
Universität des Saarlandes

U
N

IV
E R SIT A

S

S
A

R
A V I E N

S
I S

Fachrichtung 6.1 – Mathematik

Preprint Nr. 327 (revised)

Cyclic Schemes for
PDE-Based Image Analysis

Joachim Weickert, Sven Grewenig,

Christopher Schroers and Andrés Bruhn

Saarbrücken 2015

Fachrichtung 6.1 – Mathematik Preprint No. 327 (revised)
Universität des Saarlandes submitted: April 18, 2015

Cyclic Schemes for
PDE-Based Image Analysis

Joachim Weickert
Mathematical Image Analysis Group, Dept. of Mathematics and Computer
Science, Saarland University, Campus E1.7, 66123 Saarbrücken, Germany

weickert@mia.uni-saarland.de

Sven Grewenig
Mathematical Image Analysis Group, Dept. of Mathematics and Computer
Science, Saarland University, Campus E1.7, 66123 Saarbrücken, Germany

grewenig@mia.uni-saarland.de

Christopher Schroers
Mathematical Image Analysis Group, Dept. of Mathematics and Computer
Science, Saarland University, Campus E1.7, 66123 Saarbrücken, Germany

schroers@mia.uni-saarland.de

Andrés Bruhn
Intelligent Systems Group, Institute for Visualization and Interactive

Systems, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart,
Germany

bruhn@vis.uni-stuttgart.de

Edited by
FR 6.1 – Mathematik
Universität des Saarlandes
Postfach 15 11 50
66041 Saarbrücken
Germany

Fax: + 49 681 302 4443
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/

Abstract

We investigate a class of efficient numerical algorithms for many
partial differential equations (PDEs) in image analysis. They are
applicable to parabolic or elliptic PDEs that have bounded coeffi-
cients and lead to space discretisations with symmetric matrices. Our
schemes are easy to implement and well-suited for parallel implemen-
tations on GPUs, since they are based on the explicit diffusion scheme
in the parabolic case, and the Jacobi method in the elliptic case. By
supplementing these methods with cyclically varying time step sizes
or relaxation parameters, we achieve efficiency gains of several orders
of magnitude. We call the resulting algorithms Fast Explicit Diffusion
(FED) and Fast Jacobi (FJ) methods. To achieve a good compro-
mise between efficiency and accuracy, we show that one should use
parameter cycles that result from factorisations of box filters. For
these cycles we establish stability results in the Euclidean norm. Our
schemes perform favourably in a number of applications, including
isotropic nonlinear diffusion filters with widely varying diffusivities as
well as anisotropic diffusion methods for image filtering, inpainting,
and regularisation in computer vision. Moreover, they are equally
suited for higher dimensional problems as well as higher order PDEs,
and they can also be interpreted as efficient first order methods for
smooth optimisation problems.

1 Introduction

Solving image analysis problems with smooth parabolic or elliptic partial
differential equations (PDEs) can involve a number of numerical challenges.
Let us illustrate this by some examples.

• In nonlinear diffusion filtering, the diffusivity can be a function with a
range over many orders of magnitude [46]. Thus, large stopping times
are needed to achieve a desired degree of smoothing.

• Some filters are designed to allow strong anisotropies [61]. This ex-
cludes many schemes that are efficient for isotropic problems, and L∞-
stability may be violated.

• The data domain is not restricted to the 2-D scenario: Three-dimensional
problems are fairly common. Since they involve a huge amount of data,
finding efficient algorithms is indispensable.

• Also higher order PDEs are used, e.g. for inpainting problems. In this
case, explicit schemes require very small time step sizes, while implicit

1

approaches are burdensome due to the larger stencil size that is required
for approximating higher order derivatives.

For each of these problem types, individual solutions have been developed.
They may proceed in very different ways and involve different levels of im-
plementation complexity. Examples include semi-implicit finite difference
schemes [61], adaptive finite elements [6], adaptive finite volume methods
[34], additive operator splittings [65], lattice Boltzmann techniques [33], lo-
cally analytic schemes [66], short time kernel approaches [59], vector extrap-
olation strategies [52], and multigrid methods [12].
Clearly, it would be desirable to have very generic tools that are simple
to implement and broadly applicable. Moreover, the general availability of
GPUs has shifted the focus of numerical methods from optimised sequential
algorithms to easily implementable parallel methods.

