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Abstract

We continue the analysis of some modifications of the total variation
image inpainting method formulated on the space BV (Ω)M in the sense
that we generalize some of the main results of [13] to the case of vector-
valued images where now we do not impose any structure condition on our
density F and the dimension of the domain Ω is arbitrary. Precisely we
discuss existence of generalized solutions of the corresponding variational
problem and we will also pass to the associated dual variational problem for
which we show unique solvability. Among other things, our results are the
uniqueness of the absolutely continuous part ∇au of the gradient of BV -
solutions u on the entire domain Ω where outside of the damaged region
D we even get uniqueness of BV -solutions. As remarkable byproducts we
further prove new density results for functions of bounded variation and
for Sobolev functions.

1 Introduction

In this note we continue the analysis of some perturbations of the total variation
image inpainting model started in [13] from a more theoretical point of view.
To become precise we assume that we are given a bounded Lipschitz domain Ω
in R

n with n ≥ 2 (e.g. a rectangle in the case n = 2 or a cuboid in the case
n = 3) and a Ln-measurable subset D of Ω (Ln denoting Lebesgue’s measure
on Rn) satisfying

0 ≤ Ln(D) < Ln(Ω).(1.1)

We suppose further that we are given an observed image described through a
measurable function f : Ω−D → R

M where we require

f ∈ L2(Ω−D)M .(1.2)

Roughly speaking, the “inpainting domain“ D (compare [18]) represents a cer-
tain part of this image for which image data are missing or inaccessible and
our aim is to restore this missing part from the part which is known, i.e. to
generate an image u : Ω→ R

M based on the partial observation f : Ω−D → R
M .
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There are various types of images depending on the dimension of the domain
or of the codomain, respectively. In case n = 2,M = 1 we are concerned with a
classical digital image, i.e. its co-domain specifies the corresponding grey value
where normally low grey levels are dark and high grey levels are bright (see,
e.g., [2, 31]). The case n = 3,M = 1 covers three-dimensional images that
are of fundamental meaning in medical imaging, e.g. computerized tomogra-
phy or magnetic resonance imaging (see, e.g., [30, 31] and the references quoted
therein). Examples of vector-valued images are coloured images where each
channel (or dimension) represents a corresponding colour (see, e.g., [9] and the
references quoted therein).
The kind of image interpolation described above at least in the case n = 2
and M = 1 is called “inpainting“ or “image inpainting“ , respectively (compare
[18, 34, 35]). There are various different techniques to handle the inpainting
problem being of variational or non-variational and of local or non-local kind
(see, e.g., [6, 8, 18, 19, 20, 21, 23, 34, 35] and the references quoted therein)
where in this note we will concentrate on a TV-like variational approach being
of non-local type as proposed in [12, 13, 14, 15, 17]. In most cases one considers
the functional

J [w] :=

∫
Ω

ψ(|∇w|)dx+
λ

2

∫
Ω−D

|w − f |2dx,(1.3)

where λ is a positive regularization parameter and ψ is supposed to be a con-
vex and increasing function with non-negative values. The second term on the
right-hand side of (1.3) measures the quality of data fitting, i.e. the deviation of
the original image u from the given data f on Ω−D while the first term allows
to incorporate some kind of apriori information of the generated image via some
kind of mollification on the entire domain Ω into the minimization process. Note
that in the case Ln(D) = 0 the problem reduces to “pure denoising“.
In this setup, a common choice of ψ is ψ(|∇u|) := |∇u| leading to the total
variation inpainting model (compare [7, 34]). To discuss this variational prob-
lem, one has to work with L1-functions Ω → R

M of bounded variation, i.e. in
the space BV (Ω)M . In this situation, ∇u denotes the distributional gradient
which is respresented by a tensor-valued Radon measure on Ω with finite total
variation

∫
Ω

|∇u| (for details we refer to [4] or [28]).

In this paper we follow the basic idea of [13], i.e. we replace the unpleasant quan-
tity

∫
Ω

|∇u| through a functional
∫
Ω

F (∇u) with density F of linear growth being

strictly convex w.r.t. the tensor-valued measure ∇u and investigate solvability
of the problem∫

Ω

F (∇w) +
λ

2

∫
Ω−D

|w − f |2dx→ min in BV (Ω)M ∩ L2(Ω−D)M .(1.4)

Furthermore, we will pass to the dual variational problem for which we prove
unique solvability under rather weak assumptions and establish a surprising
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compactness property for minimizing sequences of the functional I introduced
below (see (1.9)).
At this stage we want to emphasize the main difference between the investi-
gations carried out in [13] and the situation being under consideration in the
present setting: if Ω is a domain in R2 as required in [13], then the standard em-
bedding theorem for BV -functions (see, e.g. [4], Corollary 3.49, p.152) implies
that BV (Ω)M is continuously embedded in the space L2(Ω)M , which means
that the problem (1.4) can be studied just on the whole space BV (Ω)M . In
case n ≥ 3 this is no longer true: the requirement “u ∈ L2(Ω − D)M “ acts as
an additional constraint, and one major effort outlined in this paper consists in
adjusting the arguments from [13] to the higherdimensional case.

