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Fully conservative spectral
Galerkin-Petrov method for the

inhomogeneous Boltzmann equation

Torsten Keßler∗ Sergej Rjasanow†

4th December 2017

Abstract

In this paper, we present an application of a Galerkin-Petrov method to
the spatially one-dimensional Boltzmann equation. The three-dimensional
velocity space is discretised by a spectral method. The space of the test
functions is spanned by polynomials, which includes the collision invariants.
This automatically insures the exact conservation of mass, momentum and
energy. The resulting system of hyperbolic PDEs is solved with a finite volume
method. We illustrate our method with two standard tests, namely the Fourier
and the Sod shock tube problems. Our results are validated with the help of a
stochastic particle method.
Keywords Boltzmann equation · Galerkin-Petrov method · Orthogonal polynomials ·
System of hyperbolic equations · Finite volume method
Mathematics Subject Classification (2010) 82C40 · 65N35 · 33C45 · 35L04 ·
65M08

1 Introduction
Numerically solving the Boltzmann equation has been a challenging problem for
decades. Starting in the 1950s, first schemes had been proposed which were based on
the Hilbert expansion or Monte Carlo integration of the collision operator. Different
authors also developed stochastic particle methods. The most popular among these
is the Direct Simulation Monte Carlo (DSMC), which was introduced by Bird in the
1960s, see his monograph [1]. The DSMC, or modifications of it, are still in use today.
Although particle methods can be applied to large range of problems, their usage
can cause difficulties when considering slow flows, which require many repetitions in
order to damp the stochastic fluctuations.

That’s why one is interested in competitive deterministic methods for the
Boltzmann equation. Several schemes were designed, for example by using the Fourier
representation of the collision operator, originally for Maxwell pseudo-molecules by
∗Saarland University, Department of Mathematics, 66041 Saarbrücken, Germany
†Saarland University, Department of Mathematics, 66041 Saarbrücken, Germany
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Bobylev and Rjasanow [2], which was later extended in [3, 4] and by Ibragimov and
Rjasanow [16]. More recently, these results were extended to general cross-sections
[13, 12, 10] by Gamba and Tharkabhushanam and Gamba and Haack.

A spectral method based on trigonometric polynomials was presented in [21, 22,
23].

This work extends the ideas from [11] to the spatially inhomogeneous Boltzmann
equation. Approaches similar to our method can be found in [18] and [9, 15] for two
dimensions, both in velocity and space.

In [9], Fonn, Grohs and Hiptmair proposed a spectral scheme for the two-
dimensional spatially homogeneous Boltzmann equation. The particle density func-
tion is sought as a linear combination of basis functions consisting of polynomials,
given in polar coordinates, multiplied with a Maxwellian weight. The homogeneous
Boltzmann equation is discretised by a Galerkin ansatz with respect to a weighted
inner product on L2(R3). The physical quantities related to the collision invariants
are not conserved in general but only for a special choice of the weight function.
The numerical effort of computing the discretised collision operator is reduced by
exploiting the simple representation of spherical harmonics and their rotations in two
dimensions, namely Yl(ϕ) = exp(ilϕ). In [15], this ansatz was extended by Grohs,
Hiptmair and Pintarelli to the two-dimensional inhomogeneous Boltzmann equation.
Strang splitting is used to decouple the advection and collision step. In order to
fulfil the conservation laws, two methods are presented, one by adding a basis of the
collision invariants to the test functions, which leads to an overdetermined system
of ODEs. The other possibility is adding a Lagrange multiplier which corrects the
coefficients of the basis functions at each time step. The advection equation is solved
by least squares method on the phase space combined with a continuous first order
FEM.

Kitzler and Schöberl [18] use Galerkin-Petrov method in the velocity space and a
Discontinuous Galerkin discretisation of the advection part for the two-dimensional
inhomogeneous Boltzmann equation. The test functions are spanned by tensor
products of (continuous) polynomials in the velocity variable and piecewise continuous
polynomials in the space variables. The basis functions are obtained by multiplying
the test functions with a Maxwellian weight, where the bulk velocity and temperature
may depend on the spatial variable. This automatically insures exact conservation
laws. The translation invariance together with the simple parametrisation of S1 is
used to reduce the numerical effort of the collision step.

This paper is organised as follows. In Section 2, we introduce our notation for
the Boltzmann equation and give a formulation of the one-dimensional problems
which are discussed in this paper. In Section 3, we investigate the semi-discretised
Boltzmann equation which arise after an integration over the velocity space. This also
includes a small section on the Burnett functions which are used for the construction
of our basis and test functions. Section 4 gives some details of the implementation,
in particular numerical integration over R3 and half-spaces as well as the formulation
of boundary conditions and the discretisation of the hyperbolic system. In Section 5,
we present the results of our scheme for two standard tests and different Knudsen
numbers. Some concluding remarks can be found in Section 6
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2 One-dimensional problems for the Boltzmann
equation

We consider the spatially one-dimensional Boltzmann equation

∂f

∂t
(t, x, v) + v1

∂f

∂x
(t, x, v) = 1

KnQ(f, f)(v), (1)

which models the time evolution of the particle density function

f : R≥0 × (0, 1)×R3 → R≥0

of a gas located in (0, 1).
The right-hand side of equation (1) is called the collision integral or collision

operator. It is given by

Q(g, h)(v) =
∫
R3

∫
S2

|u|σ
(
|u|, (u, e)

|u|

)
(g(v′)h(w′)− g(v)h(w)) dSe dw,

where

u = v − w,

v′ = 1
2

(
v + w + |u|e

)
,

w′ = 1
2

(
v + w − |u|e

)
,

and σ denotes the differential cross-section which depends on the modelled gas
interaction. Kn is called Knudsen number which is defined as the ratio of the mean
free path λMP and a characteristic length L of the system

Kn = λMP

L
.

