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Abstract

We consider elliptic variational inequalities generated by obstacle type
problems with thin obstacles. For this class of problems, we deduce esti-
mates of the distance (measured in terms of the natural energy norm) be-
tween the exact solution and any function that satisfies the boundary condi-
tion and is admissible with respect to the obstacle condition (i.e., it is valid
for any approximation regardless of the method by which it was found).
Computation of the estimates does not require knowledge of the exact solu-
tion and uses only the problem data and an approximation. The estimates
provide guaranteed upper bounds of the error (error majorants) and vanish if
and only if the approximation coincides with the exact solution. In the last
section, the efficiency of error majorants is confirmed by an example, where
the exact solution is known.

1 Introduction
Let Ω be an open, connected, and bounded domain in Rn with Lipschitz con-
tinuous boundary ∂Ω, and let M be a smooth (n − 1)-dimensional manifold in
Rn, which divides Ω into two Lipschitz subdomains Ω+ and Ω−. Throughout
the paper, we use the standard notation for the Lebesgue and Sobolev spaces of
functions. Since no confusion may arise, we denote the norm in L2 (Ω) and the
norm in the space L2 (Ω,Rn) containing vector valued functions by one common
symbol ‖ · ‖Ω.
For given functions ψ :M→ R and ϕ : ∂Ω→ R satisfying ϕ ≥ ψ onM∩ ∂Ω,
we consider the following variational Problem (P): minimize the functional

J(v) =
1

2

∫
Ω

|∇v|2dx (1.1)

over the closed convex set

K =
{
v ∈ H1 (Ω) : v > ψ onM∩ Ω, v = ϕ on ∂Ω

}
.

Here, ϕ ∈ H1/2(∂Ω) and the function ψ is supposed to be smooth.
Problem (P) is called the thin obstacle problem associated with the thin obsta-
cle ψ. In many respects, it differs from the classical obstacle problem where the
constrain v ≥ ψ is imposed on the entire domain Ω. This mathematical model
arises in various real life problems. In the 2D case (see Fig. 1), it describes equi-
librium of an elastic membrane above a very thin object (e.g., see [KO88]). The
well known Signorini problem belongs to the same class of mathematical mod-
els. Similar models appear in continuum mechanics, e.g., in temperature control
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Figure 1: The thin obstacle problem

problems and in analysis of flow through semi-permeable walls subject to the
phenomenon of osmosis (see, e.g., [DL76]). Thin obstacle problems also arise
in financial mathematics if the random variation of an underlying asset changes
discontinuously (see [CT04],[Sil07], [PSU12] and the references therein).

The problem (P) is an example of a variational inequality, which mathematical
analysis goes back to the fundamental paper [LS67]. Existence of the unique
minimizer u ∈ K is well known (see [LS67] and also the books [Rod87], [Fri88]
and [KS00]). For smooth M and ψ it is also known that u ∈ C1,α

loc (Ω± ∪M)
with 0 < α 6 1/2 (see [Caf79], [Ura85], [AC04] and the book [PSU12]). This
optimal regularity of u guarantees that ∂u

∂n+
and ∂u

∂n−
belong to L2(M), where n±

denote the outer unit normals to Ω± onM. It is also easy to see that the minimizer
u satisfies the harmonic equation ∆u = 0 in the subdomains Ω+ and Ω−, but in
general u is not a harmonic function in Ω. Instead, onM, we have the so-called
complimentarity conditions

u− ψ > 0,

[
∂u

∂n

]
> 0, (u− ψ)

[
∂u

∂n

]
= 0, (1.2)

where
[
∂u
∂n

]
:= ∂u

∂n+
+ ∂u

∂n−
is the jump of ∇u · n acrossM. Here and later on ·

denotes the inner product in Rn.

Thin obstacle problems have been actively studied from the early 1970s. These
studies were mainly focused either on regularity of minimizers (see [Fre75], [Fre77],
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[Ric78], [Caf79], [Ura85], [AC04], [Gui09]) or on properties of the respective free
boundaries (see [Lew72], [ACS08], [CSS08], [GP09], [KPS15], and [DSS16]). A
systematic overview of these results can be found in the book [PSU12].

In this paper, we are concerned with a different question. Our analysis is focused
not on properties of the exact minimizer, but on estimates of the distance (mea-
sured in terms of the natural energy norm) between u and any function v ∈ K. In
other words, we wish to obtain estimates able to detect which neighborhood of u
contains a function v (considered as an approximation of the minimizer). These
estimates are fully computable, i.e., they depend only on v (which is assumed to
be known) and on the data of the problem ( u and the respective exact coinci-
dent set {u = ψ} do not enter the estimate explicitly). For the classical obstacle
problem (which solution is bounded in Ω from above and below by two obstacles)
estimates of such a type were obtained in ( [Rep00]). For the two-phase obsta-
cle problem (which was introduced in [Wei01] and studied from regularity point
ov view in [Ura01], [SUW04], [SW06], and [SUW07]) similar estimates has been
recently derived in [RV15]. These results were obtained by methods of the duality
theory in the calculus of variations applied to certain perturbations of the original
variational problem. The same approach is used in this paper.

The main results are presented in Theorems 2.1, 2.4, and 3.2, that suggest dif-
ferent majorants of the norm ‖∇(v − u)‖Ω. The majorants are nonnegative and
vanish if and only if v coincides with u. Section 4 is devoted to the boundary thin
obstacle problem (also known as the scalar Signorini problem). Finally, in the
last section we consider an example, where the exact solution of a thin obstacle
problem is known. We find the exact distance between this solution and some
selected functions v and show that our estimates provide correct upper bounds of
the distance.