Now, we like to fix our setup and state our precise assumptions: suppose that
we are given a function F : RnM → [0,∞) being of class C1(RnM ) satisfying the
following hypotheses

F is strictly convex, F (0) = 0,(1.5)
|DF (P )| ≤ ν1,(1.6)
F (P ) ≥ ν2|P | − ν3(1.7)

with constants ν1, ν2 > 0, ν3 ∈ R, for all P ∈ R
nM . From (1.6) and using

F (0) = 0 we immediately obtain

F (P ) ≤ ν1|P |

for all P ∈ RnM which shows that F is of linear growth in the following sense

ν2|P | − ν3 ≤ F (P ) ≤ ν1|P |.(1.8)

As a starting point we then look at the variational problem

I[w] :=

∫
Ω

F (∇w)dx+
λ

2

∫
Ω−D

|w − f |2dx→ min

in W 1,1(Ω)M ∩ L2(Ω−D)M .

(1.9)

As a matter of fact, in general one can not expect the solvability of (1.9) in
the non-reflexive Sobolev space W 1,1(Ω)M (compare, e.g., [1] for a definition
of these classes), some exceptional cases are discussed in [12] depending on the
structure of F . So the question arises how to give a reasonable extension and
an interpretation of problem (1.9) in the setting of the more adequate function
space BV (Ω)M . A natural and established approach is to use the concept
of convex functions of a measure (see, e.g., [5, 22] or [26]), i.e. we let for
w ∈ BV (Ω)M ∩ L2(Ω−D)M

K[w] :=

∫
Ω

F (∇aw)dx+

∫
Ω

F∞
(
∇sw
|∇sw|

)
d|∇sw|+ λ

2

∫
Ω−D

|w − f |2dx.(1.10)
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Here, we denote for vector-valued Radon measures ρ by ρa(ρs) the regular (sin-
gular) part of ρ w.r.t. to Lebesgue’s measure Ln. Moreover, F∞ is the recession
function of F , i.e.

F∞(P ) := lim
t→∞

F (tP )

t
, P ∈ RnM .(1.11)

Since F is (strictly) convex and of linear growth in the sense of (1.8), it follows
that F∞ is well-defined.
Now, the idea is to seek minimizers of the relaxed variational problem

K → min in BV (Ω)M ∩ L2(Ω−D)M(1.12)

and to introduce them as generalized solutions of (1.9).

At this point, we will state our first theorem which proves solvability of problem
(1.12) in BV (Ω)M ∩ L2(Ω − D)M . Moreover, we will show uniqueness of the
absolutely continuous part ∇au of the gradient of BV -solutions on the whole
domain Ω and will additionally verify the uniqueness of BV -solutions outside
of the damaged region D. In part (c) we justify that each K-minimizer can be
seen as a generalized minimizer of the original functional I while in part (d) we
prove that each K-minimizer belongs to the setM of generalized minimizers of
the functional I from (1.9) and vice versa.

Theorem 1.1
Suppose that (1.1) holds and let F satisfy (1.5)–(1.7). Further we assume the
validity of (1.2). Then it holds:

(a) Problem (1.12) admits at least one solution.

(b) Suppose that u and ũ are K-minimizing. Then

u = ũ a.e. on Ω−D and ∇au = ∇aũ a.e. on Ω.

(c) inf
W 1,1(Ω)M∩L2(Ω−D)M

I = inf
BV (Ω)M∩L2(Ω−D)M

K.

(d) LetM denote the set of all L1(Ω)M -cluster points of I-minimizing sequences
from the space W 1,1(Ω)M ∩L2(Ω−D)M . ThenM coincides with the set of
all K-minimizers from the space BV (Ω)M ∩ L2(Ω−D)M .

Taking into account assertion (b) of Theorem 1.1 we may derive the uniqueness
in case of W 1,1-solvability. Moreover, in the general case, the L

n
n−1 -deviation

‖u−v‖
L

n
n−1

of different solutions u, v on the inpainting region can be estimated
in terms of∇s(u−v), i.e. it is governed by the total variation of the singular part
∇s(u− v) of the tensor-valued Radon measure ∇(u− v). In case n = 2,M = 1
these results can be found in [13], precisely we have:
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Corollary 1.1(a) If there exists u ∈M such that u ∈W 1,1(Ω)M∩L2(Ω−D)M ,
then it followsM = {u}.

(b) Suppose that D ⊂ Ω. Then there is a constant c = c(n,M) such that for
u, v ∈M it holds

‖u− v‖
L

n
n−1 (Ω)

= ‖u− v‖
L

n
n−1 (D)

≤ c|∇s(u− v)|(D)

In particular, the constant c on the right-hand side is not depending on the
free parameter λ.

Remark 1.1
For the proof of Corollary 1.1 we just note that that Corollary 1.1 in [13] extends
to any dimension n ≥ 2, furthermore, the statements remain valid for vector-
valued functions, i.e. for the case M ≥ 2. The corresponding references are
given during the proof of [13], Corollary 1.1.

Remark 1.2 • Part (b) of Theorem 1.1 shows uniqueness of solutions on
Ω − D and the measures ∇u and ∇ũ of minima u, ũ may only differ in
their singular parts.

• The statements (c) and (d) in Theorem 1.1 reveal that the minimization
of K in BV (Ω)M ∩ L2(Ω − D)M represents a natural extension of the
original variational problem (1.9) which in general fails to have solution
in W 1,1(Ω)M ∩L2(Ω−D)M . Furthermore, it holds I = K on W 1,1(Ω)M ∩
L2(Ω−D)M and this fact also stresses that we have a reasonable extension
of the functional I.

• We like to mention that in the case n = 2 and M = 1, problem (1.9) has
been studied extensively in [12, 13, 14, 15, 17]. For the analysis of pure
denoising in the case n = 2 we like to refer to [11] where also vector-valued
images have been discussed and additional boundary data could be included.