The collision kernel |u|σ(|u|, |u|−1 (u, e)) can usually be expressed as

|u|σ
(
|u|, (u, e)

|u|

)
= |u|λb

(
(u, e)
|u|

)
, −3 < λ ≤ 1. (2)

This includes the case of variable hard spheres (VHS) as well as the Maxwell pseudo-
molecules.

The weak formulation of the collision operator is particularly useful for our
numerical scheme as in this form, the post-collision velocities v′ and w′ are transferred
to the test function ψ.
Theorem 2.1 For suitable g, h, ψ : R3 → R, the L2-inner product (Q(g, h), ψ)L2(R3)
can also be expressed as

1
2

∫
R3

∫
R3

g(v)h(w)
∫
S2

|u|λσ
(
|u|, (u, e)

|u|

)
(ψ(v′) + ψ(w′)− ψ(v)− ψ(w)) dSe dw dv.
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Proof. See [6].

As a direct consequence of Theorem 2.1 we get the following lemma.
Lemma 2.2 For suitable g, h : R3 → R, we have

∫
R3

Q(g, h)(v)

 1
v

|v|2

 dv = 0.

Testing the Boltzmann equation with five functions, called collision invariants,

ψ0 : R3 → R, v 7→ 1,
ψ1 : R3 → R, v 7→ v1,

ψ2 : R3 → R, v 7→ v2,

ψ3 : R3 → R, v 7→ v3,

ψ4 : R3 → R, v 7→ |v|2,

we conclude the conservation of mass, momentum in all three directions and energy.

Proof. It is not hard to see that ψ0, . . . , ψ4 fulfil

ψ(v′) + ψ(w′) = ψ(v) + ψ(w) v, w ∈ R3, e ∈ S2.

The claim follows after an application of Theorem 2.1.

In order to get a well-defined problem for equation (1), initial and boundary conditions
are imposed on the particle density function f . At the beginning, the particle density
function is given by Maxwell distributions

f(0, x, v) = ρ0(x)
(2πT0) 3

2
exp

(
−|v − V0(x)|2

2T0(x)

)
, x ∈ (0, 1), v ∈ R3. (3)

The boundaries can be opened, e.g. the shock tube, or closed in the case of the
Fourier problem. For open boundaries, the particle density function has to fulfil
inflow conditions

f(t, 0, v) = fl(t, v), t ≥ 0, v ∈ R3
in(0)

f(t, 1, v) = fr(t, v), t ≥ 0, v ∈ R3
in(1)

(4)

If the boundary conditions should model walls, i.e. the boundaries are closed, diffusely
reflecting conditions are imposed on f ,

f(t, 0, v) =

 ∫
R3

out(0)

f(t, 0, w)|w1| dw

 1
2πT 2

l

exp
(
−|v|

2

2Tl

)
t ≥ 0, v ∈ R3

in(0),

f(t, 1, v) =

 ∫
R3

out(1)

f(t, 1, w)|w1| dw

 1
2πT 2

r

exp
(
−|v|

2

2Tr

)
t ≥ 0, v ∈ R3

in(1),

(5)

where R3
in(x) = {v ∈ R3 : (v, n(x)) > 0} , R3

out(x) = {w ∈ R3 : (w, n(x)) < 0}
and n(0) = (1, 0, 0)> and n(1) = (−1, 0, 0)> denote the inner normals. This choice
conserves the total mass of the gas.
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3 Galerkin-Petrov method
The crucial part when solving the Boltzmann equation is the application of the
collision operator. Every evaluation involves the computation of a five-fold integral.
Furthermore, the operator is non-linear. However, the collision operator only acts
on the velocity space and by the use its weak form, we can exploit its bilinear
structure. In this formulation, the collision operator is descretised by a sequence of
symmetric matrices which are independent of time and space as well as chosen initial
and boundary conditions. Once these matrices are computed and stored, they can
be used for different initial and boundary values as well as for different time-space
integration schemes.

This motivates the following ansatz for the approximation f (n) of the particle
density function

f (n)(t, x, v) =
n∑
j=1

fj(t, x)ϕj(v), t ≥ 0, x ∈ (0, 1), v ∈ R3,

where (ϕj)nj=1 are called basis or ansatz functions and (fj)nj=1 is the coefficient vector.
Plugging this into the Boltzmann equation (1), we get the residual

R(t, x, v) =
n∑
j=1

∂tfj(t, x)ϕj(v)+∂xfj(t, x)v1ϕj(v)−
n∑
k=1

n∑
l=1

fk(t, x)fl(t, x)Q(ϕk, ϕl)(v),

for t > 0, x ∈ (0, 1) and v ∈ R3. The coefficients (fj)nj=1 are chosen such that for all
t > 0 and x ∈ (0, 1),

(R(t, x,−), ψi)L2(R3) = 0, i = 1, . . . , n, (6)

where the functions (ψi)ni=1 are called test functions. If ψi = ϕi for i = 1, . . . , n, this
is the classical Galerkin method. However, choosing a set of test functions which
includes the five collision invariants, the corresponding collision matrices vanish. We
automatically conserve mass, momentum and energy.

