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Abstract

We propose a novel variational approach to the depth–from–defocus
problem. The quality of such methods strongly depends on the mod-
elling of the image formation (forward operator) that connects depth
with out–of–focus blur. Therefore, we discuss different image forma-
tion models and design a forward operator that preserves essential
physical properties such as a maximum–minimum principle for the
intensity values. This allows us to approximate the thin–lens camera
model in a better way than previous approaches. Our forward operator
refrains from any equifocal assumptions and fits well into a variational
framework. Additionally, we extend our model to the multi–channel
case and show the benefits of a robustification. To cope with noisy
input data, we embed our method in a joint depth–from–defocus and
denoising approach. For the minimisation of our energy functional,
we show the advantages of a multiplicative Euler–Lagrange formalism
in two aspects: First, it constrains our solution to the plausible pos-
itive range. Second, we are able to develop a semi–implicit gradient
descent scheme with a higher stability range. While synthetic exper-
iments confirm the achieved improvements, experiments on real data
illustrate the applicability of the overall method.

1 Introduction

Depth–from–defocus methods are designed to handle the limited depth–of–
field (DOF) of optical systems. This limited DOF is caused by the fact that
a lens can only focus points at a certain distance that is given by the fo-
cal plane. Depth–of–field denotes the distance range in which objects still
appear acceptably sharp. Points displaced from the focal plane are imaged
blurred, where the out–of–focus blur increases as their offset becomes larger.
Both the position of the focal plane and the size of the depth–of–field depend
on the optical settings of the system. Macro photography and microscope
imaging are typical examples of imaging systems suffering from a very lim-
ited depth–of–field.
To imitate an acquisition as it would be done by such a limited DOF imaging
system, computer graphics methods can simulate the local blur on the basis
of the local depth information. This is called depth–of–field simulation. In
principle, depth–from–defocus is the inverse operation to the depth–of–field
simulation: Its goal is to infer the depth map from the local blur. Moreover,
as a by-product, one is able to compute the completely sharp image that
would result from an infinite depth–of–field. Since one cannot distinguish
between a blurred texture and out–of–focus blur, several images of the same
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Figure 1: Focal stack. Each slice captures the same static scene but differs
in their focal settings. The gradual transition from sharp to blur within each
image corresponds to the depth profile.

static scene but varying in their focal plane are necessary. Then each of these
images contains different regions that are projected sharply (cf. Figure 1).
While the forward problem of simulating the depth–of–field effect always has
a unique solution, depth–from–defocus is a typical inverse problem that is
ill-posed: For instance, blurring a homogeneous region creates a focal stack
that does not allow to reconstruct a unique depth map. Ill–posed problems
can be addressed by embedding them in a variational framework. This allows
to extract a unique solution as the minimiser of some energy functional that
involves an additional smoothness assumption [4]. To keep the numerical
complexity reasonable, many variational models for the depth–from–defocus
problem involve only a relatively small set of simplified assumptions, e.g. re-
quiring local equifocality. As a consequence, it can happen that their solution
reflects the physical reality only to a limited extent. Approaches that do not
rely on an equifocal assumption at all, can also violate important physical
principles such as a maximum–minimum principle for the intensity values.
The goal of our paper is to propose a variational model for the depth–from–
defocus problem that comes closer to the physical reality. Before going into
more details, we discuss the relevant literature first.

Related Work. Pentland is one of the pioneers in the field of depth–
from–defocus. He suggested to estimate the depth using defocus information
by considering the blurriness of sharp edges or patches in different record-
ings [28]. Furthermore, he discussed the use of a Gaussian as a suitable
point spread function (PSF) w.r.t. diffraction effects.
While Pentland assumed one image to be in focus as reference, Subbarao [35]
refrained from such a restriction. Continuing his work in [36], he suggested a
depth–from–defocus approach using a convolution/deconvolution transform
in the spatial-domain. The sensitivity to noise of the latter approach is
investigated in [37].
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Bailey et al. [2] determined the level of blurriness using the method of [17]
followed by a normalised convolution. Then they use the relation between
depth, position of the focal plane, and the blurriness to recover the depth.
In [24], Namboodiri and Chaudhuri exploited the equivalence between Gaus-
sian blurring and linear diffusion to simulate the depth–of–field effect. While
this assumes the scene to have a constant depth, in [14, 25, 26, 41] the idea
is extended by considering nonlinear isotropic diffusion that allows spatial
changes of the diffusivity corresponding to the depth profile. Involving also
directional information, anisotropic diffusion is used in [12, 16] to solve the
depth–from–defocus problem.
Markov random fields can also be employed to handle the depth–from–
defocus problem [10, 5, 26]. Among those approaches, Bhasin and Chaudhuri
[5], investigate how the PSF has to be iteratively corrected at strong depth
changes, where partial occlusions occur. However, their work is limited to
only two focal planes (two defocussed images). Rajagoplan and Chaudhuri
[32] approach the problem by means of a space–frequency representation
technique based on the Wigner distribution and the complex spectrogram.
While depth–from–defocus approximates the physical imaging process, depth–
from–focus applies a local sharpness criterion [30]. Such a sharpness criterion
could be the local variance of the intensities as proposed by the variance
method (VM) in [38] or the sum of modified Laplacian as suggested in [20].
Locally, the slice with maximal sharpness is assumed to be in focus and to
match the depth. Due to the absence of a deconvolution, depth–from–focus
relies on the sharp information for estimating a depth value.
Regarding the recovered sharp pinhole image as a fusion of several defocused
images, also image fusion methods are related in some sense. A simultaneous
multifocus image fusion and denoising approach is proposed by Ludusan and
Lavialle in [21].
Embedding the image formation model into a suitable energy functional, and
posing depth–from–defocus as a variational minimisation problem is most re-
lated to our work [13, 19, 1]. While the first two approaches suggest Csiszár’s
information divergence as fidelity term, Aguet et al. penalise deviations from
the model assumption in a quadratic way. Instead of assuming a locally
equifocal surface [13] which implies a shift–invariant PSF, Jin et al. [19] re-
frain from such a restriction and embed a shift–variant PSF in their model.
Interpreting a shift–variant PSF as a 4-D function and a shift–invariant as
a 2-D one, the approach of Aguet et al. [1], can be seen as a compromise
between both. They propose the use of a 3-D PSF consisting of 2-D nor-
malised Gaussians with varying standard deviation. On the one hand this
reduces the complexity by incorporating knowledge on the depth dependence
of the PSF. On the other hand, it may result in a convolution operation with
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a non–normalised kernel. As a consequence, an essential physical property,
namely the maximum–minimum principle w.r.t. the image intensities may
be violated. This leads to a wrong model assumption especially at strong
depth changes.

