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Abstract

We construct a new counterexample confirming the sharpness of
the Dini-type condition for the boundary of Ω. In particular, we show
that for convex domains the Dini-type assumption is the necessary and
sufficient condition which guarantees the Hopf-Oleinik type estimates.

1 Introduction

The influence of the properties of a domain to the behavior of a solution is one
of the most important topic in the qualitative analysis of partial differential
equations.
The significant result in this field is the Hopf-Oleinik lemma, known also as
the ”Boundary Point Principle”. This celebrated lemma states:

Let u be a nonconstant solution to a second-order uniformly elliptic nondi-
vergence equation with bounded measurable coefficients, and let u attend its
extremum at a point x0 located on the boundary of a domain Ω ⊂ Rn. Then
∂u
∂n

(x0) is necessarily nonzero provided that ∂Ω satisfies the proper assump-
tions at x0.
This result was established in a pioneering paper of S. Zaremba [Zar10] for
the Laplace equation in a 3-dimensional domain Ω having interior touching
ball at x0 and generalized by G. Giraud [Gir32]-[Gir33] to equations with
Hölder continuous leading coefficients and continuous lower order coefficients
in domains Ω belonging to the class C1,α with α ∈ (0, 1).
Notice that a related assertion about the negativity on ∂Ω of the normal
derivative of the Green’s function corresponding to the Dirichlet problem for
the Laplace operator was proved much earlier for 2-dimensional smooth do-
mains by C. Neumann in [Neu88] (see also [Kor01]). The result of [Neu88]
was extended for operators with the lower order coefficients by L. Lichtenstein
[Lic24]. The same version of the Boundary Point Principle for the Laplacian
and 3-dimensional domains satisfying a more flexible interior paraboloid con-
dition was obtained by M.V. Keldysch and M.A. Lavrentiev in [KL37].
A crucial step in studying the Boundary Point Principle was made by E. Hopf
[Hop52] and O.A. Oleinik [Ole52], who simultaneously and independently
proved the statement for the general elliptic equations with bounded coeffi-
cients and domains satisfying an interior ball condition at x0.
Later the efforts of many mathematicians were focused on generalization of
the Boundary Point Principle in several directions (for the details we refer
the reader to [ABM+11] and [Alv11] and references therein). Among these
directions are the extension of the class of operators and the class of solutions,
as well as the weakening of assumptions on the boundary.
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The widening of the class of operators to singular/degenerate ones was made
in the papers [KH75], [KH77] and [ABM+11], while the uniform elliptic op-
erators with unbounded lower order coefficients were studied in [Saf10] and
[Naz12] (see also [NU09]). We mention also the publications [Tol83] and
[MS15] where the Boundary Point Principle was established for a class of
degenerate quasilinear operators including the p-Laplacian.
We note that before 2010 all the results were formulated for classical solu-
tions, i.e. u ∈ C2 (Ω). The class of solutions was expanded in [Saf10] to
strong generalized solutions with Sobolev’s second order derivatives. The
latter requirement seems to be natural in studying of nondivergence elliptic
equations.
The reduction of the assumptions on the boundary of Ω up to C1,Dini-regularity
was realized for various elliptic operators in the papers [Wid67], [Him70] and
[Lie85] (see also [Saf08]). A weakened form of the Hopf-Oleinik lemma (the
existence of a boundary point x1 in any neighborhood of x0 and a direction
` such that ∂u

∂`
(x1) 6= 0) was proved in [Nad83] for a much wider class of

domains including all Lipschitz ones.
The sharpness of some requirements was confirmed by corresponding coun-
terexamples constructed in [Wid67], [Him70], [KH75], [Saf08], [ABM+11]
and [Naz12]. In particular, the counterexamples from [Wid67], [Him70] and
[Saf08] show that the Hopf-Oleinik result fails for domains lying entirely in
non-Dini paraboloids.
The main result of our paper is a new counterexample showing the sharpness
of the Dini-type condition for the boundary of Ω. The simplest version of
this counterexample can be formulated as follows:

Let Ω be a convex domain in Rn, let ∂Ω in a neighborhood of the origin be
described by the equation xn = F (x′) with F > 0 and F (0) = 0, and let
u ∈ W 2

n, loc (Ω) ∩ C
(
Ω
)

be a solution of the uniformly elliptic equation

−aij(x)DiDju = 0 in Ω.

Suppose also that u
∣∣
∂Ω

vanishes at a neighborhood of the origin. If, in ad-

dition, the function δ(r) = sup
|x′|6r

F (x′)
|x′| is not Dini continuous at zero, then

∂u
∂n

(0) = 0.