For our method, the test functions are polynomials, including the collision invari-
ants. The ansatz space is spanned by test functions multiplied with an Maxwellian
weight. This choice of basis functions leads to consistent results in case of the
steady-state and in the hydrodynamic limit, Kn→ 0.

3.1 Burnett functions
Our basis and test functions are derived from the Burnett functions, which were
introduced in kinetic theory by Burnett in 1935 [5]. They were already used in
[11] to construct basis and test functions. We adopt their main ideas with slight
modifications regarding scaling factors.
Definition 3.1 Given k ∈ N, l ∈ N and m ∈ {−l, . . . , l}, the (normalised) Burnett
function ψk,l,m is defined in spherical coordinates, v = ρe, as

ψk,l,m : R3 → R, v 7→
√√√√ 2k!

Γ(k + l + 3
2) L

(l+ 1
2 )

k

(
ρ2
)
ρl Yl,m (e)
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where L(l+ 1
2 )

k denotes the associated Laguerre polynomial of degree k and Yl,m the
real-valued spherical harmonic, given by

Yl,m =


√

2 Im(Y |m|l ), m < 0
Y 0
l , m = 0√
2 Re(Y m

l ), m > 0.
(7)

Here, Y m
l denotes the usual complex-valued spherical harmonic.

Remark 3.2 For v ∈ R3 \ {0}, ρ ∈ [0,∞) and e ∈ S2 with v = ρe are uniquely
given by

ρ = |v|, e = v

|v| .

If v = 0, ρ is equal to 0, but e can be chosen arbitrarily. However, the Burnett
functions are well-defined. This can be seen by a case distinction of l ∈ N.

In the case of l = 0, Y0,0 is a constant polynomial. Thus the value of ψk,0,0 does
not depend on e for all k ∈ N.

If l > 0, we have ρl = 0l = 0 and ψk,l,m(0) = 0 for all k ∈ N and m ∈ {−l, . . . , l}
independent of e.
Lemma 3.3 The Burnett functions are polynomials.

Proof. Let k ∈ N, l ∈ N and m ∈ {−l, . . . , l}. Then

Φk,l : R3 → R, v 7→
√√√√ 2k!

Γ(k + l + 3
2) L

(l+ 1
2 )

k

(
|v|2

)

is a polynomial as v 7→ |v|2 = v2
1 + v2

2 + v2
3 is a polynomial. The spherical harmonic

Yl,m is the restriction of a homogeneous polynomial Pl,m of degree l on S2. Hence it
holds for all v = ρe ∈ R3

ρlYl,m (e) = Pl,m(v),

which completes the proof.

Lemma 3.4 For all k, k′ ∈ N, l, l′ ∈ N and m ∈ {−l, . . . , l}, m′ ∈ {−l′, . . . , l′}, we
have ∫

R3

exp(−|v|2)ψk,l,m(v)ψk′,l′,m′(v) dv = δkk′δll′δmm′ .

Lemma 3.5 The collision invariants can be expressed as a linear combination of
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Burnett functions, namely

ψ0,0,0(v) =
√

1
4π ,

ψ0,1,−1(v) =
√

3
4πv2,

ψ0,1,0(v) =
√

3
4πv3,

ψ0,1,1(v) = −
√

3
4πv1,

ψ1,0,0(v) =
√

1
4π

(3
2 − |v|

2
)
.

3.2 Basis and test functions
Starting with the Burnett functions, we construct our basis and test functions.
In order to approximate a broader range of temperatures, we rescale the Burnett
functions by a characteristic temperature T > 0.
Definition 3.6 For k, l ∈ N, m ∈ {−l, . . . , l}, we define

ψTk,l,m : R3 → R, v 7→ 1
T

3
4
ψk,l,m

(
v√
T

)
,

the test function with indices k, l,m.
Definition 3.7 For k, l ∈ N, m ∈ {−l, . . . , l}, we define

ϕTk,l,m : R3 → R, v 7→ exp
(
−|v|

2

2T

)
ψTk,l,m (v) ,

the basis function with indices k, l,m.
Lemma 3.8 For all k, k′ ∈ N, l, l′ ∈ N and m ∈ {−l, . . . , l}, m′ ∈ {−l′, . . . , l′}, it
holds ∫

R3

ϕTk,l,m(v)ϕTk′,l′,m′(v) dv = δkk′δll′δmm′ .

If T = 1, we drop the superscript and simply write ϕk,l,m and ψk,l,m instead of
ϕTk,l,m and ψTk,l,m. In the following, we will often write ϕTj and ψTi , meaning that we
implicitly choose an enumeration of the basis and test functions.

3.3 Semi-discretised Boltzmann equation
The set of indices used for the basis and also for the test functions are chosen from a
sequence of increasing sets which are indexed by two integers, indicating the highest
used degree for radial and spherical polynomials, that is for K,L ∈ N the indices
are given by

IK,L = {(k, l,m) : k ∈ {0, . . . , K}, l ∈ {0, . . . , L}, m ∈ {−l, . . . , l}}. (8)
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This insures that for all non-trivial choices of K and L, the collision invariants are
always elements of the set of test functions.