Our Contributions. In our present paper, we address some of the key
problems of existing depth–from–defocus methods by incorporating impor-
tant physical properties. In particular, the reconstruction of strong depth
changes constitutes a challenge for most methods. As a remedy, we intro-
duce a novel forward operator that closely resembles the thin lens model and
preserves a maximum–minimum principle w.r.t. the unknown image inten-
sities. We embed this operator in a variational model and minimise it with
a multiplicative variant of the Euler–Lagrange formalism. This guarantees
that the solution remains in the physically plausible positive range. More-
over, it allows a stable gradient descent evolution without the need to adapt
the relaxation parameter. Synthetic and real-world experiments illustrate
the advantages of our model.

This article is based on our recent conference publication [29]. However,
we extend [29] in a number of important aspects: (i) We discuss the im-
age formation models in more detail and show the relation to a standard
3–D convolution in the forward operation. For the backward operation, we
demonstrate that a standard 3–D deconvolution disregards important prior
knowledge and yields inferior results. Therefore, directly applying 3–D de-
convolution is not a suitable approach for depth–from–defocus. (ii) While
our method in [29] constitutes a proof of concept restricted to greyscale im-
ages, here we also show how to cope with multi–channel focal stacks. As
a result of incorporating the information of all channels, the reconstruction
quality is further improved. (iii) We analyse the impact of a robustification
of the data term such that deviations of the model assumptions are penalised
less severely. (iv) We extend our model to obtain a joint depth–from–defocus
and denoising approach. (v) Finally, we discuss the positivity constrained
minimisation strategy presented in [29] in more detail and show how it can
be extended including the aspects above.

Organisation of the Paper. The goal of Section 2 is to find a forward
operator that approximates the depth–of–field effect and that well fits into
a variational framework. In Section 3 we formulate our variational frame-
work which enables us to invert this imaging model. Section 4 extends our
approach to a joint denoising and depth–from–defocus model. A suitable
minimisation strategy is described in Section 5. Synthetic and real–world
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experiments demonstrate the advantages of our approach in Section 6. The
article is concluded in Section 7.

2 Image Formation Models

Before discussing the depth–from–defocus problem, we first consider the for-
ward operation. Given the depth information and a completely sharp im-
age, we want to generate an image as it would be produced by a camera
with a limited depth–of–field. This gives us a better understanding of the
depth–of–field effect and allows us to obtain the relation between depth and
out–of–focus blur. For this purpose, we briefly investigate the connection
between the pinhole camera and the thin lens camera model.

pinhole
image plane

Figure 2: Pinhole camera model.

2.1 The Pinhole Camera Model

Figure 2 illustrates the pinhole camera model. It is the standard imaging
model. It only explains geometrical optics and considers light rays as linear
subsets of R3. For the sake of notational convenience we parametrise a ray
by two points a, b ∈ R3 it passes through. Hence, a ray is fully described by

r(a, b) := {y ∈ R3 | y = (1− λ) a + λ b, λ ∈ R}. (1)

We call the set of all rays R. In the pinhole camera model, the so-called
pinhole is placed in the optical centre `0 := (0, 0, 0)> which has a distance
v ∈ R to the image plane. If x := (x, y)> denotes the location within the
image domain Ω2 ⊂ R2, then for each point x̃ := (x, y,−v)> on the image
plane, there exists exactly one optical ray r(x̃, `0) ∈ R going through the
pinhole. Let d : Ω2 → R+ denote the depth map of a surface S ⊂ R3, which
we assume to be opaque. Then the resulting pinhole operator FP can be
expressed as

FP[φ, d](x) := φ
(
Zd
(
x̃, `0

))
, (2)
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image plane

focal plane

Figure 3: Thin lens camera model.

where, φ : S → R+ denotes the intensity value of a surface point and
Zd(x̃, `0) yields the first (i.e. closest) intersection point of the ray r(x̃, `0)
with the surface S. Due to the fact that Z returns the first intersection point,
it can be evaluated without knowing the complete Surface S but only the
depth d. Since there exists at most one optical ray per image point hitting the
surface, the object will be imaged completely sharp. Thus, no depth–of–field
arises in this image formation model.

2.2 The Thin Lens Model

The thin lens camera model is the simplest physical model that simulates
the depth–of–field effect. Instead of a pinhole, a thin circular lens with focal
length f is placed in the optical center `0 (see Figure 3). Lens and image
plane are parallel having a distance v to each other. Following the thin lens
equation of geometric optics

1

fp
=

1

f
− 1

v
, (3)

which is based on the intercept theorem, we obtain the distance fp of the in-
tersection point of the parallel ray, the central ray, and the focal ray (pinhole
ray). Hence only points lying at this distance, in the so–called focal plane are
focused sharply to the image plane [6]. Intersecting the pinhole ray r(x̃, `0)
with the focal plane yields for each image point x its corresponding point
within the focal plane x̄. This mapping corresponds to the one of the pinhole
camera model.
Points not lying in the focal plane spread their intensity to a circle of con-
fusion onto the image plane. In other words, if the object is not lying in the
focal plane, the intensity of several surface points may blend into one single
image point causing blurred information.
For an image point x the corresponding surface points are lying within the
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intersection area of the bundle of lens rays with the surface. This bundle
can be described using x̄ and all points on the lens. Following [31], one can
formulate the thin lens operator as

FL[φ, d](x) :=
1

|A|

∫
A
φ
(
Zd
(
`, x̄
))

d` , (4)

where A describes the set of points lying on the lens and |A| its area. The
abovementioned image formation models comply with geometric optics and
can be simulated using raytracing techniques [11]. However, since a large
amount of blur requires processing a huge number of rays per pixel, ray-
tracing is computationally very expensive. Therefore, researchers have been
interested in finding approximations as alternatives for the simulation of pho-
torealistic depth–of–field effects [3, 7, 33]. However, we have the requirement
that the forward operation has to fit into a variational framework. So the
goal of the following sections is the development of an image formation model
that approximates the thin lens camera model, but can additionally be em-
bedded into a variational framework. As a first step, we will express the thin
lens camera model with the help of a spatially variant point spread function.

2.3 Spatially Variant Point Spread Function

In the pinhole camera model, each surface point is represented by exactly one
image point. Instead of integrating over the lens, we can thus integrate over
the sharp pinhole image u to express the thin lens camera model. With the
help of a spatially variant point spread function (PSF) Hd : Ω2 × Ω2 → R0+

that depends on the depth profile d, the imaging process can be expressed as

FH[u, d](x) :=

∫
Ω2

Hd(x,y) u(y) dy , (5)

where x describes the location within the 2-D image plane. The thin lens
camera model fulfils a maximum–minimum principle w.r.t. φ. This guar-
antees that the intensity value of an image point lies between the minimum
and maximum intensity value of any surface point.