It turns out that for convex domains the Dini-type assumption is necessary
and sufficient for the validity of the Boundary Point Principle. We emphasize
that in our counterexample the Dini-type condition fails for supremum of
F (x′)/|x′|, while in all the previous results of this kind it fails for infimum of
F (x′)/|x′|. In other words, we show that the violating of the Dini-condition
just in one direction causes the lack of the Hopf-Oleinik lemma.
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1.1 Notation and Conventions

Throughout the paper we use the following notation:
x = (x′, xn) = (x1, . . . , xn−1, xn) is a point in Rn;
Rn

+ = {x ∈ Rn : xn > 0} ;
|x|, |x′| are the Euclidean norms in the corresponding spaces;
x · y is the inner product in Rn;
Ω is a bounded convex domain in Rn with boundary ∂Ω;
∂∗Ω is the set of points of ∂Ω at which the normal to ∂Ω exists;
n(x0) is the unit vector of the inner normal to ∂Ω at the point x0.
Pr(x) = {x ∈ Rn : |x′ − x′| < r, 0 < xn − xn < r}; Pr = Pr(0);
Br(x

0) is the open ball in Rn with center x0 and radius r; Br = Br(0);

For r1 < r2 we define the annulus B(x0, r1, r2) = Br2(x
0) \Br1(x

0).
v+ = max {v, 0} , v− = max {−v, 0}.
‖ · ‖∞,Ω denotes the norm in L∞ (Ω).

We adopt the convention that the indices i and j run from 1 to n. We also
adopt the convention regarding summation with respect to repeated indices.

Di denotes the operator of differentiation with respect to the variable xi;

L is a linear uniformly elliptic operator with measurable coefficients:

Lu ≡ −aij(x)DiDju+ bi(x)Diu, νIn ≤ (aij(x)) ≤ ν−1In, (1)

where In is identity (n× n)-matrix. We denote b(x) = (b1(x), . . . , bn(x)).

We use letters C and N (with or without indices) to denote various constants.
To indicate that, say, C depends on some parameters, we list them in the
parenthesis: C(. . . ).

Definition 1. We say that a function σ : [0, 1] → R+ belongs to the
class D1 if

• σ(0) = 0, σ(1) = 1;

• σ is increasing and concave;

• σ(t)/t is summable.

Remark 1.1. We say that a function ζ satisfies the Dini condition at zero
if

|ζ(r)| 6 Cσ(r),

and σ belongs to the class D1.
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Definition 2. Let a function σ belong to the class D1. We define the
function Jσ as follows

Jσ(s) :=

sˆ

0

σ(τ)

τ
dτ. (2)

Remark 1.2. Due to concavity of σ the function σ(t)/t decreases and, con-
sequently,

σ(t) 6 Jσ(t) ∀t ∈ [0, 1]. (3)

In addition, for t 6 t0 6 1 we have

σ (t/t0) =
σ (t/t0)

t/t0
· t/t0 6

σ(t)

t
· t/t0 =

σ(t)

t0
, (4)

and, similarly,

Jσ (t/t0) 6
Jσ(t)

t0
. (5)

2 Preliminaries

2.1 Properties of Ω

Let Ω be a bounded convex domain in Rn. The convexity implies the exis-
tence of R0 > 0 such that for any x0 ∈ ∂Ω the set ∂Ω ∩ PR0(x

0) in local
cartesian coordinate system is the graph of a nonnegative function satisfying
the Lipschitz condition. There is no restriction in supposing that R0 6 1.
Without loss of generality we may also assume that the origin belongs to ∂Ω
and

PR0 ∩ Ω = {(x′, xn) ∈ Rn : |x′| 6 R0, 0 6 F (x′) < xn < R0} .

For r ∈ (0,R0) we define the functions δ = δ(r) and δ1 = δ1(r) by the
formulas

δ(r) := max
|x′|6r

F (x′)

|x′|
, δ1(r) := max

|x′|6r
|∇F (x′)|. (6)

Lemma 2.1. The following statements hold:

(a) δ1(r)→ 0 as r → 0 iff δ(r)→ 0 as r → 0.

(b) δ1(r) satisfies the Dini-condition at zero iff δ(r) satisfies the Dini-
condition at zero.
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Proof. By convexity of F , we have for any x′ and z′ the estimate

F (z′) > F (x′) +∇F (x′) · (z′ − x′). (7)

Therefore,

|∇F (x′)| > ∇F (x′) · x
′

|x′|
>
F (x′)

|x′|
,

and, consequently,
δ1(r) > δ(r). (8)

On the other hand, for any r < R0 we can find a point x′∗ such that

|∇F (x′∗)| = δ1(r).

Chosing z′ = x′∗ + r
∇F (x′∗)

|∇F (x′∗)|
, we easily deduce from (7) the inequalities

|z′| 6 2r and F (z′) > rδ1(r),

which provide

δ(2r) > δ(|z′|) >
δ1(r)

2
. (9)

Combining (8) and (9) we conclude that statement (a) is obvious and the
integrals

R0ˆ

0

δ(r)

r
dr and

R0ˆ

0

δ1(r)

r
dr

converge simultaneously.