2 Estimates of the distance to the exact solution
Let u ∈ K be a minimizer of variational problem (P). Elementary calculations
yield the identity

J(v)− J(u) =
1

2
‖∇(v − u)‖2

Ω − ‖∇u‖2
Ω +

∫
Ω

∇v · ∇udx,

which holds for every v ∈ K. Since u satisfies the respective variational inequal-
ity, we conclude that

1

2
‖∇ (v − u) ‖2

Ω 6 J(v)− J(u), ∀v ∈ K. (2.1)
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The inequality (2.1) does not provide a computable majorant of the distance be-
tween u and v because the value J(u) is unknown. Therefore, our goal is to
replace the difference J(v)− J(u) in (2.1) by a fully computable quantity.

2.1 The first form of the majorant
For any λ ∈ Λ := {λ ∈ L2(M) : λ(x) > 0 a.e. onM}, we introduce the
perturbed functional

Jλ(v) := J(v)−
∫
M

λ (v − ψ) dµ.

It is easy to see that

sup
λ∈Λ

Jλ(v) = J(v)− inf
λ∈Λ

∫
M

λ(v − ψ)dµ =

{
J(v), if v > ψ onM,

+∞, otherwise.
,

Hence,
J(u) = inf

v∈K
J(v) = inf

v∈ϕ+V0(Ω)
sup
λ∈Λ

Jλ(v), (2.2)

where ϕ+ V0(Ω) := {w = ϕ+ v : v ∈ V0 (Ω)}.
The functional Jλ generates the following variational problem (Pλ): find uλ ∈
ϕ+ V0(Ω) such that

Jλ(uλ) := inf
v∈ϕ+V0(Ω)

Jλ(v). (2.3)

Here V0 is a subspace of H1(Ω) containing the functions vanishing on the bound-
ary. Since ϕ + V0(Ω) is the affine subspace of H1(Ω) and Jλ is a quadratic func-
tional, the results of [LS67] imply unique solvability of the problem (Pλ) for any
λ ∈ Λ. Moreover, in view of (2.2), J(u) is bounded from below by the quantity
Jλ(uλ). Indeed,

J(u) = inf
v∈ϕ+V0(Ω)

sup
λ∈Λ

Jλ(v) > sup
λ∈Λ

inf
v∈ϕ+V0(Ω)

Jλ(v) > Jλ(uλ) ∀λ ∈ Λ. (2.4)

The dual counterpart of (Pλ) is generated by the Lagrangian

Lλ(v, y∗) :=

∫
Ω

(
y∗ · ∇v − 1

2
|y∗|2

)
dx−

∫
M

λ(v − ψ)dµ,

which is defined on the set (ϕ+ V0(Ω))× L2 (Ω,Rn). Obviously,

Jλ(v) = sup
y∗∈L2(Ω,Rn)

Lλ(v, y∗)



Thin obstacle problem 5

and the corresponding dual functional J∗λ is defined by the relation

J∗λ(y∗) := inf
v∈ϕ+V0(Ω)

Lλ(v, y∗).

It is not difficult to see that

J∗λ(y∗) :=


∫
Ω

(
y∗ · ∇ϕ− 1

2
|y∗|2

)
dx−

∫
M

λ (ϕ− ψ) dµ if y∗ ∈ Q∗λ,M,

−∞ if y∗ /∈ Q∗λ,M,

where

Q∗λ,M :=

y∗ ∈ L2 (Ω,Rn) :

∫
Ω

y∗ · ∇wdx =

∫
M

λwdµ ∀w ∈ V0 (Ω)

 .

The setQ∗λ,M contains functions that satisfy (in the generalized sense) the equation
divy∗ = 0 in Ω− and Ω+ and the condition [y∗ ·n] = λ onM (here [y∗ ·n] denotes
the jump of y∗ · n) . The functional J∗λ generates a new variational Problem (P∗λ)
(dual to (Pλ)): find y∗λ ∈ Q∗λ,M such that

J∗λ(y∗λ) := sup
y∗∈Qλ,M

J∗λ(y∗).

This is a quadratic maximization problem with a strictly concave and continuous
functional. Well known results of convex analysis (see, e.g., [ET76]) guarantee
that it has a unique maximizer in the affine subspace Q∗λ,M. Moreover, we have
the duality relation

Jλ(uλ) = inf
v∈ϕ+V0(Ω)

Jλ(v) = sup
y∗∈Q∗λ,M

J∗λ(y∗) = J∗λ(y∗λ). (2.5)

Combining (2.4) and (2.5), we deduce the estimate

J(v)− J(u) 6 J(v)− J∗λ(y∗λ) = J(v)− sup
y∗∈Q∗λ,M

J∗λ(y∗)

= J(v) + inf
y∗∈Q∗λ,M

(−J∗λ(y∗)) = inf
y∗∈Q∗λ,M

[J(v)− J∗λ(y∗)] .

Therefore, the inequality

J(v)− J(u) 6 J(v)− J∗λ(y∗) (2.6)

holds true for all v ∈ K, all λ ∈ Λ, and all y∗ ∈ Q∗λ,M.
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Thanks to the assumption ϕ ∈ H1/2(∂Ω), the boundary datum ϕ allows a contin-
uation as H1-function on the whole set Ω. We will preserve the notation ϕ for the
extended function. Since y∗ ∈ Q∗λ,M and v − ϕ ∈ V0(Ω) for any v ∈ K, we find
that∫
Ω

y∗ ·∇ϕdx =

∫
Ω

y∗ ·∇vdx−
∫
Ω

y∗ ·∇(v−ϕ)dx =

∫
Ω

y∗ ·∇vdx−
∫
M

λ(v−ϕ)dµ.