φmin ≤ FL[φ, d](x) ≤ φmax , ∀x ∈ Ω2 . (6)

Accordingly, Hd has to preserve this w.r.t. the intensity values of the sharp
pinhole image u. Therefore, we have to guarantee that for each image point
x the PSF is normalised:∫

Ω2

Hd(x,y) dy = 1 , ∀x ∈ Ω2 . (7)
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Equation (5) can be understood as a weighted average of the sharp image
intensities. Consequently, the main issue is the computation of the weights
of the PSF Hd. A straightforward solution would be the use of raytracing
techniques to apply the thin lens model. However, as already mentioned,
raytracing is too expensive and not suitable for our variational framework.
Thus, we have to find a more efficient way to approximate the weights of the
PSF Hd.

2.4 Approximation of the PSF

The PSF describes the intensity distribution of each surface point onto the
image plane. The intensity emitted by a surface point that does not lie within
the focal plane is (uniformly) spread to a circle of confusion on the image
plane [35]. The size of this circle of confusion depends on the distance d of
the surface point. For simplification, let us for the moment assume that the
surface is equifocal. This means that d is constant and the surface is aligned
parallel to the lens. Then the circle of confusion will not change for any
surface point. Moreover, Eq. (5) can be expressed in terms of a convolution.
This means that one uses a spatially invariant kernel hd : Ω2 ⊂ R2 → R0+

instead of a spatially variant one Hd. If we additionally assume a circular
lens, the PSF becomes a 2-D pillbox kernel with a radius related to the con-
stant depth.
However, in the general case of non–constant depth map, the radius changes
with the depth of each surface point. Thus, to estimate the intensity of an
image point x, Aguet et al. [1] weight each neighbouring point u(y) cor-
responding to its circle of confusion, where a point having a large circle of
confusion will get a small weight and vice versa. To achieve this, they intro-
duce a 3-D PSF h : Ω3 ⊂ R3 → R0+ as an approximation of Hd:

FU [u, d](x, z) :=

∫
Ω2

h(x− y, z − d(y))︸ ︷︷ ︸
≈Hd(x,y)

u(y) dy , (8)

where z represents a given focal plane. In this model, the weight not only
depends on the distance of two points like convolution but also on the actual
depth value. To take into account the wave character of light, Aguet et
al. [1] choose a Gaussian PSF instead of a pillbox as already proposed in
[28]. Then the standard deviation of the Gaussian replaces the radius of the
pillbox. The approach of [1] can be illustrated as in Figure 4: First, the 2-D
function hd is lifted to a 3-D one h, composed of 2-D normalised Gaussians.
The standard deviation of each Gaussian increases with increasing distance
to the focal plane. Next, one cuts a slice out of this 3-D PSF h corresponding
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image plane surface

focal plane

PSF

Figure 4: Left: Circles of confusion for different surface points appearing on
the image plane. Right: 3-D PSF composed of 2-D normalised Gaussians.

to the depth to locally approximate Hd for a specific image point x. With
the help of this 3-D PSF also a second interpretation of the equation above
is possible: For this, we assume that the sharp pinhole image lies in a dark
volume g : Ω3 → R corresponding to the depth profile. It can be defined as

g(x, z) := u(x) · δ(z − d(x)) with δ(x) :=

{
1 if x = 0 ,

0 else .
(9)

Then Eq. (8) is just a standard 3-D convolution of g with the PSF h:

(g ∗ h)(x, z) :=

∫
Ω3

g(y, z′) · h(x− y, z − z′) dy dz′

=

∫
Ω3

u(y) · δ(z′ − d(y)) · h(x− y, z − z′) dy dz′

=

∫
Ω2

u(y) · h(x− y, z − d(y)) dy . (10)

This means that the forward operator in [1] performs a spatially invariant
3–D convolution.

2.5 Our Modification

In the equifocal case, the slice that is taken out of the PSF h is just a
2–D normalised Gaussian of a certain standard deviation. Accordingly, the
maximum–minimum principle is automatically guaranteed. However, the
formulation above becomes problematic if partial occlusions occur, which is
expected to happen due to depth changes. In this case, the slice that is
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surface

Approximation of 

surface

Approximation of 

Figure 5: Unnormalised kernel. In the presence of strong depth changes, the
local approximation of Hd by [1] is composed of different Gaussians (blue and
red). (a) Top row: Overshoot: While the blue part is nearly a complete
Gaussian, with the second (red) part an integration weight of 1 is exceeded.
(b) Bottom row: Undershoot: The local composed PSF consists only of
a part of a normalised Gaussian (red) and a second (blue) Gaussian already
reaching negligible values. The resulting integration weight becomes smaller
than 1.
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cut out of h is the composition of several Gaussians with different standard
deviations. As a direct consequence the normalisation cannot be guaranteed
anymore. The forward operator then effectively performs spatially variant
2-D integration with an unnormalised kernel as a local approximation of
Hd (see Figure 5). This results in a violation of the maximum–minimum
principle w.r.t. to the image intensities.
To avoid this, we consider the local approximation of Hd and use it as a
normalisation function. This introduces a novel forward operator:

FN [u, d](x, z) :=
FU [u, d](x, z)∫

Ω2
h(x− x′, z − d(x′)) dx′ . (11)

While this normalisation may look like a small modification at first glance,
it can have a large impact on the quality of the simulation of the depth–
of–field effect. To demonstrate this, we compare different forward operators
in Figure 6. As we can see, the result of the forward operator of [1] is very
close to simple 3–D convolution (cf. Eq. (10)). Differences are caused due
to the discretisation required when embedding the pinhole image into the
discrete 3–D volume according to Eq. (9). Since both perform convolutions
with an unnormalised kernel h on strong depth changes, they produce bright
overshoots followed by dark shadows (Fig. 6(b) and (c)). This behaviour
exactly matches the illustration in Figure 5. Indeed, their local violations of
the maximum–minimum principle on strong depth changes produce results
that are not photorealistic. This leads to a wrong model assumption. In
contrast, comparing Figure 6(d) and (e) demonstrates that our normalised
approach comes very close to the physically well–founded thin lens camera
model which allows to create realistic depth–of–field effects.