Remark 1.3
The assumptions on our density F in Theorem 1.1 can be weakened in such a
way that we just require that F is strictly convex and of linear growth in the
sense of (1.8).

Motivated by the dual variational formulation of problems in the theory of
plasticity (see [25] for a survey), another approach to problem (1.9) seems to be
more natural. An essential motivation for studying dual variational problems
is the uniqueness of solutions (for more detailed information we refer to section
2.2 in [10]), moreover, the dual solution σ usually admits a clear geometric
or physical interpretation. For instance, we can note that in the theory of
minimal surfaces, σ corresponds to the normal of the surface and in the theory
of plasticity, σ represents the stress tensor. Nevertheless it should be emphasized
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that we do not know an adequate interpretation of the dual solution σ in the
context of image processing.
Let F satisfy (1.5)–(1.7) and suppose that (1.1) as well as (1.2) hold. Following
[24] we define the Lagrangian for functions w ∈ W 1,1(Ω)M ∩ L2(Ω −D)M and
κ ∈ L∞(Ω)nM by the equation

l(w, κ) :=

∫
Ω

[κ : ∇w − F ∗(κ)]dx+
λ

2

∫
Ω−D

|w − f |2dx.

Here
F ∗(Q) := sup

P∈RnM

[P : Q− F (P )], Q ∈ RnM ,

represents the conjugate function to F . Quoting [24], Proposition 2.1, p.271, we
obtain the representation∫

Ω

F (P )dx = sup
κ∈L∞(Ω)nM

∫
Ω

[κ : P − F ∗(κ)]dx(1.13)

for functions P ∈ L1(Ω)nM and this leads to another formula for the functional
I. Precisely, we get

I[w] = sup
κ∈L∞(Ω)nM

l(w, κ), w ∈W 1,1(Ω)M ∩ L2(Ω−D)M ,(1.14)

and by virtue of (1.14) we can introduce the dual functional

R : L∞(Ω)nM → [−∞,∞],

R[κ] := inf
w∈W 1,1(Ω)M∩L2(Ω−D)M

l(w, κ).

Consequently, the dual problem is: to maximize R among all functions κ ∈
L∞(Ω)nM .

In the following theorem we summarize our results on the dual variational prob-
lem.

Theorem 1.2
Suppose that (1.1) and (1.2) hold. Further let F satisfy (1.5)–(1.7). Then it
holds:

(a) The dual problem
R→ max in L∞(Ω)nM

admits at least one solution. Moreover, the inf-sup relation

inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

I[v] = sup
σ∈L∞(Ω)nM

R[σ]

is valid.
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(b) We have uniqueness of the dual solution if the conjugate function F ∗ is
strictly convex on the set {p ∈ RnM : F ∗(p) <∞}.

(c) Consider any I-minimizing sequence (um) from the spaceW 1,1(Ω)M∩L2(Ω−
D)M . Then it holds

um → u in L2(Ω−D)M ,

where u is the unique restriction of any generalized minimizer u from The-
orem 1.1 to the set Ω−D.

Actually the additional hypothesis imposed on F ∗ in assertion (b) of Theorem
1.2 can be removed. More precisely it holds:

Theorem 1.3
Let (1.1), (1.2) hold and assume that we have (1.5)–(1.7) for the density F .
Then the dual problem

R→ max in L∞(Ω)nM

admits a unique solution σ. We further have the duality formula

σ = DF (∇au) a.e. on Ω,

where u denotes any K-minimizer from the space BV (Ω)M ∩ L2(Ω−D)M .

We finish the introduction by adding some comments: assume that the density
F : RnM → [0,∞) is of the form

F (P ) = Φ(|P |), P ∈ RnM ,

with Φ : [0,∞)→ [0,∞) of class C2 satisfying the conditions (1.3∗)− (1.4∗) and
(1.4∗µ) from [13] with exponent µ > 1, e.g.

Φ(t) := Φµ(t) :=

t∫
0

s∫
0

(1 + r)−µ dr ds, t ≥ 0.

Suppose further that the data f are from the space L∞(Ω−D)M . Then Theorem
1.1 can be proved completely along the lines of the proof of Theorem 1.2 in [13]
without referring to the density results stated in Section 2 by observing that
K-minimizing sequences (um) can be chosen in such a way that

sup
Ω
|um| ≤ sup

Ω−D
|f |

holds yielding compactness of (um) in BV (Ω)M . In the same spirit, the argu-
ments used during the proof of Theorem 1.4 in [13] now directly imply Theorem
1.2. Moreover, we have uniqueness of the dual solution.
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Another important question concerns the regularity of K-minimizers under the
particular assumptions mentioned before: in [12] and [17] a satisfying answer is
given for the scalar case (M = 1) in two dimensions (n = 2). In the forthcoming
paper [36], it is shown that these regularity results extend to any dimension n
and arbitrary codimension M by using much more elaborate arguments.

Our paper is organized as follows: in Section 2 we prove the density of smooth
functions in spaces like BV (Ω)M ∩ L2(Ω − D)M . Using these results, gener-
alized solutions are studied in Section 3. In Section 4 we investigate the dual
variational problem, whose uniqueness is established in Section 5.

2 Some density results

In this section we provide some approximation results valid for Sobolev functions
and for functions of BV -type.