Now the right-hand side of (2.6) can be rewritten as follows:

J(v)− J∗λ(y∗) =

∫
Ω

(
1

2
|∇v|2 +

1

2
|y∗|2 − y∗ · ∇ϕ

)
dx+

∫
M

λ(ϕ− ψ)dµ

=
1

2

∫
Ω

|∇v − y∗|2dx+

∫
M

λ (v − ψ) dµ. (2.7)

Combination of (2.1), (2.6) and (2.7) yields the following upper bound of the
error:

Theorem 2.1. For any v ∈ K, the distance to the minimizer u is subject to the
estimate

‖∇(v − u)‖2
Ω 6 ‖∇v − y∗‖2

Ω + 2

∫
M

λ (v − ψ) dµ, (2.8)

where λ and y∗ are arbitrary functions in Λ and Q∗λ,M, respectively.

Theorem 2.1 can be viewed as a form of the hypercircle estimate (see [PS47] and
[Mik64]) for the considered class of problems.

Remark 2.2. Define the coincidence sets associated with u and v:

Mu
ψ := {x ∈M : u(x) = ψ(x) } and Mv

ψ := {x ∈M : v(x) = ψ(x) }.

Assume that Mu
ψ ⊂ Mv

ψ. In this case, the estimate (2.8) is sharp in the sense
that there exist y∗ and λ such that the inequality holds as the equality. Indeed, let
y∗ = p∗ := ∇u and λ∗ = [p∗ · n]. Evidently, p∗ ∈ Q∗λ∗,M. In view of (1.2), λ∗ = 0
onM\Mu

ψ. SinceM\Mv
ψ ⊂M\Mu

ψ, we conclude that∫
M

λ∗ (v − ψ) dµ =

∫
M\Mv

ψ

λ∗ (v − ψ) dµ = 0.

Hence, the right hand side of (2.8) coincides with the left one.
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2.2 Advanced forms of the majorant
Inequality (2.8) provides a simple and transparent form of the upper bound, but it
operates with the set Q∗λ,M, which is defined by means of differential type condi-
tions. This set is rather narrow and inconvenient if we wish to use simple approx-
imations. In this section, we overcome this drawback and replace (2.8) by a more
general estimate valid for functions in the set

H (Ω±, div) :=
{
q∗ ∈ L2 (Ω,Rn) : div (q∗|Ω±) ∈ L2 (Ω±) , [q∗ · n] ∈ L2(M)

}
,

which is much wider than Q∗λ,M.

Lemma 2.3. Let q∗ ∈ H(Ω±, div), and let λ ∈ Λ. Then

inf
y∗∈Q∗λ,M

‖q∗ − y∗‖Ω 6 CFΩ+
‖div q∗‖Ω+ + CFΩ−

‖div q∗‖Ω−

+ CTrM‖λ− [q∗ · n]‖M,
(2.9)

whereCFΩ±
andCTrM are the constants defined by (2.14) and (2.13), respectively.

Proof. Consider an auxiliary variational problem (Pq∗): minimize the functional

Jq∗(w) =

∫
Ω

(
1

2
|∇w|2 + q∗ · ∇w

)
dx−

∫
M

λwdµ

on the space V0(Ω). For any given q∗ ∈ H(Ω±, div) and λ ∈ Λ, the functional
Jq∗ is convex, continuous, and coercive on V0(Ω). Hence the problem Pq∗ has a
unique minimizer wλ,q∗ ∈ V0 .
Since q∗ ∈ H (Ω±, div), the functional Jq∗ has the form

Jq∗(w) =

∫
Ω

1

2
|∇w|2dx−

∫
Ω+

wdiv q∗dx−
∫

Ω−

wdiv q∗dx

−
∫
M

(λ− [q∗ · n])wdµ.

(2.10)

For any w̃ ∈ V0(Ω), the minimizer wλ,q∗ satisfies the identity∫
Ω

∇wλ,q∗ · ∇w̃dx =

∫
Ω+

w̃div q∗dx+

∫
Ω−

w̃div q∗dx+

∫
M

(λ− [q∗ · n]) w̃dµ.

(2.11)
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We set w̃ = wλ,q∗ and use the estimate∫
M

(λ− [q∗ · n])wλ,q∗dµ 6 CTrM(Ω±)‖∇wλ,q∗‖Ω± ‖λ− [q∗ · n] ‖M

6 CTrM‖∇wλ,q∗‖Ω ‖λ− [q∗ · n] ‖M,
(2.12)

where
CTrM := min{CTrM(Ω+), CTrM(Ω−)} (2.13)

and the constants come from the trace inequalities

‖w‖M 6 CTrM(Ω±)‖∇w‖Ω± .