3 Variational Formulation

In the last section, we have proposed a novel forward operator that approxi-
mates the thin lens camera model simulating the depth–of–field effect. Now
we show how this operator can be inverted within a variational framework.
Given a stack of blurred images, we want to jointly estimate the depth map
and the completely sharp image.

3.1 Variational Model

Let us assume that a set of 2-D images capturing the same static scene
with varying focal settings is arranged in a 3-D stack s : Ω3 → R+. Here,
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a b c d e

Figure 6: (a) Top: Synthetic 3-D test model. (a) Middle: Sharp im-
age obtained with a pinhole camera renderer. (a) Bottom: Corresponding
grey-valued coded depth map. Right box: Comparison of different forward
operators. From top to bottom: Position of the focal plane changes. (b) Stan-
dard spatially invariant 3-D convolution (10). (c) Forward operator of [1]
without normalisation preservation. (d) Our normalised forward operator
(11). (e) Thin lens camera model (4) realised by raytracing technique.

Ω3 = Ω2 × Ξ denotes the stack volume and Ξ ⊂ R describes the set of focal
settings. The sought depth map d : Ω2 → R+ in combination with the sharp
image u : Ω2 → R+ as it would be recorded by a pinhole camera can be
estimated as a minimiser of the energy

E(u, d) = M(u, d) + α S(|∇d|) . (12)

This energy consists of a data term M and a regularisation term S with a
regularisation parameter α > 0. The data term demands similarity between
the recorded focal stack and an appropriate forward operation applied to the
unknown sharp image u and depth map d. Penalising the residual errors

r[u, d](x, z) = s(x, z)−FN [u, d](x, z) (13)

in a quadratic way is the most common choice and results in the data term

M1(u, d) =

∫
Ω3

(
r[u, d]

)2
dx dz . (14)
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This is especially suited if Gaussian distributed noise is involved. Exactly
like FU , our forward operator FN from (11) is linear in u but nonlinear in
d, and the data term is convex in u but nonconvex in d. A minimiser of the
data term alone is not unique: Regarding a homogeneous region where u is
constant, it is not possible to infer an amount of blurring. Accordingly, in
such regions, the depth d cannot be determined. To avoid such ambiguities
and to cope with the problem of ill–posedness the regularisation term S
imposes (piecewise) smoothness on the depth. This is done by penalising
large gradient magnitudes of the depth profile:

S(|∇d|) =

∫
Ω2

Ψ(|∇d|2) dx , (15)

where ∇ := (∂x, ∂y)
> denotes the 2-D gradient operator and Ψ : R → R+

is a positive increasing function. Our experiments in Section 6 are obtained
with the Whittaker–Tikhonov [39, 44] Ψ(x2) = x2 or regularised total vari-
ation (TV) [34] Ψ(x2) =

√
x2 + ε penaliser. We choose ε = 0.01 to avoid

singularities at x = 0.

3.2 Multi–Channel Images

We assume that the refraction index of the lens is independent of the wave-
length of the light. Consequently, the lens treats all channels equally which
results in a uniform, channel–invariant PSF. Additionally, the focal length
and therewith the distance of the focal plane does not change between dif-
ferent channels. To approximate the depth–of–field effect given a depth map
and a sharp pinhole image with channel index set C, we thus can straight-
forwardly apply our forward operator FN channel–wise (cf. Figure 7).
To solve the inverse problem, Aguet et al. [1] propose to convert the multi–
channel image into a single–channel one before performing their framework.
However, this entails a loss of information. Instead, we believe that one can
improve the reconstruction quality by incorporating the information of all
channels of the recorded focal stack s = (sc)c∈C. Accordingly, the residual
error in each channel reads:

rc[u, d] = sc −FN [uc, d] , ∀c ∈ C . (16)

To determine the sharp multi–channel image u = (uc)c∈C along with the
depth map d, we perform a joint penalisation of deviations by summing up
over all channels c ∈ C within the data term

M2(u, d) =

∫
Ω3

R2 dx dz , (17)
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Figure 7: Multi–channel focal stack. Simulating the depth–of–field effect
by applying our novel forward operator channel–wise to a RGB pinhole im-
age. 5 out of 20 slices. (a) Top: Result of a thin lens camera renderer.
(b) Bottom: Our result.

where we use the abbreviation

R2 :=
∑
c∈C

(
rc[u, d]

)2
. (18)

Since we estimate a joint depth map for all channels, it remains a one channel
signal, and there is no change required in the smoothness term.

3.3 Robustification

Let us now have a closer look at the data term. It measures the distance
between the forward operation that simulates the imaging process and the
given data. Here, quadratic penalisation (least–squares) of deviations is a
common choice and especially suited in the presence of Gaussian distributed
noise. However, the response of an optical system to a point light source
depends on a lot of different factors such as optical imperfections of the
lenses or diffraction phenomena. Therefore, choosing a pillbox or Gaussian
kernel can only be an approximation of the true PSF. For this reason, a
quadratic penalisation of deviations may be too severe. For this reason, we
follow the approach of Welk et al. [43] in the context of deconvolution and
Huber [18] in the context of robust statistics. We replace the quadratic data
term above by

M3(u, d) =

∫
Ω3

Φ(R2) dx dz , (19)
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Figure 8: Focal stack disturbed by artificial Gaussian noise with standard
deviation σnoise = 30 and mean 0.

where we introduce a penaliser function Φ : R+ → R+ that is non–negative
and subquadratic. Thus, it gives less influence to large outliers. More pre-
cisely, we apply the regularised L1-norm Φ(x2) =

√
x2 + ε with some small

stabilisation ε = 0.01.

4 Joint Denoising and Depth–from–Defocus

In the last section, we have proposed a variational framework for the joint
reconstruction of the sharp pinhole image along with the depth map. Until
now, regularisation is restricted solely to the depth map to handle the prob-
lem of ill–posedness. Since we want to recover a sharp image u, at first glance
there is no need to postulate any smoothness assumption on it. However,
especially in the context of microscopy at low light intensity or due to signal
processing in general, the recorded stacks can contain noise. Slices of such a
degraded focal stack are shown in Figure 8. In this case it can be beneficial to
demand (piecewise) smoothness of the reconstructed sharp image. Of course
considering denoising and depth–from–defocus as two separate tasks offers a
straightforward strategy: With the help of variational image restoration [34],
one is able to denoise each 2–D image w̃ : Ω2 → R+ of a focal stack before
performing a standard depth–from–defocus method. In the multi–channel
case where w̃ = (w̃c)c∈C, the reconstructed 2–D image w can be determined
as the minimiser of

E(w) =

∫
Ω2

∑
c∈C

(
w̃c − wc

)2
dx + γ S2(w) . (20)