Lemma 2.1
Let Ω ⊂ R

n denote a bounded Lipschitz domain and consider a measurable subset
D of Ω such that Ln(D) < Ln(Ω). Consider p ∈ [1, n) and let q ∈ ( np

n−p ,∞).
Suppose further that u ∈ W 1,p(Ω)M ∩ Lq(Ω −D)M is given. Then there exists
a sequence (uk) ⊂ C∞(Ω)M such that (as k →∞)

‖uk − u‖W 1,p(Ω) + ‖uk − u‖Lq(Ω−D) → 0.(2.1)

Remark 2.1
By the continuity of Sobolev’s embedding W 1,p(Ω)M ↪→ L

np
n−p (Ω)M (see, e.g.,

[1], Theorem 5.4, p.97/98), our choice of q is reasonable, since otherwise we
may directly apply [1], Theorem 3.18, p.54.

Lemma 2.2
With Ω and D as in Lemma 2.1 consider u ∈ BV (Ω)M ∩Lq(Ω−D)M for some
q ∈ ( n

n−1 ,∞). Then there exists a sequence (um) ⊂ C∞(Ω)M such that (as
m→∞)

(i) um → u in L1(Ω)M ,

(ii) um → u in Lq(Ω−D)M ,

(iii)
∫
Ω

√
1 + |∇um|2dx→

∫
Ω

√
1 + |∇u|2.

Remark 2.2
According to the embedding BV (Ω)M ↪→ L

n
n−1 (Ω)M valid for “bounded extension

domains“ Ω (see, e.g., [4], Corollary 3.49, p.152) it makes sense to consider
exponents q > n

n−1 in Lemma 2.2.
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Remark 2.3
In place of (iii) we will just prove the validity of

(iii)∗
∫
Ω

|∇um|dx→
∫
Ω

|∇u| = |∇u|(Ω) as m→∞,

where -as usual- the symbol |∇u|(Ω) denotes the total variation of the tensor-
valued signed Radon measure ∇u on Ω. Clearly (iii)∗ is not enough to quote
the continuity theorem of Reshetnyak as stated for example in [27], Theorem 2,
p.92, or [5], Proposition 2.2. However, recalling the definition of the quantity∫
Ω

√
1 + |∇u|2 given in e.g. [5], Definition 2.1, or [22], p.675, it is not hard to

check that the sequence (um) constructed during the proof of Lemma 2.2 actually
satisfies (iii). We leave the details to the reader.

Let us now come to the

Proof of Lemma 2.1. Let us choose a smooth bounded domain Ω̃ such that Ω b
Ω̃. According to [33], Remark 1.60, p.34, we may extend u ∈ W 1,p(Ω)M to a
function ũ ∈W 1,p(Ω̃)M (compare also [3], Fortsetzungssatz A 5.12, p.174). For
m ∈ N we let Φm : RM → R

M ,

Φm(y) :=

{
y, |y| ≤ m
m y
|y| , |y| ≥ m

and claim for the sequence ũm := Φm ◦ ũ the validity of (as m→∞)

‖ũm − u‖Lq(Ω−D) → 0,(2.2)

‖ũm − ũ‖W 1,p(Ω̃)
→ 0.(2.3)

In fact, from |ũm − u| ≤ 2|u| a.e. on Ω − D together with ũm → ũ a.e. on Ω̃
it follows by dominated convergence that (2.2) is true (recall our assumption
u ∈ Lq(Ω−D)M ). In the same way we obtain ũm → ũ in Lp(Ω̃)M . The chain rule
in its general form (see, e.g., [4], Theorem 3.96, p. 189) shows ũm ∈W 1,p(Ω̃)M

together with |∇ũm| ≤ Lip(Φm)|∇ũ| = |∇ũ|.
We wish to remark that the crucial estimate |∇ũm| ≤ Lip(Φm)|∇ũ| in a slightly
weaker form occurs in the paper [32], a complete proof of the inequality can be
found in [16], Lemma B.1.
From ũm = ũ a.e. on {x ∈ Ω̃ : |ũ(x)| ≤ m} =: Ω̃m it follows that ∇ũm = ∇ũ
on Ω̃m (see [29], Lemma 7.7, p.145), in particular we get ∇ũm → ∇ũ a.e. on Ω̃,
and ‖∇ũm − ∇ũ‖Lp(Ω̃)

→ 0 again is a consequence of dominated convergence.
According to (2.2) and (2.3) we find a subsequence (ũmk

), k ∈ N, such that

‖ũmk
− ũ‖

W 1,p(Ω̃)
+ ‖ũmk

− u‖Lq(Ω−D) ≤
1

k
(2.4)
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for any k ∈ N. In a next step we consider a suitable sequence of radii ρk ↓ 0
such that ((·)ρk denoting the mollification operator)

‖ũmk
− (ũmk

)ρk‖W 1,p(Ω) + ‖ũmk
− (ũmk

)ρk‖Lq(Ω) ≤
1

k
(2.5)

for each integer k. In order to get (2.5) we just observe that from ũmk
∈

W 1,p(Ω̃)M ∩Lq(Ω̃)M (it actually holds ũmk
∈ L∞(Ω̃)M ) and by recalling Ω b Ω̃

it follows (ũmk
)ρ → ũmk

as ρ ↓ 0 in W 1,p(Ω)M ∩ Lq(Ω)M . Obviously the
functions uk := (ũmk

)ρk belong to the class C∞(Ω)M , and (2.1) is a consequence
of (2.4) and (2.5).