Two other terms in the right hand side of (2.11) are estimated by the Friedrich’s
type inequalities

‖w‖Ω± 6 CFΩ±
‖∇w‖Ω± . (2.14)

Thus, (2.11) and (2.12) yield the estimate

‖∇wλ,q∗‖Ω 6 CFΩ+
‖div q∗‖Ω+ + CFΩ−

‖div q∗‖Ω− + CTrM‖λ− [q∗ · n] ‖M.
(2.15)

Notice that (2.11) implies the identity∫
Ω

(∇wλ,q∗ + q∗) · ∇w̃dx =

∫
M

λw̃dµ ∀w̃ ∈ V0(Ω),

which shows that the function τ ∗ := ∇wλ,q∗ + q∗ ∈ Q∗λ,M. Hence

inf
y∗∈Q∗λ,M

‖q∗ − y∗‖Ω 6 ‖q∗ − τ ∗‖Ω = ‖∇wλ,q∗‖Ω.

Now (2.9) follows from (2.15).

Let q∗ ∈ H(Ω±, div), and let λ ∈ Λ. For any v ∈ K and y∗ ∈ Q∗λ,M we have

‖∇v − y∗‖Ω 6 ‖∇v − q∗‖Ω + ‖q∗ − y∗‖Ω. (2.16)

By (2.8), (2.16), and (2.9), we obtain the first advanced form of the error majorant:

Theorem 2.4. For any v ∈ K, the distance to the minimizer u is subject to the
estimate

‖∇(v − u)‖Ω 6 M(v, q∗, λ, ψ), (2.17)



Thin obstacle problem 9

where

M(v, q∗, λ,ψ) := ‖∇v − q∗‖Ω +
√

2

∫
M

λ(v − ψ)dµ

1/2

+ CFΩ+
‖div q∗‖Ω+ + CFΩ−

‖div q∗‖Ω− + CTrM‖λ− [q∗ · n]‖M,

λ ∈ Λ, q∗ is an arbitrary function in H(Ω±, div), CFΩ+
, CFΩ−

, and CTrM are the
same constants as in Lemma 2.3

In (2.17), the function q∗ is defined in a much wider set of functions defined
without differential relations. The majorant M is a nonnegative functional, which
vanishes if and only if v = u and q∗ = ∇u almost everywhere in Ω, and λ =
λ∗ :=

[
∂u
∂n

]
almost everywhere onM.

Remark 2.5. By the same arguments as in Remark 2.2, we can prove that the
majorant M(v, q∗, λ, ψ) is sharp ifMu

ψ ⊂Mv
ψ.

It is useful to have also a modified version of (2.17), which follows from (2.8),
(2.16), and Young’s inequalities (with the parameters β1 and β2).

Corollary 2.6. For any v ∈ K, β1 > 0, β2 > 0, q∗ ∈ H(Ω±, div), and λ ∈ Λ, we
have

‖∇(v − u)‖2
Ω 6 M1(v, q∗, β1, β2) + M2(v, q∗, β1, β2λ, ψ), (2.18)

where

M1(v, q∗, β1, β2) : = (1 + β1)‖∇v − q∗‖2
Ω

+(1 + β−1
1 )(1 + β2)

[
CFΩ+

‖div q∗‖Ω+ + CFΩ−
‖div q∗‖Ω−

]2

,

M2(v, q∗, β1, β2, λ, ψ) : = (1 + β−1
1 )(1 + β−1

2 )C2
TrM
‖λ− [q∗ · n] ‖2

M

+ 2

∫
M

λ(v − ψ)dµ,

and the constants CFΩ+
, CFΩ−

, and CTrM are the same as in Lemma 2.3.

The majorant (2.18) contains parameters and free functions that can be selected
arbitrarily in the respective sets. Below we deduce a new form of (2.18) where the
function λ will be chosen in the optimal way.
First, we optimize M2 with respect to λ. The respective minimization problem is
reduced to

inf
λ∈Λ

M2 = c−1
β inf

λ∈Λ

∫
M

(
C2
TrM

(λ− [q∗ · n])2 + 2λcβ(v − ψ)
)
dµ,
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where cβ := β1β2(1 +β1)−1(1 +β2)−1. The corresponding Euler-Lagrange equa-
tion has the form

2C2
TrM

(λ− [q∗ · n]) + 2cβ(v − ψ) = 0.

From here, taking into account the condition λ > 0 a.e. on M, we find the
minimizer

λ =

{
[q∗ · n]−cβC−2

TrM
(v − ψ), if [q∗ · n] > cβC

−2
TrM

(v − ψ),

0, if [q∗ · n] < cβC
−2
TrM

(v − ψ).

Plugging λ in the right-hand side of (2.18) implies the following result.

Theorem 2.7. For any v ∈ K,

‖∇(v − u)‖2
Ω 6 M1(v, q∗, β1, β2) + M3(v, q∗, β1, β2, ψ), (2.19)

where q∗ is an arbitrary function in H(Ω±, div), β1 and β2 are arbitrary nonega-
tive numbers, M1 is the same as in (2.18),

M3(v, q∗, β1, β2, ψ) :=

∫
M

ρ(v, q∗, cβ, ψ)dµ,

and

ρ(v, q∗, cβ, ψ) :=


(v − ψ)

(
2 [q∗ · n]− cβ

C2
TrM

(v − ψ)
)
, if [q∗ · n] >

cβ
C2
TrM

(v − ψ),

C2
TrM

cβ
[q∗ · n]2 , if [q∗ · n] <

cβ
C2
TrM

(v − ψ).

It is clear that the quantities M1 and M3 are always nonnegative and the functional
M4 := M1 + M3 satisfies for any β1, β2 > 0 the relation

M4(u,∇u, β1, β2, ψ) = 0.