Here the smoothness term S2 is applied to the evolving image w. In the con-
text of deblurring noisy data, in [27, 23] a simultaneous approach is proposed.
The corresponding energy can be formulated as

E(w) =

∫
Ω2

∑
c∈C

(
w̃c − k ∗ wc

)2
dx + γ S2(w) , (21)
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where k denotes a convolution kernel. Besides a denoising effect, regularisa-
tion declines oscillation artefacts which are typical for deconvolution meth-
ods. Since our depth–from–defocus approach also contains a deconvolution
part, its obvious to follow this idea. Moreover, in our approach, we treat
the unknown depth as a parameter of the blur kernel. Therefore also blind
deconvolution approaches such as the one by Chan and Wong [8] can be seen
as related. An extension to a joint restoration and blind deconvolution model
was presented in [46, 45]. Following these approaches, we extend our method
by adding a second regularisation term S2 that is applied to the evolving
sharp pinhole image u:

E(u, d) = M(u, d) + α S1(d) + β S2(u) . (22)

Here α, β ≥ 0 balance the two regularisation terms

S1(d) =

∫
Ω2

Ψd(|∇d|2) dx , (23)

S2(u) =

∫
Ω2

Ψu(|∇u|2) dx (24)

against the data term, where |∇u|2 :=
∑

c∈C |∇uc|2, and the functions Ψd,Ψu

allow different smoothing behaviours for each task.

5 Minimisation

Afterwards we have presented our novel variational depth–from–defocus func-
tional, let us now investigate the search for a suitable minimiser. For this
purpose, one commonly follows classical additive Euler-Lagrange formalism.
In this section, however, we want to give also a brief insight into the less
known multiplicative Euler–Lagrange variant and show its advantages. We
complete this section by giving numerical and implementation details. For
the sake of notational simplicity, we restrict ourself to grey value data sets.
The extension to colour data sets will be straightforward.

5.1 Euler-Lagrange Equations

For a one–channel focal stack s our joint variational model reads

E(u, d) =

∫
Ω3

Φ
((
s−FN [u, d]︸ ︷︷ ︸

=:r[u,d]

)2
)

dx dz+

∫
Ω2

(
α Ψd(|∇d|2)+β Ψu(|∇u|2)

)
dx .

(25)
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From variational calculus one knows that a sharp pinhole image u and depth
map d as a joint minimiser of (25) must necessarily fulfil the Euler–Lagrange
equations

δE

δu
= 0 and

δE

δd
= 0 (26)

and its corresponding natural boundary conditions. For this purpose, one
has to derive the variational gradients δE

δu
and δE

δd
. To compute a variational

gradient δE
δu

one commonly follows the classical (additive) Euler–Lagrange
formalism [15] and requires〈δE

δu
, v
〉

!
=

∂

∂ε
E(u+ ε v)

∣∣∣
ε=0

, ∀v ∈ R→ R (27)

where 〈·, ·〉 denotes the standard inner product. The right hand side of (27)
can be interpreted as a directional derivative in the direction of a function v
where the perturbation acts additively. Eventually, we obtain

δE

δu
(x) = −2

((
Φ′ · r

)
∗h∗
)

(x, d(x))− 2β · div
(

Ψ′u ∇u
)
, (28)

where we have introduced the abbreviations Φ′ := Φ′(R2), Ψ′u := Ψ′u(|∇u|2),
and r := N−1 · r. The residuum (16) is given by r, and N corresponds to
the normalisation function, i.e. the denominator in (11). The operator ∗
expresses a 3-D convolution and h∗(x) denotes the adjoint of h by h∗(x) :=
h(−x). Following the same formalism w.r.t. the depth d, we obtain the
variational gradient

δE

δd
(x) = 2

((
Φ′ · r

)
∗h∗z
)

(x, d(x)) · u− 2
((

Φ′ · r · FN [u, d]
)
∗ h∗z

)
(x, d(x))

− 2α · div
(

Ψ′d(|∇d|2) ∇d
)
, (29)

where h∗z denotes the partial derivative of h∗ in z–direction. Since Ψ′u,Ψ
′
d > 0,

the natural boundary conditions read

n>∇u = 0 and n>∇d = 0 , (30)

where n> is the normal vector at the image boundary.

5.2 Enforcing Positivity

Variational depth–from–defocus states an ill–posed problem with a non–
unique minimiser. To reduce the problem of ill–posedness a common remedy
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is given by imposing additional inequality constraints. In this way, the so-
lution can be restricted to only physically plausible values. Regarding the
imaging process, we know that the number of photons arriving at the im-
age sensor is larger than zero. Hence, the intensity values of each channel
has to be positive. Also the considered surface is lying in front of the lens
which implies a positive range concerning the depth values. While the clas-
sical additive Euler–Lagrange formalism does not impose any constraints on
the estimation, the multiplicative Euler–Lagrange formalism offers an inter-
esting alternative to retain the positivity of the solution [42]. Based on a
perturbation that acts in a multiplicative way instead of an additive one, we
obtain 〈δ∗E

δu
, v
〉

!
=

∂

∂ε
E(u+ εu · v)

∣∣∣
ε=0

, ∀v ∈ R→ R (31)

for the sharp pinhole image. Applying the same formalism w.r.t. d, this
results in the following functional derivatives:

δ∗E

δu
= u · δE

δu
and

δ∗E

δd
= d · δE

δd
. (32)

The boundary conditions remain the same as in the additive formalism.
In [42], Welk illustrates in two different ways, why the multiplicative Euler–
Lagrange formalism restricts the solution to positive values: On the one
hand, it can be shown that the multiplicative Euler–Lagrange formalism cor-
responds to the reparametrisation u = exp(w) and d = exp(z). On the
other hand, one can also observe that the multiplicative functional gradients
δ∗E
δu

and δ∗E
δd

occur within the additive formalism when one replaces the Eu-
clidean metric du by a hyperbolic one, i.e. du/u. Thus, one effectively moves
unwanted values to infinite distance.