Plugging our basis and test functions into equation (6), we get a system of

n = (K + 1)(L+ 1)2

partial differential equations. Rewritten in matrix form, these equations read as

MT∂tf +DT∂xf = 1
KnC

T (f), (9)

where MT is the mass matrix with entries

MT [i, j] =
(
ϕTj , ψ

T
i

)
L2(R3)

, i, j = 1, . . . , n,

DT is the so-called flow matrix whose entries are given by

DT [i, j] =
(
v1ϕ

T
j , ψ

T
i

)
L2(R3)

, i, j = 1, . . . , n,

and the i-th component of CT (f) is

f>QT
i f , i = 1, . . . , n.

Here, (QT
i )ni=1 denote the collision matrices. They are defined as

QT
i [k, l] =

(
Q(ϕTk , ϕTl ), ψTi

)
L2(R3)

, k, l, i = 1, . . . , n.

We drop the superscripts in case of T = 1.
It will be shown in the following that the system of PDEs in equation (9) can be

expressed as
M∂tf + T

1
2D∂xf = T

λ
2 + 3

4
1
KnC(f), (10)

exposing the dependence of the matrices on the characteristic temperature T .

Mass matrix

The entries of the mass matrix MT can be rewritten as

MT [i, j] =
∫
R3

ϕTj (v)ψTi (v) dv

=
∫
R3

ϕj(v)ψi(v) dv

=
∫
R3

exp
(
−|v|

2

2

)
ψj(v)ψi(v) dv, i, j = 1, . . . , n.

Thus the mass matrix is independent of T . The last line in the earlier equation shows
that the mass matrix is the Gramian of a weighted L2-inner product on R3. Hence,
it is symmetric and positive definite.

8



Flow matrix

The entries of the flow matrix DT can be simplified to

DT [i, j] =
∫
R3

ϕTj (v)v1ψ
T
i (v) dv

= T
1
2

∫
R3

v1ϕj(v)ψi(v) dv

= T
1
2

∫
R3

v1 exp
(
−|v|

2

2

)
ψj(v)ψi(v) dv, i, j = 1, . . . , n.

It can be seen from the last line of the above equation that DT is symmetric.

Collision matrices

For the computation of the collision matrices, the weak form of the collision operator,
as presented in Theorem 2.1, is used. Thus, for i, k, l = 1, . . . , n, QT

i [k, l] is given by

QT
i [k, l] =

∫
R3

∫
R3

ϕTk (v)ϕTl (w) qTi (v, w) dw dv, (11)

where

qTi (v, w) = 1
2

∫
S2

|u|λb
(

(u, e)
|u|

)(
ψTi (v′) + ψTi (w′)− ψTi (v)− ψTi (w)

)
dSe, v, w ∈ R3.

As before, we scale the velocities with
√
T by applying the substitution

R3 ×R3 → R3 ×R3, (v, w) 7→ (
√
Tv,
√
Tw),

which has Jacobian T 3, on the integral in equation (11). The collision velocities
transform as

√
Tu =

√
Tv −

√
Tw,

√
Tv′ = 1

2
(√

Tv +
√
Tw + |

√
Tv −

√
Tw|e

)
,

√
Tw′ = 1

2
(√

Tv +
√
Tw − |

√
Tv −

√
Tw|e

)
,

for all v, w ∈ R3, e ∈ S2 and therefore

qTi (
√
Tv,
√
Tw) = T

λ
2−

3
4 qi(v, w), v, w ∈ R3.

Combining this with equation (11) yields

QT
i [k, l] = T

λ
2 + 3

4Qi[k, l], k, l, i = 1, . . . , n.

The substitution
S2 → S2, e 7→ −e

shows that qi(v, w) = qi(w, v), v, w ∈ R3. Consequently, the collision matrices are
symmetric.
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Lemma 3.9 There exist a basis of Rn, denoted by (ri)ni=1, of generalised eigenvectors
of D with respect to M and generalised eigenvalues (λi)ni=1 ⊂ R, such that

Dri = λiMri, i = 1, . . . , n. (12)

The generalised spectrum of D is point symmetric with respect to 0, i.e. if λ is a
generalised eigenvalue of D, then −λ is a generalised eigenvalue of D, too.

Proof. As D is symmetric and M is positive definite, the existence of the generalised
eigensystem follows from standard theory. Let r ∈ Rn be a generalised eigenvector
of D with respect to M and λ ∈ R be the corresponding generalised eigenvalue. We
define r̃ ∈ Rn by

r̃i = ciri, i = 1, . . . , n
where

ci =

1, l even
−1, l odd

, i = h(k, l,m), i = 1, . . . , n

and h : IK,L → {1, . . . , n} is an enumeration of indices of the basis and test functions.
Since the spherical harmonic Yl,m is even if l is even and odd otherwise, the test
functions fulfil

ψi(−v) = ciψi(v), v ∈ R3, i = 1, . . . , n.
Let i ∈ {1, . . . , n}. We have

(Dr̃)i =
n∑
j=1

D[i, j]r̃j =
n∑
j=1

∫
R3

v1 exp
(
−|v|

2

2

)
ψi(v)ψj(v) dv r̃j

=
n∑
j=1

∫
R3

−v1 exp
(
−|v|

2

2

)
ciψi(v)cjψj(v) dv r̃j

= −ci
n∑
j=1

D[i, j]cj r̃j = −ci
n∑
j=1

D[i, j]rj

= −ciλ
n∑
j=1

M [i, j]rj = −λ
n∑
j=1

ciM [i, j]cj r̃j

= −λ
n∑
j=1

∫
R3

exp
(
−|v|

2

2

)
ciψi(v)cjψj(v) dv r̃j

= −λ
n∑
j=1

∫
R3

exp
(
−|v|

2

2

)
ψi(v)ψj(v) dv r̃j

= −λ(Mr̃)i.