If δ(r) does not converge to zero as r → 0, we can easily see that the domain
Ω is contained in a dihedral wedge with the angle less than π and the edge
going through the origin. For this case the statement of Main Theorem
is proved already in [AN00, Theorem 4.3]. By this reason we will assume
throughout this paper that

δ(r)→ 0 as r → 0. (10)

In view of (10), it is evident that δ and δ1 are moduli of continuity at the
origin of the functions F (x′)/|x′| and |∇F (x′)|, respectively.

If x0 ∈ ∂Ω is not the origin, we will denote the coordinates in the above-
mentioned local cartesian system by y1, . . . , yn. The unit vector directed
along the yn-axes will be denoted by n(x0). Observe that n(x0) is the inward
normal vector to ∂Ω if x0 is a smooth point of ∂Ω.
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2.2 Properties of X (Ω)

Let X (Ω) be a function space with the norm ‖ · ‖X ,Ω.

We suppose that X (Ω) has the following properties:

(i) For arbitrary measurable function g defined in Ω and any function

f ∈ X (Ω) the inequality |g(x)| 6 |f(x)| implies g ∈ X (Ω) and

‖g‖X ,Ω 6 ‖f‖X ,Ω;

(ii) For fk ∈ X (Ω) the convergence fk ↘ 0 a.e. in Ω implies

‖fk‖X ,Ω → 0.

Using the terminology of classic monograph of Kantorovich and Akilov [KA82]
we may say that X (Ω) is the ideal functional space with order continuous
monotone norm (see [KA82, §3, Chapter IV, Part I] for more details).

We will also assume that

(iii) Xloc (Ω) contains the Orlicz space LΦ,loc (Ω) with Φ(ς) = eς − ς − 1.

Finally, the basic assumption about X (Ω) is the Aleksandrov-type maximum
principle. It means that if D (Du) ∈ Xloc (Ω), u|∂Ω ≤ 0, and |b| ∈ X (Ω) then

u 6 N0(n, ν, ‖b‖X ,Ω) · diam(Ω) · ‖(Lu)+‖X ,{u>0}. (11)

Remark 2.2. It is well known from [Ale60], [Bak61] and [Ale63] (see also
survey [Naz05] for further references) that Ln(Ω) has property (11). It is
also evident that properties (i)-(iii) are satisfied in Ln (Ω). Therefore, Ln(Ω)
can be treated as a ”basic” example of X (Ω). As other examples of the space
X (Ω) we mention some Lebesgue weighted spaces with power weights (see
[Naz01]).

Remark 2.3. Unlike the natural properties (i)-(ii), assumption (iii) is rather
”technical” one. Without (iii), our arguments from the proof of Step 3 in
Theorem 4.1 are not applicable to the approximating operator Lε. So, we
can not withdraw (iii) in abstract setting. However, in all known examples
of X (Ω) the property (iii) is satisfied.

Remark 2.4. Some of the statements, that will be referred to in the sequel,
were proved earlier just for the case X (Ω) = Ln(Ω). However, if all the
arguments are based only on the Aleksandrov-type maximum principle, these
statements remain valid for an arbitrary considered space X (Ω). In such
cases, we will refer without any further explanation.
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We also need the following convergence lemmas.

Lemma 2.5. Let {fj} be a sequence of measurable functions on Ω, and let
f ∈ X (Ω). Suppose also that fj → 0 in measure on Ω, and |fj(x)| 6 |f(x)|.
Then

‖fj‖X ,Ω → 0 as j →∞. (12)

Proof. We argue by a contradiction. Suppose (12) fails. Then there exists a
subsequence {fjk} satisfying

‖fjk‖X ,Ω > ε > 0, ∀k ∈ N. (13)

Due to the Riesz theorem, there exists also a sub-subsequence
{
fjkl

}
such

that
fjkl → 0 a.e. in Ω.

For simplicity of notation we renumber the latter subsequence
{
fjkl

}
and

denote its elements again by fj.

Setting f̃k := sup
j>k
|fj| we can easily see that f̃k ↘ 0 a.e. in Ω. Now, taking

into account properties (i) and (ii) of the space X (Ω) we immediately get a
contradiction with inequalities (13). The proof is complete.

Lemma 2.6. Let f ∈ X (Ω), and let µ(ρ) := sup
x∈Ω
‖f‖X ,Bρ(x)∩Ω.

Then
µ(ρ)→ 0 as ρ→ 0.

Proof. For every ρ > 0 there exists a point x∗ = x∗(ρ) ∈ Ω such that

‖f‖X ,Bρ(x∗)∩Ω >
1

2
µ(ρ).

Next, we denote by χBρ(x∗) the the characteristic function of the set Bρ(x
∗),

and set
fρ := f · χBρ(x∗).

It is evident that |fρ| → 0 in measure on Ω. Application of Lemma 2.5
finishes the proof.