Remark 2.4
For future applications to higher order problems it would be desirable to prove
a variant of Lemma 2.1 for the case u ∈ W k,p(Ω)M ∩ Lq(Ω−D)M with k ≥ 2,
q > np

n−kp , p ∈ [1, nk ).

Proof of Lemma 2.2. Let u0 ∈ L1(∂Ω)M denote the trace of the given function
u ∈ BV (Ω)M ∩ Lq(Ω − D)M whose properties are summarized in e.g. [4],
Theorem 3.87, p.180/181. With Ω̃ as in the proof of Lemma 2.1 we let u0 := 0
on ∂Ω̃, thus u0 ∈ L1(∂G)M where G := Ω̃ − Ω. Since ∂Ω is Lipschitz we may
refer to [28], Theorem 2.16, p.39 and can find v ∈ W 1,1(G)M having trace u0

on ∂G satisfying in addition

‖v‖W 1,1(G) ≤ c‖u0‖L1(∂G)(2.6)

with c depending on ∂G but independent of u0 and v. We then let

ũ :=

{
u, on Ω

v, on Ω̃− Ω

and observe ũ ∈ BV (Ω̃)M , which follows from [4], Corollary 3.89, p.183, and the
fact that (2.6) implies v ∈ BV (G)M . Viewing ∇u (resp. ∇v) as measures on
Ω̃ concentrated on Ω (resp. Ω̃− Ω) and recalling the definition of v we further
deduce from the above reference the identity

∇ũ = ∇u+∇v(2.7)

as measures on Ω̃. As in the proof of Lemma 2.1 we finally let (m ∈ N)

ũm := Φm ◦ ũ

and observe (compare the first part of the proof of Theorem 3.96 on p.189 in
[4])

ũm ∈ BV (Ω̃)M , |∇ũm| ≤ Lip(Φm)|∇ũ| = |∇ũ|,(2.8)

which means |∇ũm|(E) ≤ |∇ũ|(E) for any Borel set E ⊂ Ω̃. In particular, from
|∇ũ|(∂Ω) = 0 (recall (2.7)) it follows that

|∇ũm|(∂Ω) = 0, m ∈ N.(2.9)
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As before it holds (as m→∞)

ũm → ũ in L1(Ω̃)M ,(2.10)

ũm → u in Lq(Ω−D)M ,(2.11)

and (2.10) combined with a standard lower semicontinuity result (see [28], The-
orem 1.9, p.7 or [4], Proposition 3.6, p.120) implies

|∇ũ|(Ω̃) ≤ lim inf
m→∞

|∇ũm|(Ω̃).

From (2.8) we get

|∇ũm|(Ω̃) ≤ |∇ũ|(Ω̃),

thus

|∇ũm|(Ω̃)→ |∇ũ|(Ω̃), m→∞.(2.12)

Clearly we can replace Ω̃ in (2.12) by the domain Ω, so that in combination
with (2.10) and (2.11) it holds for a subsequence (recall that by (2.7) |∇ũ|(Ω) =
|∇u|(Ω))

‖ũmk
− u‖L1(Ω) + ‖ũmk

− u‖Lq(Ω−D)

+

∣∣∣∣|∇ũmk
|(Ω)− |∇u|(Ω)

∣∣∣∣ ≤ 1

k
, k ∈ N.

(2.13)

From [28], Proposition 1.15, p.12, we see on account of (2.9) that there exists a
sequence ρk ↓ 0 such that the functions uk := (ũmk

)ρk satisfy∣∣∣∣|∇uk|(Ω)− |∇ũmk
|(Ω)

∣∣∣∣ ≤ 1

k
,(2.14)

moreover due to the convergence (ũmk
)ρ → ũmk

in Lploc(Ω̃)M as ρ ↓ 0 for any
p ∈ [1,∞) we can arrange

‖uk − ũmk
‖L1(Ω) + ‖uk − ũmk

‖Lq(Ω−D) ≤
1

k
(2.15)

for any k ∈ N. Putting together (2.13)–(2.15) and recalling Remark 2.3, we see
that the sequence (uk) ⊂ C∞(Ω)M has the desired properties.

3 Weak minimizers. Proof of Theorem 1.1

From now on we assume the validity of the hypotheses from Theorem 1.1. Before
we start proving Theorem 1.1 we recall the following auxiliary result which can
be found in [13] (compare Lemma 2.2 in this reference).
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Lemma 3.1
For w ∈ BV (Ω)M let

K̃[w] :=

∫
Ω

F (∇aw)dx+

∫
Ω

F∞
(
∇sw
|∇sw|

)
d|∇sw|.

(a) Suppose that wm, w ∈ BV (Ω)M are such that wm → w in L1(Ω)M . Then it
holds:

K̃[w] ≤ lim
m→∞

K̃[wm].(3.1)

(b) If we know in addition∫
Ω

√
1 + |∇wm|2 →

∫
Ω

√
1 + |∇w|2,

then it follows

lim
m→∞

K̃[wm] = K̃[w].(3.2)

Remark 3.1
The reader should note that Lemma 2.2 of [13] clearly extends to any any dimen-
sion n ≥ 2, moreover, the statement remains valid for vector-valued functions,
i.e. for the case M ≥ 2. The corresponding references are given during the proof
of [13], Lemma 2.2.