On the other hand, if M4(v, q∗, β1, β2, ψ) = 0 then v = u almost everywhere in
Ω. Moreover, in this case the conditions

q∗ = ∇u a.e. in Ω,

∆u = 0 a.e. in Ω±,

(u− ψ) [∇u · n] = 0 a.e. onM
(2.20)

hold true. We point out that the third equality in (2.20) is provided by strict posi-
tivity of the factor 2 [q∗ · n]− cβ

C2
TrM

(v − ψ) in definition of ρ. Therefore, one can

conclude that the majorant M4 vanishes if and only if v = u and q∗ = ∇u almost
everywhere in Ω.
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Remark 2.8. Applying the same arguments as in Remark 2.2, we can prove that
the majorant M4(v, q∗, β1, β2, ψ) is sharp ifMu

ψ ⊂Mv
ψ.

One can also prove that for any β1, β2 > 0, the functional M4(v, q∗, β1, β2, ψ)
possesses necessary continuity properties with respect to the first and second ar-
guments. Thus,

M4(vk, q
∗
k, β1, β2, ψ)→ 0

if vk → u in K and q∗k → ∇u in L2(Ω±) and [q∗k · n] → [∇u · n] in L2(M). So,
taking into account Remark 2.8, we conclude that the estimate (2.19) has no gap
between the left and right hand sides and we can always select the parameters of
M4 such that it is arbitrary close to the energy norm of the error.

3 Estimates with explicit constants
It should be also noted that for complicated domains the constants CFΩ±

and
CTrM(Ω±) entering above derived estimates (2.17)-(2.19) may be unknown. In
this case, we need to find guaranteed and realistic upper bounds of them. De-
pending on a particular domain, this task may be fairly easy or very difficult. It
is therefore of interest to look at other variants of Lemma 2.3, which operates
with different constants. In this section, we establish another estimate based on
the Poincaré inequlity for functions having zero mean values in Ω± and on the
so–called ”sloshing” inequality for functions with zero mean traces on M. As
a result, we obtain estimates of the distance to the minimizer u containing the
constants which are either explicitly known or easily definable.
Henceforth, we denote by {|w |}ω the mean value of w on the set ω. In view of the
Poincare inequality

‖w‖Ω± ≤ CPΩ±
‖∇w‖Ω± ∀w ∈ H̃1(Ω±) :=

{
w ∈ H1(Ω±) : {|w |}Ω±

= 0
}
.

(3.1)
Similar inequalities hold for the functions defined in Ω+ and Ω− having zero mean
values onM:

‖w‖M ≤ CPM(Ω±)‖∇w‖Ω± ∀w ∈ H̃1
M(Ω±) :=

{
w ∈ H1(Ω±) : {|w |}M = 0

}
.

(3.2)

Lemma 3.1. Let q∗ ∈ H(Ω±, div) and λ ∈ Λ satisfy the following additional
conditions:∫

Ω+

div q∗dx =

∫
Ω−

div q∗dx = 0 and

∫
M

(λ− [q∗ · n])dµ = 0. (3.3)
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Then, for any α ∈ [0, 1], we have

inf
y∗∈Q∗λ,M

‖q∗ − y∗‖2
Ω 6 (D− + αm−)2 + (D+ + (1− α)m+)2, (3.4)

where D± := CPΩ±
‖div q∗‖Ω± and m± = CPM(Ω±)‖λ− [q∗ · n]‖M.

Proof. We use the same arguments as in the proof of Lemma 2.3 and arrive at the
identity (2.11). In view of (3.3), this identity implies the relation

‖∇wλ,q∗‖2
Ω =

∫
Ω+

(
wλ,q∗ − {wλ,q∗}Ω+

)
div q∗dx

+

∫
Ω−

(
wλ,q∗ − {wλ,q∗}Ω−

)
div q∗dx

+

∫
M

(λ− [q∗ · n]) (wλ,q∗ − {wλ,q∗}M) dµ.

By (3.1) and (3.2), we obtain∫
Ω±

(
wλ,q∗ − {wλ,q∗}Ω+

)
div q∗dx 6 CPΩ±

‖∇wλ,q∗‖Ω±‖div q∗‖Ω± ,∫
M

(λ− [q∗ · n]) (wλ,q∗ − {wλ,q∗}M) dµ 6 CPM(Ω±)‖∇wλ,q∗‖Ω±‖λ− [q∗ · n]‖M.

Then,

‖∇wλ,q∗‖2
Ω 6 D−‖∇wλ,q∗‖Ω− + D+‖∇wλ,q∗‖Ω+ + αm−‖∇wλ,q∗‖Ω−

+ (1− α)m+‖∇wλ,q∗‖Ω+

6
(
(D− + αm−)2 + (D+ + (1− α)m+)2

)1/2 ‖∇wλ,q∗‖Ω.

(3.5)

Using (3.5) and repeating the same arguments as at the end of the proof of Lemma 2.3,
we arrive at (3.4).

The quantities D± contain the Poincaré constants for Ω±. If these domains are
convex, then due to the estimate of Payne and Weinberger (see [PW60]) we know
that

CPΩ±
6

diam Ω±
π

.

The constants CPM(Ω±) entering m± are also easy to estimate. These constants
are known for triangles (see [NR15] and [MR16]). Due to this fact, we can easily
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€ 

Τ+

Ω+

M 

€ 

Τ−

Ω-

Figure 2: Triangles T+ and T−

obtain upper bounds of the constants for a wide collection of domains.
Indeed, let T+ ⊂ Ω+ andM as a face of this triangle (see Fig. 2). It is clear that

‖w‖M 6 CPM(T+)‖∇w‖T+ 6 CPM(T+)‖∇w‖Ω+ ∀w ∈ H̃1
M(Ω+),

and we can use the constant CPM(T+) as an upper bound of CPM(Ω+).
Lemma 3.1, (2.8), and (2.16) yield the following majorant of the distance to u.