5.3 Discretisation and Implementation

The benefits of applying the multiplicative Euler–Lagrange formalism are
two–fold. In the context of quality, it constrains the solution to the plausi-
ble positive range. As a second benefit, the multiplicative Euler–Lagrange
formalism also gives us access to an efficient semi–implicit iteration scheme.
Concerning the multiplicative gradient from Equation (31) w.r.t. u, we sug-
gest the following semi–implicit scheme:

uk+1 − uk

τ
= 2 uk+1

((
Φ′k · rk

)
∗h∗
)

(x, d) + 2β · div
(

Ψ′ku ∇uk+1
)
· uk , (33)

where τ is the relaxation parameter and k denotes the iteration level. Fur-
thermore, we have used the abbreviations Φ′k := Φ′(R2k), Ψ′ku := Ψ′u(|∇uk|2).
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For the estimation of the depth map d, we obtain

dk+1 − dk

τ
= −2

(((
Φ′k · rk

)
∗h∗z
)

(x, dk) · u

−
((

Φ′k · rk · FN [u, dk]
)
∗ h∗z

)
(x, dk)

)
· dk+1

+ 2α · div
(

Ψ′d(|∇dk|2) ∇dk+1
)
· dk . (34)

Using the standard additive Euler–Lagrange formalism requires to adapt the
relaxation parameter in each iteration step. For this purpose, the computa-
tion of a suitable step–size has to be done by expensive algorithms such as the
backtracking line–search method (see e.g. [1]). We found that the suggested
semi–implicit scheme above gives a higher stability range w.r.t. the relaxation
parameter, the step–size can be chosen fixed in advance. Therefore, we can
refrain from such expensive algorithms.
To apply the presented method on a focal stack consisting of Nz digital
images each sampled on a rectangular regular grid of size Nx ×Ny =: N , we
replace continuous functions by their discrete counterparts. Hence, in each
pixel (i, j) ∈ {1, ..., Nx} × {1, ..., Ny}, we have to fulfil

uk+1
i,j − uki,j

τ
= 2

[((
Φ′k · rk

)
∗h∗
)]

i,j,di,j︸ ︷︷ ︸
D1

· uk+1
i,j + β · 2

[
div
(

Ψ′ku ∇uk+1
)]

i,j︸ ︷︷ ︸
A(uk)uk+1

· uki,j︸︷︷︸
D2

(35)
w.r.t. the sharp pinhole image u. To implement the 3–D convolution, we
transfer its components into the Fourier domain and use the convolution
theorem. While Equation (33) can be solved directly for β = 0, we have
to solve a linear system of equations of the form Bx = b otherwise. By
introducing a single-index notation (e.g. row–major ordering) and arranging
2–D images u : R2 → R+ in vectors u ∈ RN , we can express the point–wise
multiplication with the help of diagonal matrices D1,D2 ∈ RN×N . Fur-
thermore, the discrete regularisation term can be written with the help of
a matrix–vector multiplication A(uk)uk+1. Therewith the above equation
turns into

(I − τ(D1(u)k + β ·D2(uk) ·A(uk)))︸ ︷︷ ︸
B

·uk+1︸︷︷︸
x

= uk︸︷︷︸
b

. (36)

To solve this system of equations we choose the Jacobi algorithm:

xm+1 = D−1(T xm + b), x0 = uk, m = 0, 1, 2, .. (37)
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where

T = τ · β ·ArestD2 ,

D = I − τ ·D1 − τ · β ·AdiagD2 , (38)

and we split A(uk) = Arest + Adiag into an easily invertible diagonal part
and the remaining off–diagonal one. Concerning the estimation of the depth
map d, we proceed analogously by setting D2 = dki,j, exchanging β by α and
setting

D1 := −2
[(

Φ′k · rk
)
∗h∗z
]
i,j,di,j
· ui,j + 2

[(
Φ′k · rk · FN [u, dk]

)
∗ h∗z

]
i,j,di,j

.

Since both systems of equations depend on each other, we perform an alter-
nating minimisation strategy [22]. Solving the first problem (e.g. recovering
the sharp image u), the second problem (e.g. the estimation of the depth
d) remains fixed. After a fixed number of gradient descent steps, the roles
are exchanged. Such a strategy is very common e.g. in blind deconvolution
problems [8] where both the sharp image and the blur kernel have to be es-
timated. To handle the problem of nonconvexity, we apply a coarse–to–fine
strategy where the solution of the coarser level provides the initialisation for
the next finer one.
To guarantee the positivity of our solution xk+1 under the condition that xk

is positive, we have to restrict the relaxation parameter τ . Since we perform
isotropic regularisation, we know that T > 0 for all τ > 0. We thus only
have to consider D. To remain in a positive range

D`,` > 0 ⇔ [−D1 − β ·D2 ·Adiag]`,` > −
1

τ
(39)

has to hold ∀` ∈ {1, . . . , N}. For the texture as well as for the estimation
of the depth map D1 can have an arbitrary sign. In case that all entries
of D1 are negative Eq. (39) is fulfilled for all τ , since −β ·D2 ·Adiag > 0.
Otherwise, the solution remains positive for

τ <
−1

min`[−D1]`,`
. (40)

6 Experiments

To compare the performance and reconstruction quality of each of our pre-
sented concepts, in this section, we apply our approaches on synthetic and
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Figure 9: Equifocal case: High textured plane parallel to the lens. 5 out of
9 images of a focal stack rendered by a thin lens camera renderer.

real world data. The main focus lies on comparing different forward oper-
ators, the benefit of robustification as well as the usage of full colour infor-
mation. Besides that, we want to demonstrate the capabilities of our novel
joint depth-from-defocus and denoising approach.

6.1 Synthetic Data

As already mentioned in Section 2.4, the forward operator of Aguet et al. can
be understood as a standard 3-D convolution when placing the sharp pinhole
image in a dark volume corresponding to the depth profile. Consequently, the
natural question arises whether a 3-D deconvolution can be used to recover
the sharp pinhole image from a recorded focal stack s. Our first experiment
deals with exactly this question. To this end, we generate a focal stack
with the help of a thin lens camera renderer (lens diameter D = 2.69 cm,
lens distance to image plane v = 35 mm), where the distance of the focal
plane to the lens varies equidistantly from fp = 3 cm to fp = 11 cm. We
produce 9 images of size 250 × 250 in total (see Figure 9). The 3-D model
that we consider in this case is simply a highly textured equifocal plane at
distance d(x) = 7 cm. We deblur the generated focal stack with variational
deconvolution using an extension of Equation (21) to the three–dimensional
case where the 3-D PSF is given by h. Regarding Figure 10 (a) one recognises
that variational 3-D deconvolution is not able to reconstruct the sharp slice
in a reasonable way. This is because the standard 3D deconvolution does
not model the fact that the focal stack has to originate from a dark volume
with only a single sharp slice according to a depth profile. However, if we
incorporate depth information e.g. by setting all values to zero that not
correspond to the actual depth in each iteration, we obtain the result in
Figure 10(b). Of course this is not a practical solution since it requires
knowledge of the correct depth. Since such an approach is not useful even
in this simple scenario, we do not consider the standard 3–D deconvolution
any further.
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Figure 10: Variational 3-D deconvolution applied to the focal stack of Figure
9. The slice corresponding to the true depth d(x) = 7 cm at different iteration
time is shown. Using gradient descent methods, the iteration time denotes
the product of time step size and actual iteration number. (a) Top: Without
further assumptions. From left to right: Iteration time = 0.25, 0.50, 1.00,
5.00, and 10.00. (b) Bottom: Additional all slices not corresponding to
depth profile are set to zero. From left to right: Iteration time = 0.10, 0.25,
0.50, 1.00, and 5.00.