Proceeding with the proof of Theorem 1.1 we first state that assertion (b) is
immediate. Next, we let (um) ⊂ BV (Ω)M∩L2(Ω−D)M denote a K-minimizing
sequence. It holds

sup
m

∫
Ω

|∇um| <∞,(3.3)

sup
m

∫
Ω−D

|um|2dx <∞(3.4)

where (3.3) is valid on account of (1.7).
As stated on p.380 of [4] we have the inequality (compare also [33], Lemma 1.65,
p. 39) ∫

Ω

|v − (v)Ω−D|dx ≤ c
∫
Ω

|∇v|dx

valid for v ∈ W 1,1(Ω)M , c denoting a positive constant independent of v. By
standard approximation (see, e.g. [4], Theorem 3.9, p.122) this estimate extends
to v ∈ BV (Ω)M , thus (3.3) and (3.4) imply

sup
m

∫
Ω

|um|dx <∞.(3.5)
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Combining (3.3) and (3.5), the BV -compactness theorem (see, e.g., [4], Theorem
3.23, p.132) gives the existence of a function u ∈ BV (Ω)M such that um →: u
in L1(Ω)M and a.e. up to a subsequence. Further, (3.4) combined with Fatou’s
lemma implies u ∈ L2(Ω−D)M , i.e. we have u ∈ BV (Ω)M ∩ L2(Ω−D)M and
K[u] is well-defined.
By (3.1) we obtain

K̃[u] ≤ lim inf
m→∞

K̃[um]

whereas Fatou’s lemma gives∫
Ω−D

|u− f |2dx ≤ lim inf
m→∞

∫
Ω−D

|um − f |2dx.

This yields

K[u] ≤ lim inf
m→∞

K̃[um] + lim inf
m→∞

λ

2

∫
Ω−D

|um − f |2dx

≤ lim inf
m→∞

K[um] = inf
BV (Ω)M∩L2(Ω−D)M

K,

i.e. u is K-minimizing. This shows assertion (a) of Theorem 1.1.

For proving assertion (c) we set

α := inf
BV (Ω)M∩L2(Ω−D)M

K, β := inf
W 1,1(Ω)M∩L2(Ω−D)M

I

and observe that α ≤ β is obvious since I = K on W 1,1(Ω)M ∩ L2(Ω−D)M .
To establish the reverse inequality we fix an arbitraryK-minimizer u ∈ BV (Ω)M∩
L2(Ω − D)M and choose a sequence (um) according to Lemma 2.2. Quoting
Lemma 3.1 we have K̃[um] → K̃[u], and, by Lemma 2.2 (ii) we finally get
K[um]→ K[u]. This yields

β = inf
W 1,1(Ω)M∩L2(Ω−D)M

I ≤ I[um] = K[um] −→ K[u] = α

which shows (c).

To establish part (d) we first consider u ∈ M, i.e. um → u in L1(Ω)M for
an I-minimizing sequence (um) from W 1,1(Ω)M ∩ L2(Ω−D)M , where may as-
sume in addition um → u a.e. on Ω. Fatou’s lemma then implies∫

Ω−D

|u− f |2dx ≤ lim inf
m→∞

∫
Ω−D

|um − f |2dx,

whereas by Lemma 3.1 (a)

K̃[u] ≤ lim inf
m→∞

K̃[um].
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Thus we arrive at

K[u] ≤ lim inf
m→∞

K[um] = lim inf
m→∞

I[um]

and the K-minimality of u follows from assertion (c).
Conversely consider a K-minimizer u ∈ BV (Ω)M ∩ L2(Ω−D)M . If we choose
um according to Lemma 2.2 and apply Lemma 3.1 (b), we obtain (as m→∞)

I[um] = K[um]→ K[u].

This shows that (um) is an I-minimizing sequence for which (see Lemma 2.2
(i)) um → u in L1(Ω)M . This proves u ∈M. �

4 Dual solutions. Proof of Theorem 1.2

Let the assumptions of Theorem 1.2 hold. We first like to note that a proof
of assertion (a) probably can be deduced from [25], Theorem 1.2.1, p.15/16
or [24], Proposition 2.3, Chapter III, p.52. As in [13], proof of Theorem 1.4,
we decide to give a more constructive proof relying on an approximation of
our original variational problem (1.9) by a sequence of more regular problems
admitting smooth solutions with suitable convergence properties. Consequently,
this sequence might be of interest for numerical computations. To become more
precise we consider for fixed δ ∈ (0, 1] the problem

Iδ[w] :=

∫
Ω

Fδ(∇w)dx+
λ

2

∫
Ω−D

|w − f |2dx→ min in W 1,2(Ω)M(4.1)

where

Fδ(P ) :=
δ

2
|P |2 + F (P ), P ∈ RnM .(4.2)

Clearly (4.1) admits at most one solution uδ ∈W 1,2(Ω)M . In fact, if u1, u2 are
solutions of (4.1), then we have ∇u1 = ∇u2 on Ω together with u1 = u2 on
Ω −D. But then u1 = u2 on Ω on account of (1.1). Next, with δ being fixed,
we consider a minimizing sequence (um) for (4.1). It holds

sup
m
‖∇um‖L2(Ω) ≤ c(δ) <∞,

sup
m
‖∇um‖L1(Ω) <∞,

sup
m
‖um − f |‖L2(Ω−D) <∞.