Remark 2.7. We call µ(ρ) := sup
x∈Ω
‖f‖X ,Bρ(x)∩Ω the modulus of continuity of

function f in X (Ω).
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Lemma 2.8. Let D(Du) ∈ X (Ω), let L be defined by (1), and let Lu ∈ X (Ω).
There exist the family of operators

Lε = −aijε (x)DiDj + biε(x)Di

with smooth coefficients aijε and the bounded coefficients biε satisfying

νIn ≤ (aijε (x)) ≤ ν−1In, x ∈ Ω, (14)

|biε(x)| 6 |bi(x)|, x ∈ Ω, (15)

‖ (L − Lε)u‖X ,Ω → 0 as ε→ 0, (16)

respectively.

Proof. We start with extension of aij on the whole Rn by the identity matrix
and denote by aijε the standard mollification of extended functions aij. By
construction, the coefficients aijε are smooth functions converging as ε → 0
to aij a.e. in Ω. Moreover, it is clear that inequalities (14) are true.
Further, we set

b̃iε(x) := min
{
|bi(x)|, ε−1

}
· sign bi(x). (17)

In view of (17), it is evident that b̃iεDiu converges as ε→ 0 to biDiu almost

everywhere in Ω. We claim that it is possible to change b̃iε such that the
”corrected coefficients” biε satisfy

|biεDiu| 6 |biDiu| in Ω. (18)

Indeed, if |̃biεDiu| 6 |biDiu| in Ω then (18) holds with biε ≡ b̃iε. Otherwise,

consider a point x0 ∈ Ω where |̃biε(x0)Diu(x0)| > |bi(x0)Diu(x0)|.

a) Let b̃iε(x
0)Diu(x0) > bi(x0)Diu(x0) > 0. In this case we decrease all the

coefficients b̃iε(x
0) corresponding to the positive summands such that

the both sums biεDiu and biDiu becomes equal.

b) Let b̃iε(x
0)Diu(x0) < bi(x0)Diu(x0) 6 0. In this case we decrease all the

coefficients b̃iε(x
0) corresponding to the negative summands such that

the both sums biεDiu and biDiu becomes equal.

c) Finally, let b̃iε(x
0)Diu(x0) and bi(x0)Diu(x0) have different signs. In this

case we apply to −biε(x0) the arguments from case a) or from case b),
respectively.

Due to construction, the ”corrected sum” biεDiu also converges as ε → 0 to
biDiu a.e. in Ω, and pointwise inequalities (15) hold true.
Finally, taking into account (18) and applying Lemma 2.5 we get (16).
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3 Gradient estimates near the boundary

Lemma 3.1. Let N ⊂ Rn
+ be an open set, let γ = ν√

n−1
, let ρ > 0, and let

Πρ = {y ∈ Rn : |yi| < ρ for i = 1, . . . , n− 1; 0 < yn < γρ} .

We assume that |b| ∈ X (N ) and a function v satisfies the conditions

D (Dv) ∈ Xloc (N ) , v > 0 in Πρ, v > k = const > 0 on ∂N ∩ Πρ.

Then

v > C1k − C2k‖b‖X ,N∩Πρ − C3ρ‖(Lv)−‖X ,N∩Πρ in N ∩B γρ
4

(z),

where z = (0, . . . , 0, 1
2
γρ), while C1 = 1

16
(1− γ2), C2 = C2(n, ν), and

C3 = C3(n, ν).

Proof. The proof is similar in spirit to [AU95, Lemma 1].
Consider the barrier function

ψ(y) = k

[
1− |y

′|2

ρ2
+

y2
n

γ2ρ2
− 2

yn
γρ

]
.

An elementary computation gives

Lψ 6 k

(
2(n− 1)

ρ2
ν−1 − 2

γ2ρ2
ν

)
+ |b||Dψ| 6 N1(n, ν)|b|k

ρ
in Πρ.

Moreover, setting

S1 = {y ∈ ∂(N ∩ Πρ) : |yi| = ρ for some i = 1, . . . , n− 1},
S2 = {y ∈ ∂(N ∩ Πρ) : yn = γρ}

we have

ψ
∣∣
S1∪S2

6 0 6 v,

ψ
∣∣
∂N∩Πρ

6 k 6 v
∣∣
∂N∩Πρ

.

Applying inequality (11) in N ∩ Πρ to the difference ψ − v we obtain

ψ − v 6 N0 · diam(Πρ) · ‖(Lψ − Lv)+‖X ,N∩Πρ in N ∩ Πρ,

and, consequently,

v > k

[
1− γ2ρ2

16ρ2
+

9γ2ρ2

16γ2ρ2
− 2

3γρ

4γρ

]
− C2k‖b‖X ,N∩Πρ − C3ρ‖(Lv)−‖X ,N∩Πρ

=
(1− γ2)

16
k − C2k‖b‖X ,N∩Πρ − C3ρ‖(Lv)−‖X ,N∩Πρ in N ∩Bθρ(z).
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Our next statement is a version of Theorem 2.3 [Naz12].