Our Contribution. The goal of the present paper is to provide a framework
that can satisfy these requirements. We present a class of numerical methods
that are broadly applicable, easy to implement, and well-suited for parallel
architectures. In the parabolic case, they are variants of the simplest numeri-
cal method: an explicit finite difference scheme. While the explicit scheme is
usually applied with a fixed time step size that must satisfy a fairly restrictive
stability condition, we apply cycles of varying time step sizes where up to 50
% of the individual steps may violate this stability condition. Nevertheless,
at the end of one cycle, one approximates a stable filter. We call these meth-
ods Fast Explicit Diffusion (FED) schemes. Due to the admissible violation
of the step size limit, they can give speed-ups of several orders of magnitude
compared to an explicit scheme with fixed time step size. Similar ideas can
be applied in the elliptic setting where we modify the simple Jacobi over-
relaxation (JOR) method such that the relaxation parameter is no longer
fixed, but varied in a cyclic way, too. We show that these so-called Fast Ja-
cobi (FJ) methods are much more efficient than their JOR predecessor. Both
our FED and FJ schemes benefit from their intrinsic parallelism that makes
them well-suited for modern parallel architectures such as GPUs. Moreover,
they do not require specific implementation efforts: One can use an existent
explicit scheme or JOR method as a black box solver that is only modified
by adapting its time step size or relaxation parameter in a cyclic way. These
concepts have a broader applicability than well-established numerical meth-
ods in the image analysis community such as (semi-)implicit methods and
additive operator splittings: They are basically applicable in all parabolic
or elliptic scenarios that have bounded coefficients and yield discretisations
with symmetric matrices. These PDEs can be linear or nonlinear, isotropic

2

or anisotropic, of second or higher order, and two-dimensional or higher-
dimensional. In their current formulation, our numerical methods are not
designed for processes whose PDE formulation involves unbounded coeffi-
cients – such as total variation regularisation [53] – or whose discretisation
leads to unsymmetric matrices – such as osmosis filtering [64].

Related Work. The present paper is the journal version of our conference
article [27], in which we have introduced FED schemes. To our knowledge,
this was the first time when cyclic schemes have been used in the image
analysis community.
Our FED methods can be regarded as variants of the so-called Super Time
Stepping (STS) schemes of [70], [55], and [25], while FJ techniques are related
to Cyclic Richardson algorithms [51, 68, 5]. Although Super Time Stepping
and Cyclic Richardson methods have been around in the numerical analysis
community for many years, they have never become very popular: In the
parabolic case, implicit methods [19, 35] and operator splitting techniques
[45] have been favoured. In the elliptic setting, early cyclic methods have
been suffering from numerical stability problems and had to compete with
other efficient iterative solvers like SOR [22, 69]. Later on research on alter-
native methods such as preconditioned conjugate gradients [40] or multigrid
techniques [11, 30] has dominated the field. We show that with the wide
availability of GPUs, the intrinsic parallelism of cyclic algorithms and their
simplicity makes them the methods of choice for many PDE-based image
analysis problems.
It should be emphasised that we do not simply apply classical cyclic methods
to these problems, but also derive them in a novel way via factorisations of
box filters. This leads to parameter cycles that differ from those of classical
Cyclic Richardson or STS schemes. We will see that these new parameter
cycles favour smoothing properties over rapid convergence. This makes them
also attractive as basic solvers within a multigrid context. For example, the
resulting cascadic FED allows to solve elliptic problems with higher efficiency.
The present paper extends our conference article [27] in a number of ways:

• We provide detailed proofs and more theoretical insights explaining and
illustrating the connection between linear filters and cyclic diffusion
schemes.

• We introduce a novel efficient numerical method for the solution of
elliptic problems: the Fast Jacobi algorithm.

• We extend the application domain of our numerical schemes to ad-
ditional tasks, in particular to problems of higher order and higher

3

dimensionality. These applications also cover implementations on mod-
ern GPUs.

