) = W ∗(U) = {Mf ; f ∈ L∞(σ)} is maximal abelian, the set of all

T̃ -Toeplitz operators is given by

T
T̃
= {T̃f ; f ∈ L∞(σ̃)}.

By part (b) this set consists precisely of all dual Toeplitz operators on H2(σ)⊥. �

3 An exact sequence for the dual Toeplitz C∗-algebra

Since there is an extensive theory of Toeplitz operators associated with spherical
isometries (see e.g. [11], [6], [7]), Proposition 2.1 has many direct consequences. In
the following proposition, we state only a few of them (see Prunaru [11] as well as
Corollary 3.6 in [7]). Here, as in the sequel, K(H) denotes the ideal of all compact
operators on the Hilbert space H. The symbol R(f) occurring in part (a) denotes
the essential range of a given function f . Note that R(f) = R(f c).

3.1 Proposition. (a) For f ∈ L∞(σ), the inclusion σ(Sf ) ⊃ R(f) holds.

(b) The map L∞(σ) → B(H2(σ)⊥), f 7→ Sf , is an isometry.

(c) For every f ∈ L∞(σ), the equality ‖Sf‖ = infK∈K(H2(σ)⊥) ‖Sf −K‖ holds. In
particular, the only compact dual Toeplitz operator is the zero-operator. �

All parts of the proposition follow directly from Corollary 3.6 in [7]. For a direct
proof, not using the theory of Toeplitz operators associated with spherical isometries,
see the recent article of Guediri (Corollary 2.6 and Remark 2.11 in [9]).

A classical problem in the context of Toeplitz operators is to determine the structure
of operator algebras associated with special symbol classes, first of all C(Sn) which–
in our context–gives rise to the dual Toeplitz C∗-algebra

TC(Sz) = C∗(Sf : f ∈ C(Sn)).

The following theorem shows that the situation is very similar to the classical case.

3.2 Theorem. There is a unique short exact sequence of C∗-algebras

0 −→ K(H2(σ)⊥) −→ TC(Sz)
s

−→ C(Sn) −→ 0,

where the symbol homomorphism smaps the dual Toeplitz operator Sf to its symbol
f for every f ∈ C(Sn).

Proof. Prunaru’s work [11] on spherical isometries applied to T̃z = Sz implies the
existence of a short exact sequence of the form

0 −→ C −→ TC(Sz)
τ

−→ C(Sn) −→ 0
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with τ(T̃f ) = f for every f ∈ C(Sn), where C is the commutator ideal (see Corollary
3.8 in [7] for a detailed proof). Replacing the map τ by s = τ(·)c, the sequence
remains exact and s(Sf ) = τ(T̃fc)c = f for all f ∈ C(Sn).

Since the tuple T = Tz on H2(σ) is essentially normal (i.e., all self-commutators
[Ti, T

∗
i ] are compact), so is its dual Sz (see Athavale [2], Remark 2). The essential

normality of Sz guarantees that the commutator ideal C is contained in the compact
operators (see Lemma 3.9 in [7]). To finish the proof, it suffices to show that TC(Sz)
is irreducible (see [7], Proposition 3.10). This follows from the next lemma. �

3.3 Lemma. The tuple Sz ∈ B(H2(σ)⊥)n has no proper reducing subspaces.

Proof. Suppose that P ∈ B(H2(σ)⊥) is a projection commuting with Szi for all
i = 1, . . . , n. Then we have

n∑

i=1

SziPSzi =

n∑

i=1

SziSziP =

n∑

i=1

S|zi|2P = P (i = 1, . . . , n).

It follows that P = Sg is a dual Toeplitz operator (see Proposition 2.1) whose symbol
g ∈ L∞(σ) is self-adjoint and satisfies g2 = g (here we use Proposition 3.1 (a)). By
using the elementary identity Sfg = HfH

∗
g + SfSg (f, g ∈ L∞) with f = g = g, we

obtain that
HgH

∗
g = Sg2 − S2

g = Sg − Sg = 0.

From 0 = Hg1 = PH2(σ)⊥g it follows that g ∈ L∞(σ) ∩H2(σ) = H∞(σ). Since the
boundary value map r : H∞(Bn) → H∞(σ), f 7→ f∗, is an algebra isomorphism
with inverse given by the Poisson transform H∞(σ) → H∞(Bn), f 7→ P [f ] (see
[12], Theorem 4.3.3 and Theorem 5.6.8), it follows that G = P [g] ∈ H∞(Bn) is an
idempotent. But then G = 0 or G = 1 and the same holds for g in L∞(σ). Thus
P = Sg is either the zero operator or the identity on H2(σ)⊥ as was to be shown. �

It should be remarked that the assertion of the above lemma also follows from
the Brown-Halmos-type theorem for dual Toeplitz operators due to Guediri (see
Theorem 5.1 in [9] and Corollary 5.6 in [9]). For another argument showing the
irreducibility of duals of irreducible pure subnormal tuples see Athavale [2].