Lemma 3.2. Let D(Dv) ∈ Xloc (Ω), let v
∣∣
∂Ω

= 0, let |b| ∈ X (Ω), and let
0 ∈ ∂Ω. Suppose also that for all ρ 6 ρ∗ the inequalities

‖bn‖X ,Pρ∩Ω 6 Bσ (ρ/ρ∗) , ‖ (Lv)+ ‖X ,Pρ∩Ω 6 Fσ (ρ/ρ∗)

hold true. Here B and F are some positive constants, while a function σ
belongs to D1.
Then

sup
0<xn<ρ

v(0, xn)

xn
6 C4

(
ρ−1 sup

Pρ∩Ω
v + FJσ (ρ/ρ∗)

)
, ∀ρ 6 ρ∗. (19)

Here the constant C4 depends on n, ν, B, σ, and on the moduli of continuity
of |b| in X (Pρ∗ ∩ Ω), whereas Jσ is a function defined by formula (2).

Proof. Carefully repeating in Pρ ∩Ω all the arguments necessary for proving
Theorem 2.3 from [Naz12] and taking into account Remark 2.4 from the
present paper we arrive at the inequality

sup
0<xn<ρ/2

v(0, xn)

xn
6 N

(
ρ−1 sup

Pρ/2∩Ω
v + FJσ (ρ/ρ∗)

)
, (20)

where the constantN depends only on n, ν, B, σ and the moduli of continuity
of |b| in X (Pρ∗ ∩ Ω) .

Further, it is easy to find a majorant for
v(0, xn)

xn
for any xn ∈ [ρ/2, ρ) since

sup
ρ/26xn<ρ

v(0, xn)

xn
6 2ρ−1 sup

ρ/26xn<ρ
v(0, xn) 6 2ρ−1 sup

Pρ∩Ω
v. (21)

Combination of (20) and (21) finishes the proof.

4 Main results

Throughout this section we shall suppose that L is defined by (1), |b| ∈
X (Ω), and a function u satisfies the following assumptions:

D(Du) ∈ Xloc (Ω) , u ∈ C
(
Ω
)
, Lu = 0 in Ω, u

∣∣
∂Ω∩PR0

= 0. (22)
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Theorem 4.1. Let 0 ∈ ∂Ω, and let the inequality

sup
x∈PR0/2

∩{xn=0}
‖bn‖X ,Pρ(x′,0)∩Ω 6 Bσ (ρ/R0)

hold true for all ρ 6 R0/2. Here B is a positive constant, and a function
σ ∈ D1 satisfies

Jσ(t) = o(δ(t)) as t→ 0. (23)

Then, there exists a sufficiently small positive number R0 completely defined
by n, ν, R0, B, by the functions σ, δ and δ1, and by the moduli of continuity
of |b′| in X (Ω) such that for any r ∈ (0, R0/2) we have

osc
Ω∩Pr/4

u(x)

xn
6 (1− κδ(r)) osc

Ω∩P2r

u(x)

xn
. (24)

Here the constant κ ∈]0; 1[ is completely determined by n, ν.

Proof. The proof will be divided into 3 steps.

1. Our arguments are adapted from [AU95, Lemma 2] and [Ura96, Lemma 3].
Let us denote

m± = sup
Ω∩P2r

±u(x)

xn
, ω = m+ +m− = osc

Ω∩P2r

u(x)

xn
.

Since u
∣∣
∂Ω

= 0 we have m± > 0. Therefore, at least one of the numbers m±

is not less than ω
2
, and both of the numbers m± are less than ω.

Let m+ > ω
2

for definiteness. Then we consider the nonnegative function
v(x) = m+xn − u(x) in Ω ∩ P2r; (if m− > ω

2
then we consider the function

v(x) = m−xn + u(x)).

Due to definition of δ, for any sufficiently small r > 0 we can find a point
x∗ ∈ ∂Pr ∩ ∂Ω such that x∗n = rδ(r). Without loss of generality we may
assume that x∗1 = r and x∗τ = 0 for τ = 2, . . . , n− 1.
Next we assign to x∗ a local coordinate system y1, . . . , yn such that

(a) y1- axis is directed along the projection of the vector (x∗1, . . . , x
∗
n−1) onto

tangential hyperplane to ∂Ω at x∗;

(b) y2, . . . , yn−1-axes are parallel to x2, . . . , xn−1-axes, respectively;

(c) yn-axis is directed along n(x∗).

11



Setting γ = ν√
n−1

we consider in y-coordinates the cylinder

Π :=

{
y ∈ Rn :

∣∣∣y1 −
r

2

∣∣∣ < r

2
, |yτ | <

r

2
, 0 < yn <

1

2
γr

}
,

and the ball Bρ0(z
0) with ρ0 = 1

8
γr and z0 =

(
r
2
, 0, . . . , 0, 1

4
γr
)
.

It should be emphasized that from now on, all considerations will be carried
out in x-coordinates.

	
  

x1	
  

xn	
  

r	
  

y1	
  

yn	
  

rδ(r)	
  

r/2	
  

r	
  

ϕ	
  
ϕ	
  

γr/2	
  

Π	
  

x*	
  

∂Ω	
  

Bρ0(z0)	
  

Ω	
  

Figure 1: Schematic view of Π and Bρ0(z
0).