The generalised spectrum of D with respect to M in case of K = 9, L = 9, i.e.
n = 1000, is shown in Figure 1.

We can now decouple the left-hand side. Following the notation of Lemma 3.9,
let R denote the matrix whose columns are the generalized eigenvectors (ri)ni=1 and
Λ = diag(λ1, . . . , λn). Equation (12) reads as

DR = MRΛ. (13)

10
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Figure 1: Generalised spectrum of D with respect to M for K = 9, L = 9, i.e.
n = 1000.

Substituting f = Rg in equation (10), we get, after an application of equation (13),

∂tg + T
1
2 Λ∂xg = T

λ
2 + 3

4
1
KnR

−1M−1C(Rg). (14)

Initial and boundary conditions of the coefficient vector are obtained by minimising
the L2-error which occurs when plugging the approximation f (n) into equations (3)
and (4) or (5).

As the basis functions are orthonormal, we have

f(0, x) =
((
f0(x,−), ϕTi

)
L2(R3)

)n
i=0

.

Let us assume that there is an approximation of the outgoing flux σout at the
boundaries in case of diffuse reflection. If we impose inflow conditions, σout = 1.

As the boundary conditions are only imposed on R3
in, we minimise the L2-error

on this half-space. Therefore, for all t > 0 and boundary points x, f(t, x) has to fulfil
the linear system

MT
inf(t, x) = σoutb

T (t, x), (15)
where

MT
in[i, j] =

∫
R3

in

ϕTj (v)ϕTi (v) dv, i, j = 1, . . . , n

and
bT (t, x)i =

∫
R3

in

fin(t, x, v)ϕTi (v) dv, i = 1, . . . , n.

MT
in can be simplified to

MT
in[i, j] =

∫
R3

in

ϕj(v)ϕi(v) dv, i, j = 1, . . . , n,

meaning that that this matrix is independent of T . Min is symmetric and positive
definite. The approximation of the outgoing fluxes is discussed in Section 4.
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4 Numerical realisation
The computation the matrices from Section 3 involves three types of integrals,∫

R3

exp
(
−|v|

2

2

)
p(v) dv,

∫
S2

p(e) dSe

and ∫
H

exp
(
−|v|

2

2

)
p(v) dv,

where H is a half-space, given by H = {v ∈ R3 : (v, n) > 0} with n ∈ S2, and p is
polynomial in three variables.

As the Burnett functions are given in spherical coordinates, the integrals over R3

and H are rewritten as∫
R3

exp
(
−|v|

2

2

)
p(v) dv =

∫
(0,∞)

ρ2 exp
(
−ρ

2

2

)∫
S2

p(ρe) dSe dρ

and∫
H

exp
(
−|v|

2

2

)
p(v) dv =

∫
(0,∞)

ρ2 exp
(
−ρ

2

2

)∫
S2

p(ρe)1[0,1]
(

(e, n)
)
dSe dρ. (16)

The radial integrals are approximated by a Gauß quadrature generated by the weight
function

w : [0,∞)→ [0,∞), ρ 7→ ρ2 exp
(
−ρ

2

2

)
.

This quadrature rule is sometimes refered as Gauß-Maxwell quadrature [24]. The
integrals over the sphere are approximated by the Lebedev quadrature [19].

Although the Lebedev quadrature is suitable for the integration over S2, it fails
if one integrates over half-spheres as demanded in (16). In this case, we express p
as a linear combination of spherical harmonics. The integral over the sphere is now
reduced to integrals such as∫

S2

1[0,1]
(

(e, n)
)
|(e, n)|β Yl,m(e) dSe, l ∈ N0, |m| ≤ l,

and β ∈ {0, 1}, which can be computed with the Funk-Hecke theorem [7]. The case
β = 0 refers to projections an half-spaces, whereas integrals with β = 1 are needed
for the computation of outflows.
Theorem 4.1 (Funk-Hecke) Let Yl,m be a spherical harmonic of degree l ∈ N, and
g ∈ L1([−1, 1]). For all n ∈ S2 it holds:

∫
S2

g((n, e))Yl(e) dSe = 2π Yl(n)

 ∫
[−1,1]

g(x)Pl(x) dx

 ,
where Pl is the Legendre polynomial of degree l.
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An application of Theorem 4.1 yields for the earlier equation∫
S2

1[0,1]
(

(e, n)
)
|(e, n)|β Yl,m dSe = 2πYl,m(n)

∫
[0,1]

xβPl(x) dx.

The one-dimensional integrals can be computed analytically,

∫
[0,1]

Pl(x) dx =


1, l = 0
0, l > 0 even(

1/2
(l + 1)/2

)
, l > 0 odd

,

and

∫
[0,1]

xPl(x) dx =



1
2 , l = 0
1
3 , l = 1
0, l > 1 odd
1
3

(
3/2

l/2 + 1

)
, l > 1 even

,

where (
α

k

)
=

k−1∏
i=0

α− i
i+ 1 , α ∈ R, k ∈ N,

denotes the generalised binomial coefficient.
By the use of these quadratures, one can compute the matrices from Section 3.3.