Theorem 3.2. Let u ∈ K be a minimizer of variational problem (P). Let q∗ ∈
H(Ω+,Ω−, div), and let the conditions (3.3) be satisfied. Then, for any v ∈ K,
α ∈ [0, 1], and λ ∈ Λ, the upper bound of error is given by the estimate

‖∇(v − u)‖Ω 6 M5(v, q∗, α, λ, ψ), (3.6)

where

M5(v, q∗, α, λ, ψ) := ‖∇v − q∗‖Ω +
√

2

∫
M

λ(v − ψ)dµ

1/2

+
(
(D− + αm−)2 + (D+ + (1− α)m+)2

)1/2
,

where the functionals D± and m± are the same as in Lemma 3.1.

As in Section 2, it is easy to see that the majorant M5 is a nonnegative function of
its arguments, which vanishes if and only if v = u and q∗ = ∇u a. e. in Ω, and
λ =

[
∂u
∂n

]
a. e. onM.

Remark 3.3. The majorant M5(v, q∗, α, λ, ψ) is sharp ifMu
ψ ⊂ Mv

ψ. The proof
is based on the same arguments as in Remark 2.2.
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Remark 3.4. Other forms of the majorant arise if the conditions (3.3) are satisfied
only partially. For example, if only the condition∫

M

(λ− [q∗ · n])dµ = 0 (3.7)

is satisfied, then the estimate (3.6) holds true for any q∗ ∈ H(Ω±, div) satisfying
(3.7), where the functionals D− and D+ in M3 are replaced by CFΩ−

‖div q∗‖Ω−

and CFΩ+
‖div q∗‖Ω+ , respectively. This version of the estimate is used in the

examples considered in Section 5.

Obviously, if m+ = m− = 0 then the parameter α in (3.6) has no influence to the
majorant value and it can be chosen arbitrarily in [0, 1]. Otherwise, we can define
α in the optimal way by solving the minimization problem

inf
α∈[0,1]

{
(D− + αm−)2 + (D+ + (1− α)m+)2

}
,

which yields the best value

α∗ :=


α, if 0 6 α 6 1,
0, if α < 0,
1, if α > 1,

where α :=
m2

+ + D+m+ −D−m−
m2

+ + m2
−

.

4 The scalar Signorini problem
A problem close to (P) arises ifM coincides with a part of ∂Ω. In this case, the
functional (1.1) is minimized over the set

KS =
{
v ∈ H1 (Ω) : v > ψ onM, v = ϕ on ∂Ω \M

}
.

This problem is known as the boundary thin obstacle problem or the (scalar)
Signorini problem.
Under appropriate assumptions on the data of the problem (S), the existence of
the unique minimizer u ∈ H1(Ω) has been proved in [Fic64]. The exact solution
u is a harmonic function in Ω, which satisfies the so-called Signorini boundary
conditions

u− ψ > 0,
∂u

∂n
> 0, (u− ψ)

∂u

∂n
= 0 on M,

where n denotes the unit outward normal to ∂Ω.
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Throughout this section V S0 (Ω) denotes a subset of H1(Ω) containing the func-
tions with zero traces on ∂Ω \M and

Q∗,Sλ,M :=
{
y∗ ∈ L2(Ω,Rn) :

∫
Ω

y∗ · ∇wdx =

∫
M

λwdµ for all w ∈ V S0 (Ω)
}
.

Repeating all the arguments used in the derivation of (2.8) (where V0(Ω) is re-
placed by V S0 (Ω)), we conclude that the estimate

1

2
‖∇(v − u)‖2

Ω 6
1

2
‖∇v − y∗‖2

Ω +

∫
M

λ (v − ψ) dµ (4.1)

holds true for all v ∈ KS , all λ ∈ Λ, and all y∗ ∈ Q∗,Sλ,M.
The estimate (4.1) can be extended to a wider set of functions by the arguments
similar to those used in Sect. 2. For this purpose, we consider an auxiliary problem
(PSq∗): find wSλ,q∗ ∈ V S

0 (Ω) that minimizes the functional

Jq∗(w) =

∫
Ω

(
1

2
|∇w|2 + q∗ · ∇w

)
dx−

∫
M

λwdµ

for a given q∗ ∈ HS(Ω, div) := {q∗ ∈ L2(Ω,Rn) | div q∗ ∈ L2(Ω), [q∗ · n] ∈ L2(M)}.
By the same arguments as in Subsection 2.2, we conclude that the problem (PSq∗)
has a unique minimizer wSλ,q∗ in V S

0 (Ω). In view of the respective integral identity,
the function

τ ∗S(x) := ∇wSλ,q∗(x) + q∗(x)

belongs to the set Q∗,Sλ,M. Hence

inf
y∗∈Q∗,Sλ,M

‖∇v − y∗‖Ω 6 ‖∇v − q∗‖Ω + inf
y∗∈Q∗,Sλ,M

‖q∗ − y∗‖Ω

6 ‖∇v − q∗‖Ω + ‖q∗ − τ ∗S‖Ω

6 ‖∇v − q∗‖Ω + CFΩ
‖div q∗‖Ω + CTrM‖λ− q∗ · n‖M.