We claim that
Bρ0(z

0) ⊂ Ω. (25)

Indeed, assume that (25) fails. Then there is a point x̂ ∈ Bρ0(z
0) satisfying

(in x-coordinates) the inequalities

F (x̂′) > x̂n > z0
n − ρ0. (26)

Since x̂ ∈ Bρ0(z
0) it is clear that |x̂′| 6 2r and

F (x̂′) 6 2rδ(2r).

On the other hand, denoting by ϕ the angle between xn- and yn-axis (see
Fig. 1) we conclude that

z0
n − ρ0 = rδ(r) +

r

2
sinϕ+

γr

4
cosϕ− γr

8
>
γr

8
(2 cosϕ− 1) .

12



Thus (26) is transformed into

γ (2 cosϕ− 1) 6 16δ(2r). (27)

In view of (10) and Lemma 2.1, one can choose R0 so small that δ1(R0) 6 3/4.
It guarantees for all r 6 R0/2 the inequalities

cosϕ =
1√

1 + tan2 ϕ
>

1√
1 + δ2

1(r)
>

1√
1 + δ2

1(R0)
>

4

5
. (28)

Now, combining (28) and (27) we get a contradiction with relation (10) pro-
vided δ(R0) being small enough. The proof of (25) is complete.

2. With (25) at hands, we observe that

inf{xn : x ∈ Ω ∩ Π} > rδ(r).

On the other hand, the condition u = 0 for x ∈ ∂Ω ∩ Π gives the estimate

v = m+xn >
ω

2
xn on ∂Ω ∩ Π.

Hence,

v >
ω

2
rδ(r) =: k0 on ∂Ω ∩ Π. (29)

So, we can apply Lemma 3.1 to the function v in cylinder Π. This gives the
estimate

inf
Bρ0 (z0)

v >
(
k0

[
C1 − C2‖b‖X ,Ω∩P2r

]
− C3ωr‖bn‖X ,Ω∩P2r

)
+
,

where C1, C2 and C3 are the constants from Lemma 3.1. Decreasing R0, if
necessary, we may assume that ‖b‖X ,Ω∩PR0

6 C1/ (2C2). Thus, we arrive at

inf
Bρ0 (z0)

v >

(
k0
C1

2
− C3ωr‖bn‖X ,Ω∩P2r

)
+

=: k1. (30)

Consider now an arbitrary point z̃ = (z̃′, r/4+ρ0/8) such that |z̃′| 6
r

4
. Ob-

serve also that Bρ0(z̃) ⊂ Ω, otherwise we get a contradiction with definition
of δ(r).
We claim that

inf
Bρ0/8(ez) v >

(
k0C̃1 − C̃2ωr‖bn‖X ,Ω∩P2r

)
+
, (31)

13



where C̃1 = C̃1(n, ν), whereas C̃2 is determined completely by n, ν, and
‖b‖X ,Ω. Indeed, due to convexity of Ω, for l running from 1 to a finite
number N = N(n, ν) chosen so that

4

3ρ0

|z0 − z̃| 6 N 6
2

ρ0

|z0 − z̃|, (32)

and for points z[l] := z0 − l
N

(z0 − z̃) we have Bρ0(z
[l]) ⊂ Ω. It should be

emphasized that the lower and the upper bounds in (32) do not depend on r.
In view of (30) we can compare in B(z[1], ρ0/8, ρ0) the function v with the
standard barrier function

w(x) = k1
|x− z[1]|−s − ρ−s0

(ρ0/8)−s − ρ−s0

.

If s = nν−2 then elementary calculation garantees the estimates

Lw 6 |b||Dw| 6 c(n, ν)k1|b|ρ−1
0 in B(z[1], ρ0/8, ρ0),

w(x) = k1 6 v(x) on the sphere |x− z[1]| = ρ0

8
w(x) = 0 6 v(x) on the sphere |x− z[1]| = ρ0.

Application of the maximum principle (11) in B(z[1], ρ0/8, ρ0) to the difference
w − v gives us the inequality

v(x) >
(
k1 [w(x)− 2cN0‖b‖X ,Ω∩P2r ]−N0

γr

4
ω‖bn‖X ,Ω∩P2r

)
+
.

Since Bρ0/8(z[2]) ⊂ B
(
z[1], ρ0/8, 7ρ0/8

)
, the evident bound w > θ(n, ν) holds

true in Bρ0/8(z[2]).

Decreasing R0, if necessary, we ensure that ‖b‖X ,Ω∩PR0
6 (4cN0)−1 θ. This

implies

inf
Bρ0/8(z[2])

v(x) >

(
k1θ

2
−N0

γr

4
ω‖bn‖X ,Ω∩P2r

)
+

=: k2.