In our second experiment, we compare our approach against the variance
method and the approach of Aguet et al. [1]. To this end, we use the thin
lens camera renderer with the same optical settings as in the first experiment.
We move the focal plane equidistantly from fp = 3 cm to fp = 7 cm to render
20 images of the 3-D model from Fig 6(a). First, we restrict ourselves to the
one–channel case, data term M1 and Whittaker–Tikhonov regularisation on
d. We refrain from any regularisation of the sharp pinhole image u. In Figure
6(e) 3 different slices of this focal stack can be seen. Figure 11 shows results
of the different approaches: The variance method (Fig. 11(a)) suffers from
two undesired hills in front of and behind the hemisphere. This is because the
variance method misinterprets the blur circle of the hemisphere as a higher
local sharpness than the flat contrast of the textured floor.
Figure 11(b) and (c) demonstrate the consequences ignoring normalisation.
Applying FU to a depth map produces severe over- and undershoots at strong
depth changes. This implies that keeping strong depth changes in the inverse
operation drastically increases the residual error at those locations. Thus,
when minimising the residual error with FU as forward operator, smooth
changes of the depth are preferred. This can be seen as an unwanted reg-
ularisation of the depth. Furthermore, comparing Figure 11(b) and (c) one

22



a b c

d e f

g

h

Figure 11: Comparison of different reconstruction methods. Left box:
In reading order (a) Variance Method (VM) with a subsequent Gaussian
smoothing step (patch-size = 6, σ = 4.0). (b) Without normalisation FU ,
initialised with constant depth (α = 45). (c) Dito, initialisation provided
by the Variance Method. (d) Our normalised approach FN , initialised with
constant depth (α = 150). (e) Dito initialisation provided by the Variance
Method. (f) Ground truth of the depth profile. Right box: (g) Top: Esti-
mated pinhole image belonging to the depth map (e). (h) Bottom: Ground
truth of the pinhole image.

observes that the result is strongly affected by the initialisation. While in the
first one a constant depth map is used, the second one was initialised with
the result of the variance method. Due to the strong regularisation implied
by FU , initialising with a constant depth, the method is not able to converge
to a reasonable solution.
In contrast to that, our forward operator FN approximates the thin lens
camera model. Thus, it is much closer to the physical imaging process, es-
pecially at strong depth changes. Embedding our forward operation into a
variational framework improves the estimation of the unknown depth as well
as the sharp pinhole image substantially. Indeed, as we can see in the Fig-
ures 11(d) and (e), the hemisphere as well as the strong depth change at the
wall are well reconstructed and no smoothing effect implied by our forward
operator exists. Also regarding the sharp image (Figure 11(g)), our results
match the ground truth in a better way. This can also bee seen in Table
1. Moreover, the initialisation of our approach does not severely affect the
solution.

In our third Experiment, we investigate a possible improvement of our re-
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Table 1: Error measurement. To judge the estimated pinhole image as well
as the depth map against their ground truth, we consider the mean squared
error (MSE) and the structural similarity (SSIM) [40]. We show the error
of the pure variance method (VM) as well as the one with an additional
post–smoothing step with variance σ. Further, the operator FU and our
normalised imaging model FN is considered. The latter two are initialised
once with a constant depth and once with an estimation of the VM.

Method VM FU Ours

σ = 0 σ = 4 const. VM const. VM

Depth MSE 2.83 1.10 21.66 2.26 0.77 0.58

SSIM 0.976 0.995 0.94 0.992 0.995 0.997

Image MSE 48.33 46.38 124.52 52.17 49.09 45.17

SSIM 0.87 0.87 0.67 0.87 0.90 0.92

sult of Figure 11(e) by replacing Whittaker–Tikhonov regularisation [39, 44]
Ψ(x2) = x2 by regularised TV [34] Ψ(x2) =

√
x2 + ε with ε = 0.01. Regard-

ing Figure 12, we can clearly see that depending on the smoothness weight α
a better reconstruction of the wall is possible. However the cost is a cropped
hemisphere suffering from a too steep depth change. This can also be seen
regarding the reconstruction of the texture of the hemisphere. A quantitative
comparison for different α is provided in Table 2.

The fourth experiment investigates the benefit of incorporating all channels

Figure 12: Visual comparison of quadratic data term with TV regularisation.
From left to right: (a): α = 150. (b): α = 180. (c): α = 220. (d): α = 300.
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Table 2: Quantitative comparison for different α using TV regularisation.
Apart from TV regularisation, the same settings as in our first experiment
(Figure 11(e)) are applied.

Parameter α 150 180 220 300

Depth MSE 0.51 0.48 0.77 1.06

SSIM 0.9959 0.9962 0.9944 0.9933

Image MSE 53.41 51.29 55.80 54.82

SSIM 0.9115 0.9125 0.8974 0.8818

given a multi–channel focal stack. To this end, we apply our algorithm with
data term M2 and Whittaker–Tikhonov regularisation on d to an RGB ver-
sion of the focal stack from the second experiment (see Figure 7(a)). In
Figure 13 its result is compared against our single channel approach. As we
can recognise, incorporating the information of all channels not only leads to
a more appealing and accurate estimation of the sharp pinhole image, but
also the reconstruction of the depth map is closer to the ground truth.

The fifth experiment illustrates the impact of the robustification of the
data term. We compare the results using a quadratic data term M2 against
the data term M3 that penalises outliers less severely. In Figure 14 both

Figure 13: Visual comparison. (a) Left: Single channel approach. (b) Mid-
dle: Incorporating all channels of a RGB focal stack. (c) Right: Ground
truth.
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Figure 14: (a) Left: Without robustification. (b) Middle: With robustifi-
cation. (c) Right: Ground truth.

results are shown. The data term M3 gives a higher reconstruction qual-
ity especially at the strong depth change at the wall (cf. Figure 15). Next,
we replace Whittaker–Tikhonov by TV regularisation on d. The results are
shown in Figure 16. As we can see, in contrast to our second experiment,
this time TV can improve the reconstruction result although the hemisphere
is shrunk. Table 3 summarises the results.