(4.2)

for any v ∈ KS , q∗ ∈ HS(Ω, div), and λ ∈ Λ. Here CFΩ
and CTrM are constants

in is the the Friedrichs and trace inequalities, respectively.
Combining (4.1) and (4.2), we find that for any v ∈ KS the following estimate
holds

‖∇(v − u)‖Ω 6 MS(v, q∗, λ, ψ), (4.3)

where

MS(v, q∗, λ, ψ) := ‖∇v − q∗‖2
Ω +
√

2

∫
M

λ(v − ψ)dµ

1/2

+ CFΩ
‖div q∗‖Ω + CTrM‖λ− q∗ · n‖M, (4.4)
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λ ∈ Λ, and q∗ is an arbitrary function in HS(Ω, div).

Obviously, MS(v, q∗, λ, ψ) ≥ 0. By the same arguments as in Section 2, we
prove that MS(v, q∗, λ, ψ) = 0 if and only if v = u, q∗ = ∇u a. e. in Ω, and
λ = ∂u

∂n
a. e. onM.

Assume that a function q∗ ∈ HS(Ω, div) additionally satisfies the conditions∫
Ω

div q∗dx = 0 and

∫
M

(λ− q∗ · n) dµ = 0.

Then, we obtain the following analog of the estimate derived in Section 3:

‖∇(v − u)‖Ω 6 MS
1 (v, q∗, λ, ψ),

where

MS
1 (v, q∗, λ, ψ) := ‖∇v − q∗‖2

Ω +
√

2

∫
M

λ(v − ψ)dµ

1/2

+ CPΩ
‖div q∗‖Ω + CPM‖λ− q∗ · n‖M.

Here λ is any function from Λ and CPΩ
and CPM are the constants from the

Poincaré type inequalities for Ω and for M, respectively. It is not difficult to
show that MS

1 is nonnegative and vanishes if and only if v = u and q∗ = ∇u a. e.
in Ω, and λ = ∂u

∂n
a. e. onM.

5 Examples
Let Ω = Ω+ ∪ Ω−, where Ω± are two right triangles having a common face
M := {x2 = 0} (see Fig. 3). In this example, ∂Ω consists of four parts:

(i) x1 + x2 − a = 0, (iii) −x1 − x2 − a = 0,
(ii) −x1 + x2 − a = 0, (iv) x1 − x2 − a = 0.

Notice that for this example, we can explicitly define the minimizer. It is well
known (see [PSU12]) that

u(x1, x2) = Re
(
(x1 + i|x2|)3/2

)
is the exact solution of the thin obstacle problem in R2 withM := {x2 = 0} and
ψ ≡ 0. It is clear that ∆u = 0 in Ω±. In addition,

u(x1, 0) =

{
0, if x1 6 0,

x
3/2
1 , if x1 > 0

and
[
∂u

∂n

]
=

{
3
√
−x1, if x1 < 0,

0, if x1 > 0.
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iv( )

€ 

iii( )

€ 
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M 

Ω-

Figure 3: Domains Ω+ and Ω−

Setting the boundary condition ϕ on ∂Ω as the trace of Re
(
(x1 + i|x2|)3/2

)
and

taking ψ ≡ 0, we see that the restriction of u to Ω is the exact solution of the thin
obstacle problem in this bounded domain (see Fig. 4 (left)).

u	 ψ	

Figure 4: The exact solution u (left) and the function v1 − u (right)

In order to verify the performance of our estimates, we select different functions
v in K and compute the distances between v and u. First, we define v = v1 as
follows:

v1(x1, x2) := u(x1, x2) +

{
x2

2(x2 − x1 − a)(x2 + x1 − a), if x2 > 0,

x2
2(x2 − x1 + a)(x2 + x1 + a), if x2 < 0.

It is clear that v1 ∈ K and v1 > u in Ω and v1(x1, 0) = u(x1, 0). So, v1 has the
same coincidence set as the exact solution u (see Fig. 4 (right)).
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By direct computations, we find that
[
∂v1

∂n

]
=
[
∂u
∂n

]
+ 12ax2

2,

∆v1 =

{
10x2

2 − 12x2a− 2x2
1 + 2a2, in Ω+

10x2
2 + 12x2a− 2x2

1 + 2a2, in Ω−
,

and the exact error

‖∇(v1 − u)‖Ω =
4

3

√
2

35
a4.

Let us set here q∗ = ∇v1 and λ =
[
∂v1

∂n

]
. Computing the majorant M

(
v1,∇v1,

[
∂v1

∂n

]
, 0
)
,

defined by (2.17), we get

M

(
v1,∇v1,

[
∂v1

∂n

]
, 0

)
= ‖∇v1 −∇v1‖Ω +

√
2

 a∫
−a

[
∂v1

∂n

]
v1dx

1/2

+ CFΩ+
‖div∇v1‖Ω+ + CFΩ−

‖div∇v1‖Ω−

+ CTrM‖
[
∂v1

∂n

]
− [∇v1 · n] ‖M

= CFΩ+
‖∆v1‖Ω+ + CFΩ−

‖∆v1‖Ω− .