Repeating this procedure for B(z[l], ρ0/8, ρ0) and l = 2, . . . ,N we arrive at

(31) with C̃1 = (θ/2)N and C̃2 = N0
γ

4
· 1− (θ/2)N

1− (θ/2)
.

Furthermore, it is clear that(
k0C̃1 − C̃2rω‖bn‖X ,Ω∩P2r

)
+

> ωr

(
1

2
C̃1δ(r)− C̃2Bσ (r/R0)

)
+

,

while inequalities (3) and (4) guarantee that

σ (r/R0) 6
Jσ(r)

R0

.

14



Decreasing again R0 and taking into account the assumption (23) and the
above inequalities, we can transform (31) into the form

inf
Bρ0/8(ez) v >

1

4
C̃1ωrδ(r) =: k̃. (33)

3. Now, we take a small η > 0, define the set

Aη := B(z̃, ρ0/8, z̃n) ∩ Ω ∩ {x ∈ PR0 : F (x′) + η < xn < R0}

and introduce in Aη the barrier function

W (x) = µk̃
|x− z̃|−s − (z̃n)−s

(ρ0/8)−s − (z̃n)−s
,

where s = nν−2 and 0 < µ 6 1.
Notice that D (Du) ∈ X (Aη). Using Lemma 2.8 we construct the family of
operators Lε satisfying ‖Lεu‖X ,Aη → 0 as ε→ 0.
Arguing in the spirit of the proof of Lemma 4.2 [LU88], we define v1(x) and
v2(x) as solutions of the following problems:{

Lεv1 = biεDiW in Aη
v1 = v on ∂Aη

,

{
Lεv2 = biεDiW − bnεm+ in Aη
v2 = 0 on ∂Aη

.

It is well known (see, for instance, [Kry08, Chapter 6]) that D(Dv1) and
D(Dv2) belong to the space BMOloc (Aη). Moreover, the John-Nirenberg
theorem [JN61] (see also [Duo01, §4, Chapter 6]) implies that D(Dvi), i =
1, 2, belong to the Orlicz space LΦ,loc(Aη) with Φ(ς) = eς − ς − 1. So, taking
into account the property (iii) we may conclude that D(Dvi) ∈ Xloc (Aη),
i = 1, 2.

Furthermore, in view of (33) and the direct calculation, we have the inequal-
ities

LεW 6 biεDiW in Aη,

W (x) = µk̃ 6 v(x) = v1(x) on the sphere |x− z̃| = ρ0

8
,

W (x) = 0 6 v(x) = v1(x) on ∂Aη ∩ {x ∈ Rn : |x− z̃| = z̃n} .

On the rest of ∂Aη we have xn = F (x′)+η and, consequently, dist {x, ∂Ω} 6 η.
Since u ∈ C

(
Ω
)
, the latter inequality implies the estimate u 6 H(η) there,

and therefore,

v1(x) = v(x) = m+xn − u >
ω

2
xn −H(η),

15



where H is a nonnegative function tending to zero as η → 0.
In addition, it is easy to verify that

W (x) 6 µN1(n, ν)C̃1ωδ(r)xn in B(z̃, ρ0/8, z̃n).

Choosing µ = min

{
1;
(

2N1C̃1

)−1
}

, we get

v1(x) > W (x)−H(η) on ∂Aη.

The maximum principle (11) applied to the difference W −H(η)− v1 in Aη
provides the inequality

v1(x) > W (x)−H(η) > µN2(n, ν)C̃1ωδ(r) (z̃n − |x− z̃|)−H(η).

It follows from the last inequality with x = (z̃′, xn) ∈ Ω and 0 < xn 6
z̃n − ρ0/8 = r/4 that

v1(z̃′, xn) > N3(n, ν)ω δ(r)xn −H(η). (34)

Next, we look for a majorant for v2. With this aim in view, we extend the
coefficients aijε continuously and and the coefficients biε by zero to the whole
annulus B(z̃, ρ0/8, z̃n), and denote by ṽ2(x) the solution of the problem

Lεṽ2 =

{
(Lεv2)+ in Aη,

0 in B(z̃, ρ0/8, z̃n) \ Aη;

ṽ2 = 0 on ∂B(z̃, ρ0/8, z̃n).

The maximum principle guarantees

v2 6 ṽ2 in Aη. (35)

Direct computations show that for ρ 6 r/4 the barrier function W satisfies
in the set Eρ := Pρ(z̃′, 0) ∩ B(z̃, ρ0/8, z̃n) the following inequalities

|DnW | 6 |DW | 6 N4(n, ν)µ
k̃

r
6 N4 ω δ(r),

|D′W | 6 N4µ
k̃ρ

r2
6 N4 ω

δ(r)ρ

r
.