4 A characterization of (dual) Toeplitz operators

In [9], Guediri poses a question concerning a characterization of dual Toeplitz oper-
ators using automorphisms of the unit ball. In order to formulate this problem here,
we have to introduce some notations. Let Aut(Bn) be the automorphism group of
the unit ball. For w ∈ Bn, we denote by ϕw ∈ Aut(Bn) the standard automorphism
mapping w to 0 which is explicitly given by the formula

ϕw(z) =
w − Pw(z)−

√
1− |w|2Qw(z)

1− 〈z, w〉
(z ∈ Bn).
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Here Pw denotes the orthogonal projection onto the one-dimensional subspace of Cn

spanned by w if w 6= 0 and P0 = 0, and Qw = 1 − Pw. Motivated by the fact that
the reproducing kernel Kw of the Hardy space H2(Bn) satisfies the identity

K−1
w (z) = (1− 〈z, w〉)n =

n∑

j=0

∑

|m|=j

(
n

j

)
(−1)j

j!

m!
zmwm (z, w ∈ Bn),

Guediri defines for every w ∈ Bn the operator Sw : B(H2(σ)⊥) → B(H2(σ)⊥) by

Sw(X) =
n∑

j=0

∑

|m|=j

(
n

j

)
(−1)j

j!

m!
Sϕm

w
XSϕm

w

and observes (see [9], Proposition 3.2) that, given any w ∈ Bn,

Sw(X) = 0 holds for every dual Toeplitz operator X ∈ B(H2(σ)⊥).

In Remark 3.3 of the cited paper, he asks if this condition (even for some fixed
w ∈ Bn) is also sufficient for X to be a dual Toeplitz operator.

The aim of this section is to answer this question in the affirmative.

Given a spherical isometry T ∈ B(H)n and a function ϕ ∈ Aut(Bn), the tuple ϕ(T )
can be defined in the following way. As an automorphism of the unit ball, ϕ extends
to a holomorphic map ϕU : U → C

n, where U ⊃ Bn is an open neighborhood.
Since any two such extensions ϕU and ϕV coincide on the connected component of
U ∩ V containing Bn, and since the holomorphic functional calculus is compatible
with restrictions, it makes perfect sense to define

ϕ(T ) = ϕU (T ),

where ϕU is any extension of ϕ as above and ϕU (T ) is formed using Taylor’s holo-
morphic functional calculus. If Ψ : L∞(µ) → B(K) denotes the canonical L∞-
functional calculus of the minimal normal extension of T and ϕ has the components
ϕi : Bn → C, one can show that ϕ(T ) = (Ψ(ϕ1)|H, . . . ,Ψ(ϕn)|H) using the continu-
ity of the holomorphic functional calculus and the Taylor expansions of the functions
ϕi at the origin. The identity

n∑

i=1

‖Ψ(ϕi)x‖
2 =

n∑

i=1

〈Ψ(|ϕi|
2)x, x〉 = ‖x‖2 (x ∈ H)

shows that the tuple ϕ(T ) is a spherical isometry again.

For a given commuting tuple S ∈ B(H)n, we write AS for the dual algebra generated
by the components of S and the identity, that is,

AS = C[S]
w∗

⊂ B(H).
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4.1 Lemma. For ϕ ∈ Aut(Bn), the dual algebras AT and Aϕ(T ) coincide.

Proof. Fix an arbitrary ϕ ∈ Aut(Bn) as well as a holomorphic extension ϕU :
U → C

n as described above. Choose r > 1 such that Br(0) = {z ∈ C
n; |z| ≤

r} ⊂ U . Since the components of ϕU are uniform limits of polynomials on Br(0),
the components of the tuple ϕ(T ) = ϕU (T ) belong to the norm closed subalgebra
of B(H) generated by T . Consequently, Aϕ(T ) ⊂ AT . For the reverse inclusion,
it suffices to verify that ϕ−1(ϕ(T )) = T . To see this, write ψ = ϕ−1 and choose
extensions ψV and ϕU in such a way that ψV ◦ ϕU is well defined. By the identity
theorem the identity ψV ◦φU = id holds on the connected component of U containing
Bn. Since the holomorphic functional calculus is compatible with compositions (see
Theorem 5.2.3 in [8]), we have ϕ−1(ϕ(T )) = ψV (ϕU (T )) = ψV ◦ ϕU (T ) = T . Thus
we obtain that AT = Aϕ−1(ϕ(T )) ⊂ Aϕ(T ) from the first part of the proof. �

By definition, T -Toeplitz operators are the fixed points of the unital and completely
positive mapping

ΣT : B(H) → B(H), X 7→
n∑

i=1

T ∗
i XTi.