(5.1)

Remark 5.1. Here the constants CFΩ+
and CFΩ−

are defined by the quotient type
relations

inf
w∈V ±0 (Ω±)

‖∇w‖Ω±

‖w‖Ω±

=
1

CFΩ±

,

where V +
0 (Ω+) contains all H1-functions vanishing on (i) and (ii) and V −0 (Ω−)

contains all H1-functions vanishing on (iii) and (iv). It is easy to show that

CFΩ+
= CFΩ−

=
a

π
. (5.2)

Indeed, consider the rotated triangle (see Fig. 5) and the respective eigenvalue
problem

∆w + κw = 0 in Ω+,

w = 0 on x̃1 = 0,

w = 0 on x̃2 = 0,

∂w

∂n
= 0 on M,

M :={x̃1 + x̃2 = a
√

2},
Ω+

M 

€ 

w = 0
€ 

n

€ 

∂w
∂n

= 0

€ 

˜ x 1

€ 

˜ x 2

€ 

a 2

€ 

w = 0
€ 

a 2

Figure 5: Eigenvalue problem
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which minimal eigenvalue corresponds to the eigenfunction

w̃ = sin

(
π

a
√

2
x̃1

)
sin

(
π

a
√

2
x̃2

)
.

Direct calculation of ‖∇w̃‖Ω± and ‖w̃‖Ω± yields (5.2).

Plugging (5.2) into (5.1) yields to the equality

M

(
v1,∇v1,

[
∂v1

∂n

]
, 0

)
=

16

3
√

5π
a4.

Therefore, the efficiency of the estimate is characterized by the value (efficiency
index)

1 6
M
(
v1,∇v1,

[
∂v1

∂n

]
, 0
)

‖∇(v1 − u)‖Ω

=
4

π

√
7

2
≈ 2.382.

It should be pointed out that for q∗ = ∇v1 and λ =
[
∂v1

∂n

]
the assumption (3.7)

is fulfilled. Moreover, ‖
[
∂v1

∂n

]
− [∇v1 · n] ‖M = 0. So, for any α ∈ [0, 1] we

can also compute a version of the majorant M3

(
v1,∇v1, α,

[
∂v1

∂n

]
, 0
)

which is
modified in accordance with Remark 3.4. We will denote this modified majorant
by M′

3. Taking into account (5.2) we get

M′
3

(
v1,∇v1, α,

[
∂v1

∂n

]
, 0

)
= ‖∇v1 −∇v1‖Ω +

√
2

 a∫
−a

[
∂v1

∂n

]
v1dx

1/2

+
[
C2
FΩ−
‖div∇v1‖2

Ω− + C2
FΩ+
‖div∇v1‖2

Ω+

]1/2

=
a

π

[
‖∆v1‖2

Ω− + ‖∆v1‖2
Ω+

]1/2
=

8
√

2

3
√

5π
a4.

Hence we have better efficiency index

1 6
M′

3

(
v1,∇v1, α,

[
∂v1

∂n

]
, 0
)

‖∇(v1 − u)‖Ω

=
2

π

√
7 ≈ 1.684.

It remains only to recall that in view of Remark 2.5 the majorant M is sharp for
q∗ = ∇u and λ =

[
∂u
∂n

]
, i.e.,

M(v1,∇u,
[
∂u
∂n

]
, 0)

‖∇(v1 − u)‖Ω

= 1.
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Consider now another function v = v2, where

v2(x1, x2) := u(x1, x2) + (x1 + x2− a)(x2− x1− a)(x1 + x2 + a)(x2− x1 + a).

Obviously, v2 > u in Ω. Hence v2 ∈ K and the respective coincidence set is
empty. Moreover, we have ∆v2 = 8(x2

1 + x2
2 − a2) in Ω±, and[

∂v2

∂n

]
=

[
∂u

∂n

]
=

{
3
√
−x1, if x1 < 0,

0, if x1 > 0.

Let q∗ = ∇v2 and λ =
[
∂v2

∂n

]
. Then the assumption (3.7) is satisfied. We take into

account (5.2), Remark 3.4 and apply use the estimate (3.6), which gives

‖∇(v2 − u)‖Ω =
16

3
√

5
a4 6

√
2

 0∫
−a

3
√
−x1 v(x1, 0)dx1

1/2

+
a

π

(
‖∆v2‖2

Ω+
+ ‖∆v2‖2

Ω−

)1/2
.

This estimate has the efficiency index

1 ≤
M3

(
v,∇v2,

[
∂v2

∂n

]
, 0
)

‖∇(v2 − u)‖Ω

≤
√

22

π
+

√
45

2 · 77
a−5/4 ≈ 1.493 + 0.541a−5/4.

Remark 5.2. Notice that in the above examples rather simple functions q∗ and λ
(constructed directly by means of the function v) provide quite realistic presenta-
tion of the error. Certainly in more complicated examples, such a simple choice
may lead to significant overestimation of the error. In this case, so defined q and λ
may be considered as a starting point for the iteration process of majorant mini-
mization that generates a sequence of numbers that are monotonically decreasing
upper bounds of the error.
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convex domains. Arch. Ration. Mech. Anal., 5:286–292, 1960.

[Rep00] S. I. Repin. Estimates of deviations from exact solutions of elliptic
variational inequalities. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat.
Inst. Steklov. (POMI), 271:188–203 [Russian], 2000. English transl. in
J. Math. Sci. (N.Y.) 115, no. 6 (2003), 2811-2819.

[Ric78] D. J. A. Richardson. Variational problems with thin obstacles. Pro-
Quest LLC, Ann Arbor, MI, 1978. Thesis (Ph.D.)–The University of
British Columbia (Canada).

[Rod87] J.-F. Rodrigues. Obstacle problems in mathematical physics, volume
134 of North-Holland Mathematics Studies. North-Holland Publishing
Co., Amsterdam, 1987. Notas de Matemática [Mathematical Notes],
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