Most of the time is spent on the computation of the collision matrices. That’s why
we will address their computation in further detail.

Computation of the collision matrices
In this Section, we follow the approach from [11]. In contrast to [11], we use a
Gauß-Maxwell quadrature for the computation of the radial integrals. Let us fix
K ∈ N, the maximal degree of Laguerre polynomials, and L ∈ N, the maximal
degree of spherical harmonics. We choose the indices of our basis and test functions
as

IK,L = {(k, l,m) : k ∈ {0, . . . , K}, l ∈ {0, . . . , L}, m ∈ {−l, . . . , l}},
which has

n = (K + 1)(L+ 1)2

elements.
Let NGM denote the order of Gauß-Maxwell quadrature (ρi, wGM

i )NGM
i=1 and NL

the order of the Lebedev quadrature (ej, wL
j )NL
j=1. To compute an entry of a collision

matrix, let k, l, i ∈ {1, . . . , n} and let (kv, lv,mv), (kw, lw,mw), (ki, li,mi) be the cor-
responding indices for the basis and test functions. A straightforward approximation

13



of equation (11) yields

Qi[k, l] ≈ (4π)2
NGM∑
iv=1

ωGM
iv ρlvivL

(lv+ 1
2 )

kv
(ρ2
iv)×

NL∑
jv=1

ωL
jvYlvmv(ejv)×

NGM∑
iw=1

ωGM
iw ρlwiwL

(lw+ 1
2 )

kw
(ρ2
iw)×

NL∑
jw=1

ωL
jwYlwmw(ejw)(qL)i(viv ,jv , wiw,jw),

where viv ,jv = ρivejv , wiw,jw = ρiwejw and

(qL)i(viv ,jv , wiw,jw) = 4πCλ2

NL∑
j=1

ωL
j |viv ,jv − wiw,jw |λb

(
(viv ,jv − wiw,jw , ej)
|viv ,jv − wiw,jw |

)
×(

ψi(v′iv ,jv ,iw,jw(ej)) + ψi(w′iv ,jv ,iw,jw(ej))− ψi(viv ,jv)− ψi(wiw,jw))
)
,

with

v′iv ,jv ,iw,jw(ej) = 1
2 (viv ,jv + wiw,jw + |viv ,jv − wiw,jw |ej) ,

w′iv ,jv ,iw,jw(ej) = 1
2 (viv ,jv + wiw,jw − |viv ,jv − wiw,jw |ej) .

However, this form is not used for the computation of the matrix entries. Due to
the product structure of the Burnett functions, there are some repetitive parts which
have to be computed only once. Storing them reduces the computational effort.

Let us define the three arrays PGM, PL and PQ. The first array PGM is given by

(PGM)k,l,i = ωGM
i ρliL

(l+ 1
2 )

k (ρ2
i ),

for k = 0, . . . , K, l = 0, . . . , L and i = 1, . . . , NGM. The entries of the second array
are

(PL)l,m,j = ωL
j Yl,m(ej),

for l = 0, . . . , L, m = −l, . . . , l and j = 1, . . . , NL. The entries of the third array PQ
are computed as

(PQ)iv ,jv ,iw,jw,i = (qL)i(viv ,jv , wiw,jw),
for iv, iw = 1, . . . , NGM and jv, jw = 1, . . . , NL.

The approximation of the matrix entry of the collision matrix is now given by

Qi[k, l] ≈

(4π)2
NGM∑
iv ,iw=1

NL∑
jv ,jw=1

(PGM)kv ,lv ,iv(PL)lv ,mv ,jv(PGM)kw,lw,iw(PL)lw,mw,jw(PQ)iv ,jv ,iw,jw,i

The numerical effort for computing PGM and PL is sublinear in the number of basis
functions and linear in the number of quadrature nodes. The computation time is

14
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Figure 2: Approximation of the solution by a piecewise constant function. To
fulfil boundary conditions, the dashed cells, called ghost cells, are added to the
discretisation.

negligible to the time spend on computing PQ. This is the crucial part of the numerical
integration as its computation involves N2

GMN
2
L evaluations of the spherical integrals,

leading to N2
GMN

3
L evaluations of the integrand which itself is rather expensive due

to the computation of the collision velocities and the transformation from Cartesian
to spherical coordinates in order to evaluate the test function ψi. However, the
computation of the entries of PQ can readily be parallelised. The same holds true if
one computes the entries of Qi using the three precomputed arrays PGM, PL and PQ.

Numerical solution of the PDE system
For the solution of the PDE system in (14), we follow a finite volume approach.
Each component of g is approximated a function which is constant on every cell of
the spatial discretisation as depicted in Figure 2. The outgoing flow at the walls is
approximated by∫

R3
out

f (n)
(
t, x 1

2
, v
)
|(v, n)| dv =

n∑
i=1

fi
(
t, x 1

2

) ∫
R3

out

ϕTi (v)|(v, n)| dv,

for the left wall,∫
R3

out

f (n)
(
t, xNx− 1

2
, v
)
|(v, n)| dv =

n∑
i=1

fi
(
t, xNx− 1

2

) ∫
R3

out

ϕTi (v)|(v, n)| dv,

for the right wall. Here, Nx denotes the number of cells in (0, 1). The number of
ghost cells depends on the choice of the flux reconstruction at the cell interfaces.
If one uses the simple upwind scheme, adding a ghost cell at each side suffices.
Reconstructing the flux with a higher order scheme like WENO [20] means that we
have to add further ghost cells, depending on the used stencil. Their values are set
to the solution of the linear system (15).