Based on this observation, Prunaru was able to define a completely positive pro-
jection ΦT : B(H) → B(H) whose range is precisely the set TT = ker(1 − ΣT ) of
all T -Toeplitz operators (see Lemma 2.7 in [11]). From the construction of ΦT it
follows immediately that A∗ΦT (X)B = ΦT (A

∗XB) for A,B ∈ (T )′. As a simple
consequence we obtain the following property of the completely positive mapping
ΣT .

4.2 Lemma. The identity ker(1− ΣT ) = ker(1− ΣT )
2 holds.

Proof. For the non-trivial inclusion, fix an operator X ∈ ker(1 − ΣT )
2. This

means precisely that Y = (1−ΣT )(X) is a T -Toeplitz operator. Using the Toeplitz
projection ΦT , we deduce that

Y = ΦT (Y ) = ΦT

(
X −

n∑

i=1

T ∗
i XTi

)
= ΦT (X) −

n∑

i=1

T ∗
i ΦT (X)Ti = 0,

as desired. �

Combining the above observations with results proved earlier by Prunaru in [11] and
the authors in [6], we obtain the following characterizations of Toeplitz operators
for spherical isometries.

4.3 Theorem. Let T ∈ B(H)n be a spherical isometry with minimal normal ex-
tension U ∈ B(K)n, and let ϕ ∈ Aut(Bn) be an arbitrary automorphism of the unit
ball. The following conditions on an operator X ∈ B(H) are equivalent:
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(a) X is a T -Toeplitz operator (in the sense that
∑n

i=1 T
∗
i XTi = X);

(b) there exists an operator Y ∈ (U)′ such that X = PHY |H;

(c) for every isometry J ∈ AT , we have J∗XJ = X;

(d) for some, or equivalently, every natural number N ≥ 1, the identity

N∑

j=0

∑

|m|=j

(
N

j

)
(−1)j

j!

m!
Tm∗XTm = 0

holds;

(e) X is a ϕ(T )-Toeplitz operator;

(f) for some, or equivalently, every natural number N ≥ 1, the identity

N∑

j=0

∑

|m|=j

(
N

j

)
(−1)j

j!

m!
ϕ̃m(T )∗Xϕ̃m(T ) = 0

holds.

Proof. The equivalence of (a) – (c) follows from the two references cited above.
Lemma 4.1 guarantees the equivalence of (c) and (e). Since

(1− ΣT )
n(X) =

n∑

j=0

(
n

j

)
(−1)jΣj

T (X) =
n∑

j=0

(
n

j

)
(−1)j

∑

|m|=j

j!

m!
Tm∗XTm,

Lemma 4.2 shows that (a) and (d) are equivalent. To complete the proof, note that
ϕ̃ ∈ Aut(Bn) and that ϕ̃(T )m = ϕ̃m(T ) for all m ∈ N

n. �

As an immediate consequence we obtain the characterization of dual Toeplitz oper-
ators that Guediri asked for in Remark 3.3 of [9].

4.4 Corollary. Let w ∈ Bn be arbitrary. An operator X ∈ B(H2(σ)⊥) is a dual
Toeplitz operator if and only if Sw(X) = 0.

Proof. By Proposition 2.1, the dual Toeplitz operators are precisely the Sz-Toeplitz
operators. Define T̃ = Sz and fix an automorphism ϕ = ϕw ∈ Aut(Bn). By Theorem
4.3 an operator X ∈ B(H2(σ)⊥) is a dual Toeplitz operator if and only if

n∑

j=0

∑

|m|=j

(
n

j

)
(−1)j

j!

m!
ϕ̃m(T̃ )∗Xϕ̃m(T̃ ) = 0.

The observation that (see Proposition 2.1 and the remarks preceding Lemma 4.1)

ϕ̃m(T̃ ) = T̃ϕ̃m = S(ϕ̃m)c = Sϕm

completes the proof. �
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