The quadratic variant of the Poincaré inequality from Section 3 then yields

sup
m
‖um|‖W 1,2(Ω) <∞,
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so that um ⇁: uδ in W 1,2(Ω)M at least for a subsequence of (um). Standard
theorems on lower semicontinuity then show that uδ solves (4.1). From Iδ[uδ] ≤
Iδ[0] we immediately deduce

sup
δ
‖∇uδ‖L1(Ω) <∞,

sup
δ
‖uδ − f‖L2(Ω−D) <∞,

sup
δ

δ

∫
Ω

|∇uδ|2dx <∞,

(4.3)

where of course the linear growth of F has been used. The Poincaré-inequality
from Section 3 combined with (4.3) additionally yields

sup
δ
‖uδ‖L1(Ω) <∞.(4.4)

Now, from (4.3) and (4.4) it follows (at least for a suitable sequence δ ↓ 0)

uδ →: u in L1(Ω)M and a.e.,

uδ ⇁ u in L2(Ω−D)M

for a function u ∈ BV (Ω)M , and the weak L2(Ω−D)M -convergence additionally
implies ∫

Ω−D

|u− f |2dx ≤ lim inf
δ↓0

∫
Ω−D

|uδ − f |2dx.

Altogether it is shown that we obtain a limit function u from the spaceBV (Ω)M∩
L2(Ω−D)M .
Let

τδ := DF (∇uδ) and σδ := DFδ(∇uδ) = δ∇uδ + τδ(4.5)

and observe that (4.3) implies

||δ∇uδ||2L2(Ω) = δ

(
δ

∫
Ω

|∇uδ|2dx
)
→ 0 as δ → 0,(4.6)

whereas (1.6) shows that τδ is uniformly bounded w.r.t. δ, i.e.

sup
δ
||τδ||L∞(Ω) <∞.(4.7)

After passing to suitable sequences δ → 0 we get from (4.5)–(4.7)

σδ ⇁: σ in L2(Ω)nM and τδ
∗
⇁: τ in L∞(Ω)nM(4.8)

and by combining (4.8) with (4.6), it follows σ = τ .
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We claim that σ ∈ L∞(Ω)nM is a solution of the dual variational problem.
To justify this we first observe that uδ solves the Euler equation∫

Ω

τδ : ∇ϕdx+ δ

∫
Ω

∇uδ : ∇ϕdx+ λ

∫
Ω−D

(uδ − f) · ϕdx = 0(4.9)

for all ϕ ∈W 1,2(Ω)M .
Note that (4.9) exactly corresponds to (3.8) in [13], and as done there (compare
(3.10) in [13]) we can use (4.9) to deduce

sup
ρ∈L∞(Ω)nM

R[ρ] ≤ inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

I[v] ≤ I[uδ] ≤ Iδ[uδ]

= −δ
2

∫
Ω

|∇uδ|2dx+

∫
Ω

(−F ∗(τδ))dx

− λ

2

∫
Ω−D

|uδ|2dx+
λ

2

∫
Ω−D

|f |2dx.

(4.10)

We wish to remark that the quadratic structure of the data fitting term is
essential for the derivation of (4.10).
Neglecting the quantity − δ

2

∫
Ω

|∇uδ|2dx in (4.10) for the moment, we pass to the

limit δ → 0. This gives by using upper semicontinuity of
∫
Ω

(−F ∗(·))dx w.r.t.

weak-∗ convergence and by recalling
∫

Ω−D
|u|2dx ≤ lim inf

δ→0

∫
Ω−D

|uδ|2dx

sup
L∞(Ω)nM

R ≤ inf
W 1,1(Ω)M∩L2(Ω−D)M

I

≤
∫
Ω

(−F ∗(τ))dx− λ

2

∫
Ω−D

|u|2dx+
λ

2

∫
Ω−D

|f |2dx.
(4.11)

Passing to the limit δ → 0 in Euler’s equation (4.9) we obtain (recall (4.6), (4.8)
and uδ ⇁ u in L2(Ω−D)M )∫

Ω

τ : ∇ϕdx+ λ

∫
Ω−D

(u− f) · ϕdx = 0(4.12)

for any ϕ ∈ W 1,2(Ω)M and by approximation, equation (4.12) extends to ϕ ∈
W 1,1(Ω)M ∩ L2(Ω−D)M (we refer to Lemma 2.1).
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At the same time, it holds

R[τ ] : = inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

l(v, τ)

=

∫
Ω

(−F ∗(τ))dx

+ inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

[ ∫
Ω

τ : ∇vdx+
λ

2

∫
Ω−D

|v − f |2dx
]

=

∫
Ω

(−F ∗(τ))dx

+ inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

[
− λ

∫
Ω−D

(u− f) · vdx+
λ

2

∫
Ω−D

|v − f |2dx
]

=

∫
Ω

(−F ∗(τ))dx

+ inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

[
λ

2

∫
Ω−D

|u− v|2dx+
λ

2

∫
Ω−D

|f |2dx− λ

2

∫
Ω−D

|u|2dx
]

where we have used (4.12) with the admissible choice ϕ = v as well as the
quadratic structure of the data fitting term. As a consequence we obviously get

R[τ ] ≥
∫
Ω

(−F ∗(τ))dx+
λ

2

∫
Ω−D

|f |2dx− λ

2

∫
Ω−D

|u|2dx

which implies (recall (4.11))

sup
L∞(Ω)nM

R ≤ inf
W 1,1(Ω)M∩L2(Ω−D)M

I ≤ R[τ ].

Hence τ is R-maximizing and the inf-sup relation is valid which proves assertion
(a) of Theorem 1.2. Additionally by means of the above chain of inequalities we
have shown that

δ

∫
Ω

|∇uδ|2dx→ 0(4.13)

(uδ) is an I −minimizing sequence(4.14)

at least for a subsequence δm → 0. Thanks to Theorem 1.1, (d) and (4.14) it
further follows that u is K-minimizing in BV (Ω)M ∩ L2(Ω−D)M .