5 Numerical results
In this section, we present results obtained by our method for the hard spheres model.
The collision kernel is given by

|u|σ
(
|u|, (u, e)

|u|

)
= 1

4π |u|.

To validate our computations, we compare them with a stochastic simulation, carried
out with the Direct Simulation Monte Carlo (DSMC).
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Tl Tr

T0
x

Figure 3: Sketch of the one-dimensional Fourier problem. We seek the particle
density function along the axis labeled by x. Tl, Tr are the temperatures of the walls,
T0 is the initial temperature of the gas.

5.1 Fourier problem
We choose diffusely reflecting walls at the left and the right boundary, cf. (5). We
seek for the steady state solution. Initially, the gas is in equilibrium state. The
parameters of the Maxwellians in equation (3) are constant, ρ0 = 1, V0 = (0, 0, 0)>
and T0 = 1.25. The left wall has temperature Tl = 1.0, the right wall Tr = 1.5. The
characteristic temperature of the basis and test functions T is set to 1.25. This
situation is depicted in Figure 3.

We compare the results for three different Knudsen numbers, Kn = 1.0, 0.25, 0.025.
The final time tf is chosen such that on average, a particle has crossed the interval
(0, 1) ten times. It can be calculated as tf ≈ 6.32. The number of cells Nx for
both the stochastic and the deterministic method is 512. The DSMC solutions were
obtained by 20 000 repetitions and 1024 particles per cell in the beginning.

The time step size τ of the deterministic method is chosen as

τ = CFL 1
Nx

1
max
i=1,...,n

|λi|
, (17)

where where CFL is the Courant number and (λi)ni=1 are the generalised eigenvalues of
D with respect to M . In our tests, CFL was set to 0.5. The fluxes are approximated
by the fifth order WENO5 scheme [17]. The resulting system of ODEs is integrated
by an explicit third order strong stability-preserving Runge-Kutta method [14].

The final densities and temperatures for the stochastic method and several choices
ofK and L, c.f. Table 1, are shown in Figure 6 for Kn = 1.0, in Figure 8 for Kn = 0.25
and in Figure 10 for Kn = 0.025, respectively. They are also plotted near the walls in
Figures 7, 9 and 11 for the Knudsen numbers 1.0, 0.25 and 0.025, respectively. Plots
of the final particle densities restricted to a straight line for the Knudsen numbers 1.0,
0.25 and 0.025 can be found in Figures 12a, 12b and 12c, respectively. In Figure 5, a
contour plot of the particle density function for Kn = 0.25 restricted to the plane
{v ∈ R3 : v3 = 0} is shown.
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Table 1: Number of basis and test functions for different choices of parameters. The
set IK,L is defined in equation (8).

K L |IK,L|
3 3 64
3 5 144
3 7 256

The lower the Knudsen number, the better our method performs compared to the
stochastic solution. For Knudsen numbers above 1.0, free flow is dominating over the
collision interaction. This leads to almost discontinuous solutions of the Boltzmann
equation, especially close to the walls, where only the inflowing particles are affected
by the boundary conditions. Due to the lack of sufficient interaction for Kn = 1.0,
these streams of different temperatures are not well mixed. Therefore the particle
density functions have different asymptotic behaviour towards ±∞. These functions
cannot be approximated well with our basis functions, c.f. Figure 12a. That’s why
the highest errors in Figures 6a and 6b appear near the walls.

Lowering the Knudsen number leads to a higher importance of the collisions.
The collision operator smoothes the particle density function. Moreover, the higher
impact of the collisions also reduces the distance in which the particles preserve
their temperatures given by the boundary conditions. The different temperatures of
particles emerging from the walls and the rest of the gas are mixed. This leads to
more symmetric particle density functions which can be approximated well by our
basis function, c.f. Figure 12c.

Therefore, our method shows a very good agreement with the stochastic simulation
in case of Kn = 0.025.

5.2 Shock tube problem
As a second example, we consider a Sod-like shock tube problem [25]. The parameters
of the initial Maxwellians are piecewise constant, cf. Figure 4,ρlVl

Tl

 =

 8
(0, 0, 0)>

1

 ,
ρrVr
Tr

 =

 1
(0, 0, 0)>

1

 . (18)

We show the results for three different Knudsen numbers, Kn = 0.1, 0.01, 0.001 and
compare them with a stochastic solution at the time

tf = 0.14.

For the DSMC solution, we chose 512 cells with a typical number of 1024 particles per
cell. For the Galerkin-Petrov method, the index set for our basis functions is given
by I3,3. For the characteristic temperature we choose T = 1. Increasing the radial
or the spherical degree hardly changes the results. We use 512 cells in space. The
system of ODEs is integrated with a adaptive Runge–Kutta–Fehlberg method [8] to
address the stiffness which is caused by the small Knudsen numbers in this example.