In our next experiment, we investigate the reconstruction performance if only
half the number of slices of the focal stack are available. To this end, we re-
move the odd number of slices of our colour focal stack. Next, we apply our
method using data term M3 as well as Whittaker–Tikhonov or TV regulari-
sation. The results are compared in Figure 17 and Table 4.

The last experiment on synthetic data demonstrates the potential of our

Figure 15: (a) Left: Without robustification. (a) Right: With robustifica-
tion.
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Figure 16: (a) Left: Robust with Whittaker–Tikhonov regularisation. (b)
Middle: Robust with TV regularisation. (c) Right: Ground truth.

Table 3: Quantitative comparison: Colour, robustification and TV regu-
larisation. Again mean squared error (MSE) and the structural similarity
(SSIM) [40] are used. We consider the benefit of incorporating all image
channels as well as the influence of a robustification. We use the sharp grey
scale pinhole image as ground truth. Therefore, we convert the reconstructed
sharp colour image to grey scale before measuring the MSE and SSIM.

Method FN Colour Colour Colour

+ Robust + Robust + TV

(α = 780) (α = 60) (α = 20)

Depth MSE 0.58 0.23 0.17 0.11

SSIM 0.9973 0.9985 0.9987 0.9990

Image MSE 45.17 33.73 40.61 40.77

SSIM 0.9175 0.9301 0.9140 0.9150

novel joint denoising and depth–from–defocus approach. To realise this, we
perform Charbonnier regularisation [9] Ψu(x

2) := 1/
√

1 + x2/λ2 with λ = 2
on u and Whittaker–Tikhonov regularisation on d. We consider the focal
stack of the second experiment and add artificial Gaussian noise with zero
mean and standard deviation σnoise = 30 (cf. Figure 8). As a baseline for
comparison, we consider a sequential framework where each slice of the focal
stack is denoised by image restoration (corresponding Eq. (20)) in advance
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Figure 17: Reconstruction result if only half number of slices are available.
(a) Left: With Whittaker–Tikhonov regularisation. (b) Middle: With TV
regularisation. (c) Right: Ground truth.

Table 4: Quantitative comparison if only half number of slices are available.

Method Whittaker–Tikhonov (α = 32) TV (α = 6.0)

Depth MSE 0.27 0.26

SSIM 0.9969 0.9971

Image MSE 80.26 81.72

SSIM 0.8392 0.8407

before performing depth–from–defocus. We optimised the parameters α and
β, γ in order to minimise the MSE w.r.t. reconstructed pinhole image u and
depth map d respectively. The behaviour of the MSE of u and d in depen-
dency of the chosen α and β, γ are shown in Figure 19 for the sequential
approach and Figure 20 respectively for our novel joint approach. Since our
data set is disturbed by strong Gaussian noise, we refrain from robustification
in this experiment and consider a quadratic penalisation which is tailored for
this kind of noise. The comparisons in Figure 18 and Table 5 show that
our novel joint approach outperforms the sequential one qualitatively and
quantitatively.
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Table 5: Quantitative comparison of sequential and joint approach.

Method Seq. (α = 500, γ = 20) Joint (α = 350, β = 2.0)

Depth MSE 0.52 0.32

SSIM 0.9971 0.9976

Image MSE 110.02 103.18

SSIM 0.7421 0.7649

6.2 Real–World Data

Until now the experiments have been restricted to synthetic data. While syn-
thetic experiments offer the advantage of having a ground truth and there-
with the possibility to judge the results quantitatively, it is also important
to consider the results on focal stacks captured by a real optical system. In
Figure 21(a), we can see a focal stack showing a house fly eye. For this
experiment, our approach uses a coarse–to–fine strategy. On the coarsest
grid the method is initialised with the variance method. Since, there is no
noise involved and we want a sharp reconstruction of the pinhole image, we
refrain from regularisation on u. On d we apply TV regularisation. Figure
21(b) shows the estimated sharp pinhole image along with the estimated
depth map. The determined pinhole image is reconstructed well, and the

Figure 18: (a) Left: Sequential approach. (b) Middle: Joint approach.
(c) Right: Ground truth.
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Figure 19: Sequential approach: MSE of u and d respectively w.r.t. the
parameter α (first row) and γ (second row).
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depth–of–field appears infinite: The small hairs in the front as well as the
compound eye are entirely sharp. The level of detail can also be seen re-
garding the depth map. Also here small structures such as hairs are clearly
recognisable. For the depth map a grey value coding is used: The brighter
the grey value, the larger the depth.
For the second real–world experiment, we apply our approach to a RGB
focal stack capturing a coffee bean. The focal stack consists of 22 frames
where 3 out of them can be seen in Figure 22(a). Also for this experiment,
a coarse–to–fine strategy is used. This time we refrain from the variance
method and use a constant depth value as initialisation on the coarsest grid.
Furthermore, since the depth of the coffee bean only change smoothly, we
apply Whittaker–Tikhonov regularisaion on d. The results are shown in
Figure 22(b).

7 Conclusions

We have shown that modelling important physical properties such as the
maximum–minimum principle helps to achieve a significantly better recon-
struction quality in the depth–from–defocus problem. In contrast to many
other papers in this field, we have employed robustification to cope with re-
maining imperfections in the imaging model, and we have made full usage of
the colour information. Moreover, we have emphasised the benefits of a joint
handling of denoising and depth–from–defocus over two separate models. By
taking advantage of appropriate mathematics, we have mitigated the ill–
posedness of the depth–from–defocus problem: On the one hand, the energy
formulation allows for a stabilised model inversion via variational calculus.
On the other hand, replacing the classical additive Euler–Lagrange formalism
by its multiplicative variant preserves the positivity of the solution.

Figure 21: Focal stack of a house fly eye (grey scaled). This focal stack was
provided by the Biomedical Imaging Group EPFL, Lausanne, Switzerland.
(a) Left box: 3 out of 21 images of the focal stack. (b) Right box:
Recovered pinhole image and depth profile (α = 25).
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Figure 22: Focal stack of a coffee bean. This stack was provided by the
Computer Graphics Group, MPI for Informatics, Saarbrücken, Germany.
(a) Left box: 3 out of 22 images of the focal stack. (b) Right box:
Estimated pinhole image and reconstructed depth map (α = 20).

Our work is an example how one can benefit from physically refined modelling
in conjunction with multiplicative calculi. It is our hope that both concepts
will receive more popularity in future computer vision models.

In our ongoing work we intend to incorporate further physical refinements
into our model.
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