It should be mentioned that our FED conference paper [27] has already
found its way into a number of applications in image processing and com-
puter vision. They include PDE-based compression of depth maps [32] and
volumetric data sets [47], fast filtering methods on smartphones [38], mul-
tiscale feature detection [2], optic flow computation [29], variational depth-
from-defocus [7], medical image registration [39, 56], and massively parallel
analysis of functional data [49]. It has also inspired cyclic projected gradient
methods for convex optimisation problems [58].

Organisation of the Paper. Section 2 establishes the connection between
linear symmetric filters and explicit homogeneous diffusion schemes in one
dimension. We illustrate this connection by means of three examples for
filters whose iterative application approximates Gaussian kernels. In Section
3 we use these insights to construct our FED approach for parabolic problems.
Section 4 deals with the solution of elliptic problems and considers both the
cascadic FED scheme and the so-called Fast Jacobi solver. After this, we
present six key applications in Section 5 and conclude the paper in Section
6. Proofs and additional mathematical details can be found in the appendix.

2 Filter Factorisation

In this section, we derive and analyse the equivalence between symmetric
1-D filter kernels and explicit homogeneous diffusion schemes with varying
time step sizes. This derivation is based on a factorisation of the kernels.

2.1 Diffusion Interpretation of Symmetric Kernels

Let f = (fi)i∈Z be a discrete 1-D signal given on a grid with mesh size h > 0.
We define a discrete symmetric linear filter Lh

2n+1 of finite length (2n+1)h,
n ∈ N0, by

Lh
2n+1 fi :=

n∑

k=−n

wk · fi+k , (2.1)

where the weights wk ∈ R of the filter kernel satisfy wk = w−k for all k ∈
{1, ..., n}. Incorporating the pixel size h in the notion of the filter length
allows to interpret the discrete weights as the result of sampling a continuous
weight function w(y) at 2n+1 equidistant grid points y−n,...,y0,...,yn. This

4

is necessary for a consistent approximation of the continuous PDEs that we
will consider later on.

An interesting linear filter can be constructed from the central finite difference
approximation to the second order derivative:

∆hfj :=
fj+1 − 2fj + fj−1

h2
. (2.2)

It can be used for the numerical solution of the one-dimensional homogeneous
diffusion equation

∂tu(x, t) = ∂xxu(x, t) . (2.3)

To see this, let us consider some grid point xj , a time step size τ > 0 and
a discrete point in time tk := k · τ . Then an explicit discretisation of the
diffusion equation in (xj , tk) is given by the discrete symmetric filter

uk+1
j = (I + τ ∆h) u

k
j , (2.4)

where I is the identity operator and uk
j approximates u(xj , tk).

In the following, the operator ∆m
h denotes the m times composition of ∆h,

i.e. it discretises the derivative of order 2m.

The theorem below allows to express any normalised discrete symmetric filter
Lh
2n+1 in terms of n explicit diffusion steps. It will be highly useful for our

work. First we show that every discrete symmetric filter can be written as a
weighted sum of discrete even-order derivative approximations:

Lh
2n+1 =

n∑

m=0

α(n)
m ·∆m

h . (2.5)

Factorising this expansion leads to a representation by means of explicit
diffusion steps with suitably chosen time step sizes.

Theorem 1 (Diffusion Factorisation of Symmetric Filters). Let Lh
2n+1

be an arbitrary discrete symmetric linear 1-D filter. Then the representa-
tion (2.5) is unique. Its coefficients are given by

α(n)
m = h2m

n∑

k=m

((
k+m
2m

)
+
(
1− δ(k+m),0

) (
k+m−1

2m

))
wk , (2.6)

where δi,j := 1 for i = j and δi,j := 0 else.
Moreover, if the weights wk sum up to 1, Lh

2n+1 is equivalent to a cycle of n
explicit homogeneous diffusion steps:

Lh
2n+1 =

n−1∏

i=0

(I + τi ∆h) . (2.7)

5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-8h -6h -4h -2h 0 2h 4h 6h 8h
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-8h -6h -4h -2h 0 2h 4h 6h 8h
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-8h -6h -4h -2h 0 2h 4h 6h 8h

Figure 1: Illustration of three kernels that correspond to a diffusion time of
2h2. (a) Left: Binomial kernel with length 17h. (b) Middle: MV kernel
with length 5h. (c) Right: Box kernel with length 7h.