So, in view of (15) and (10), we have for all ρ 6 r/4 the bounds

‖ (Lεṽ2)+ ‖X ,Eρ 6 ‖bn‖X ,Eρ
(
m+ + ‖DnW‖∞,Eρ

)
+ ‖b′‖X ,Eρ‖D′W‖∞,Eρ

6 N5(n, ν)ω

[
Bσ (ρ/R0) +

δ(r)

r
ρ‖b′‖X ,Aη

]
.
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Since the function ρ 7→
[
Bσ (ρ/R0) + δ(r)

r
ρ‖b′‖X ,Aη

]
satisfies the Dini-condition

at zero, there exist the uniquely defined function σ1 ∈ D1 and a constant B1

such that

Bσ (ρ/R0) +
δ(r)

r
ρ‖b′‖X ,Aη = B1σ1 (4ρ/r) .

Thus, we may apply Lemma 3.2 to the function ṽ2. It gives for ρ = r/4 the
estimate

sup
0<xn<r/4

ṽ2(z̃′, xn)

xn
6 C4

(
(r/4)−1 sup

Er/4
ṽ2 +N5ωB1Jσ1 (1)

)
. (36)

It is easy to see that

B1Jσ1(1) = BJσ
(

r

4R0

)
+
δ(r)

4
‖b′‖X ,Aη .

Furthermore, applying (11) to ṽ2 and to the operator Lε in B(z̃, ρ0/8, z̃n), we
obtain

sup
Er/4

ṽ2 6 sup
B(ez,ρ0/8,ezn)

ṽ2 6 N6(n, ν, ‖b‖X ,Ω)ωr

[
Bσ

(
r

R0

)
+ δ(r)‖b′‖X ,Aη

]
.

Substitution of the above estimates in (36) and having regard to (3) provide

sup
0<xn<r/4

ṽ2(z̃′, xn)

xn
6 N7 ω

[
BJσ

(
r

R0

)
+ δ(r)‖b′‖X ,Aη

]
, (37)

where the constant N7 depends only on n, ν and ‖b‖X ,Ω.

Taking into account the inequality (5), the assumption (23), and the evident
relation ‖b′‖X ,A = o(1) as r → 0, we decrease R0 such that the property[

BJσ
(
r

R0

)
+ δ(r)‖b′‖X ,Aη

]
6

N3

2N7

δ(r) (38)

holds true for all r 6 R0.
Finally, combining (34)-(35) with (37)-(38) we arrive at the estimate

v1(z̃′, xn)− v2(z̃′, xn) >
N3

2
ωδ(r)xn −H(η) (39)

for r 6 R0 and x = (z̃′, xn) ∈ Ω with xn ∈ [F (z̃′) + η, r/4].
Considering in Aη the function v3(x) = v(x) − v1(x) + v2(x) one can easily
see that

Lεv3 = −Lεu→ 0 in X (Aη) as ε→ 0.
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In addition, v3 = 0 on ∂Aη. Applying the maximum principle (11) to ±v3

and to the operator Lε we obtain that the difference v1(x)− v2(x) converges
to v(x) uniformly in Aη. Therefore, passing in (39) first to the limit as ε→ 0
and then as η → 0, we get

v(x)

xn
>
N3

2
ωδ(r). (40)

for r 6 R0 and x = (z̃′, xn) ∈ Ω with xn ∈ [F (z̃′), r/4].

Since z̃′ can be chosen arbitrarily with only |z̃′| 6 r

4
, the estimate (40) gives

(24) with κ = N3/2.

Theorem 4.2 (Main Theorem). Let the assumptions of Theorem 4.1 hold,
and let F (x′)/|x′| do not satisfy the Dini-condition at the origin.
Then for any function u satisfying (22) the equality

∂u

∂n
(0) = 0

holds true.

Proof. Consider the sequence rk = 8−kR0, k > 0, where R0 is the constant
from Theorem 4.1.
Application of Theorem 4.1 to u guarantees for k > 0 the following inequal-
ities

osc
Ω∩Prk+1

u(x)

xn
6 (1− κδ(rk/2)) osc

Ω∩Prk

u(x)

xn
6 osc

Ω∩PR0

u(x)

xn
·

k∏
j=0

(1− κδ(rj/2)) .

Since

∞∑
j=0

ln (1− κδ(rj/2)) � −
∞∑
j=0

δ(rj/2) � −
r0ˆ

0

δ(r)

r
dr = −∞,

we have ∏̀
j=0

(1− κδ(rj/2))→ 0 as `→∞.

We recall also that Lemma 3.2 implies the finiteness of the quantity osc
Ω∩PR0

u(x)

xn
.

Thus, taking into account that u
∣∣
∂Ω∩PR0

= 0 we get∣∣∣∣∂u∂n
(0)

∣∣∣∣ =

∣∣∣∣ lim
xn→0

u(0, xn)

xn

∣∣∣∣ 6 lim
k→∞

∣∣∣∣ osc
Ω∩Prk

u(x)

xn

∣∣∣∣ = 0,

and complete the proof.
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données discontinues. Bull. Soc. Math. France, 61:1–54, 1933.
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[Kry08] N. V. Krylov. Lectures on elliptic and parabolic equations in
Sobolev spaces, volume 96 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2008.

20
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