For assertion (b) of Theorem 1.2 we may proceed exactly as in [13], proof of
Theorem 1.4. As a consequence of uniqueness the convergences (4.8) and (4.13)
hold for any sequence δ → 0.

For proving Theorem 1.2 (c) we proceed similar to the proof of Theorem 1.7
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in [11]: let (um) denote an I-minimizing sequence from the space W 1,1(Ω)M ∩
L2(Ω − D)M . Using the previous notation, we deduce from (4.11) and (4.12)
(with admissible choice ϕ = um)

inf
W 1,1(Ω)M∩L2(Ω−D)M

I ≤
∫
Ω

[τ : ∇um − F ∗(τ)]dx− λ

2

∫
Ω−D

|u|2dx

+
λ

2

∫
Ω−D

|f |2dx+ λ

∫
Ω−D

(u− f) · um dx

where u, τ have the same meaning as before. This gives

inf
W 1,1(Ω)M∩L2(Ω−D)M

I ≤
∫
Ω

F (∇um)dx+
λ

2

∫
Ω−D

|um − f |2dx

− λ

2

∫
Ω−D

|um − u|2dx

=I[um]− λ

2

∫
Ω−D

|um − u|2dx,

and we obtain our claim by recalling that u is K-minimizing and that by The-
orem 1.1 (b) we have uniqueness of K-minimizers on Ω − D. Altogether the
proof of Theorem 1.2 is complete. �

5 Uniqueness of the dual solution and the duality for-
mula: proof of Theorem 1.3

Let the assumptions of Theorem 1.3 hold and consider a K-minimizing function
u from the space BV (Ω)M ∩ L2(Ω − D)M , whose existence is guaranteed by
Theorem 1.1. Remembering the decomposition ∇u = ∇auxLn + ∇su with
density ∇au being independent of the particular minimizer (recall Theorem 1.1
(b)) we claim

Lemma 5.1
The tensor ρ := DF (∇au) is a maximizer of the dual problem.

Proof of Lemma 5.1. On account of (1.6) we have that ρ is in the space L∞(Ω)nM ,
hence R[ρ] is defined and given by

R[ρ] = inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

l(v, ρ).(5.1)
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For v ∈W 1,1(Ω)M ∩ L2(Ω−D)M it holds

l(v, ρ) =

∫
Ω

[DF (∇au) : ∇v − F ∗(DF (∇au))]dx

+
λ

2

∫
Ω−D

|v − f |2dx

=

∫
Ω

F (∇au)dx+

∫
Ω

(∇v −∇au) : DF (∇au)dx

+
λ

2

∫
Ω−D

|v − f |2dx,

(5.2)

where we have made use of the formula

F (P ) + F ∗(DF (P )) = P : DF (P ), P ∈ RnM .

Since u is K-minimizing, we get (compare (1.10))

0 =
d

dt|0
K[u+ tv] =

∫
Ω

DF (∇au) : ∇vdx+ λ

∫
Ω−D

v · (u− f)dx.(5.3)

Note that obviously ∇s(u+ tv) = ∇su holds for the singular parts of the mea-
sures. Clearly ∇(u + tu) = (1 + t)∇u, hence again by the K-minimality of
u

0 =
d

dt|0
K[u+ tu] =

∫
Ω

DF (∇au) : ∇audx+

∫
Ω

F∞
(
∇su
|∇su|

)
d|∇su|

+ λ

∫
Ω−D

u · (u− f)dx.

(5.4)

Inserting (5.3) and (5.4) into (5.2) we find

l(v, ρ) =

∫
Ω

F (∇au)dx+

∫
Ω

F∞
(
∇su
|∇su|

)
d|∇su|

− λ
∫

Ω−D

v · (u− f)dx+ λ

∫
Ω−D

u · (u− f)dx

+
λ

2

∫
Ω−D

|v − f |2dx.

(5.5)

Obsering that a.e. on Ω−D it holds

−λv · (u− f) + λu · (u− f) +
λ

2
|v − f |2 =

λ

2
|u− f |2 +

λ

2
|u− v|2,

we deduce from (5.5)
l(v, ρ) ≥ K[u],

and (5.1) impliesR[ρ] ≥ K[u]. But then the claim of Lemma 5.1 is a consequence
of Theorem 1.2 (a).
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The dual solution ρ from Lemma 5.1 by definition takes its values in the open
set Im(DF ). If the dual problem would admit a second solution ρ̃ 6= ρ, then
exactly the same arguments as used during the proof of Theorem 2.15 in [10]
would lead to a contradiction. In fact, as demonstrated in this reference, the
assumption ρ 6= ρ̃ (on a set of positive measure) yields the strict inequality∫

Ω

(−F ∗)
(
ρ+ ρ̃

2

)
dx >

1

2

∫
Ω

(−F ∗)(ρ)dx+
1

2

∫
Ω

(−F ∗)(ρ̃)dx.

At the same time we observe that

L∞(Ω)nM 3 κ 7→ inf
v∈W 1,1(Ω)M∩L2(Ω−D)M

∫
Ω

[κ : ∇v − 1Ω−D|v − f |2]dx

is a concave function, hence

R

[
ρ+ ρ̃

2

]
>

1

2
R[ρ] +

1

2
R[ρ̃],

which is not possible.
Thus, DF (∇au) is the only dual solution and the proof of Theorem 1.3 is com-
plete. �
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