17



0 0.5 1

ρl

ρr

Vl, Tl Vr, Tr

Figure 4: Sketch of the initial situation of the shock tube problem. Two areas
of different densities and same bulk velocities and temperatures are separated by
diaphragm (dashed line), which is removed at t = 0.

The four physical quantities density, bulk velocity, temperature and pressure at
the end time tf are shown in Figures 13, 14 and 15 for the Knudsen numbers 0.1, 0.01
and 0.001, respectively.

The results of the Galerkin-Petrov method are in good agreement with those
from the DSMC method for all three Knudsen numbers.

Comparing the results from the Boltzmann equation with the exact solution of
the Euler equations, one can clearly see the differences between them become smaller
when lowering the Knudsen number, which is conform to the Hilbert expansion. The
best agreement is observed in the rarefaction wave and shock discontinuity. Due to a
non-vanishing (numerical and) physical viscosity, the edges of the solutions of the
Boltzmann equation are smeared out.

However near the contact discontinuity, the solutions of the Boltzmann equation
and the Euler equations differ even for small Knudsen numbers. This can be seen
best by studying the bump in the bulk velocity, which is located at the contact
discontinuity. Generated at t = 0 by the removal of the diaphragm, it travels with
the speed of the contact discontinuity, which seems to be independent of the Knudsen
number.

Our numerical experiments indicate that, in contrast to the solution of the Euler
equations, the bulk velocity is not constant around the contact discontinuity, but
slightly lower left from the bump and larger at the right. This means that the two
discontinuities are travelling with different speeds.

6 Conclusion
The Galerkin-Petrov method presented in this paper is fully conservative independent
of the time stepping method. Most of the computation time is spent on the collision
matrices. However, their computation can be easily parallelised. Furthermore, having
computed them for a specific choice of basis and test functions, they can be reused
for different problems, as they are independent of the initial and boundary conditions,
the characteristic temperature or the spatial and temporal discretisation. This leads
to a very fast deterministic method, as a computation of the collision operator is
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Figure 5: Contour plot of the final particle density function for Kn = 0.25 and K = 3,
L = 3 at x = 0.25 in the (v1, v2)-plane.

reduced to the evaluation of several quadratic forms. Depending on the problem,
one can obtain very good results with around 100 basis functions.
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Figure 6: Comparison of different sets of basis functions for Kn = 1.0. K is set to 3;
L takes the values 3, 5 and 7. The stochastic curves are added for reference. The
deterministic curves are obtained with Nx = 512 and τ chosen as in equation (17).
Figure 6a shows the density at the time tf , whereas in Figure 6b, the temperature
at the time tf is shown.
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Figure 7: Comparison of different sets of basis functions for Kn = 1.0 near the walls.
K is set to 3; L takes the values 3, 5 and 7. The stochastic curves are added for
reference. The deterministic curves are obtained with Nx = 512 and τ chosen as in
equation (17). Figures 7a and 7b show the density at the time tf near the left and
the right wall, respectively. Figures 7c and 7d show the temperature at the time tf
near the left and the right wall, respectively.
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Figure 8: Comparison of different sets of basis functions for Kn = 0.25. K is set to
3; L takes the values 3, 5 and 7. The stochastic curves are added for reference. The
deterministic curves are obtained with Nx = 512 and τ chosen as in equation (17).
Figure 8a shows the density at the time tf , whereas in Figure 8b, the temperature
at the time tf is shown.
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Figure 9: Comparison of different sets of basis functions for Kn = 0.25 near the walls.
K is set to 3; L takes the values 3, 5 and 7. The stochastic curves are added for
reference. The deterministic curves are obtained with Nx = 512 and τ chosen as in
equation (17). Figures 9a and 9b show the density at the time tf near the left and
the right wall, respectively. Figures 9c and 9d show the temperature at the time tf
near the left and the right wall, respectively.
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Figure 10: Comparison of different sets of basis functions for Kn = 0.025. K is set
to 3; L the values 3, 5 and 7. The stochastic curves are added for reference. The
deterministic curves are obtained with Nx = 512 and τ chosen as in equation (17).
Figure 10a shows the density at the time tf , whereas in Figure 10b, the temperature
at the time tf is shown.
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Figure 11: Comparison of different sets of basis functions for Kn = 0.025 near the
walls. K is set to 3; L takes the values 3, 5 and 7. The stochastic curves are added
for reference. The deterministic curves are obtained with Nx = 512 and τ chosen as
in equation (17). Figures 11a and 11b show the density at the time tf near the left
and the right wall, respectively. Figures 11c and 11d show the temperature at the
time tf near the left and the right wall, respectively.
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Figure 12: Comparison of the final particle density function for K = 3, L = 3 with
the stochastic particle density function at x = 0.25 for the Knudsen numbers 1.0,
0.25 and 0.025.
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Figure 13: Numerical solution of the shock tube problem at tf obtained with DSMC
and the Galerkin-Petrov method for Kn = 0.1. The exact solution of the Euler
equations is shown by dashed lines.
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Figure 14: Numerical solution of the shock tube problem at tf obtained with DSMC
and the Galerkin-Petrov method for Kn = 0.01. The exact solution of the Euler
equations is shown by dashed lines.
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Figure 15: Numerical solution of the shock tube problem at tf obtained with DSMC
and the Galerkin-Petrov method for Kn = 0.001. The exact solution of the Euler
equations is shown by dashed lines.
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