The time step sizes τi satisfy τi = 1
zi
, where the zi are the roots of the

polynomial

pL(z) :=
n∑

m=0

α(n)
m · (−z)m . (2.8)

The (total) cycle time θn :=
∑n−1

i=0 τi is given by

θn = h2
n∑

k=1

k2wk . (2.9)

The closed-form expression (2.6) can be established by induction, comparison
of coefficients, and explicit matrix inversion. The remaining part of the
theorem is a consequence of the fundamental theorem of algebra. For a
detailed proof we refer to the Appendix A.1.

2.2 Three Examples for Filter Factorisations

Let us now illustrate the preceding theorem by analysing three normalised
symmetric filter kernels that are depicted in Figure 1: the binomial kernel,
the so-called maximum variance (MV) kernel, and the box kernel [67]. By
applying Theorem 1, we compute their corresponding time step sizes and
their cycle times. These results are listed in Table 1. For detailed derivations
we refer to the Appendices A.2, A.3, and A.4.

Now we evaluate these three kernels and their diffusion factorisations with
respect to one goal: We want to approximate a Gaussian kernel of specified
variance. This is possible due to the central limit theorem which guaran-
tees that a Gaussian can be approximated by iterative application of any
nonnegative filter kernel whose weights sum up to 1. The efficiency of our

6

Table 1: Comparison of three filter kernels.

kernel binomial MV box

kernel weights wk
1

4n

(
2n

n+k

)
1

2
· δ|k|,n 1

2n+1

time step sizes τi
h2

4

h2

2
· 1

2 cos2(π 2i+1

4n)
h2

2
· 1

2 cos2(π 2i+1

4n+2)

cycle time θn
h2

4
· n h2

2
· n2 h2

6
·
(
n
2 + n

)

cycle time order O(n) O(n2) O(n2)

approximation quality very good poor good

approximation is measured by the number of explicit diffusion steps that we
need to achieve the specified variance. The quality of the approximation
becomes visible by comparing the resulting kernel shape to the shape of the
Gaussian.

It is well known that a convolution of a signal f with a Gaussian of variance
σ2 is equivalent to solving the homogeneous diffusion equation (2.3) with
initial data f and stopping time T = 1

2
σ2; see e.g. [31]. In our evaluation we

want to appoximate a Gaussian of variance σ2 = 12h2, which corresponds to
a diffusion time of T = 6h2. Moreover, we wish to approximate this Gaus-
sian by three iterations of our kernels. Thus, each kernel must implement a
diffusion time (cycle time) of 2h2.

Table 1 shows that a binomial filter factorisation leads to constant time step
sizes τi =

h2

4
. Hence, we need 8 time steps to reach a cycle time of 2h2. In

total, 3 · 8 = 24 steps are required for our Gaussian approximation. Due to
the constant time step sizes, it is only possible to obtain a cycle time of order
O(n) in n steps. This is rather inefficient. However, Figure 2(a) shows that
a binomial kernel provides a very good approximation to a Gaussian.

The MV kernel corresponds to a cycle time of h2

2
·n2. Therefore, it requires a

cycle with length n = 2 to yield a cycle time of 2h2. Consequently, 3 · 2 = 6
applications of the explicit scheme are sufficient to approximate our Gaussian
with 3 MV iterations. This illustrates that the variable time steps derived
from the MV filter give much more efficient schemes than the fixed time step
scheme which results from the factorisation of the binomial filter. Indeed,
Table 1 shows that a MV filter factorisation into n explicit diffusion steps
allows a cycle time of order O(n2). However, Figure 2(b) demonstrates that
this high efficiency is achieved at the expense of a very poor approximation
of the Gaussian. In particular, gaps between the individual peaks remain.
Thus, one cannot expect that the MV kernel offers the desired attenuation
of high frequencies that is characteristic for Gaussian convolution.

7

 0

 0.04

 0.08

 0.12

-24h -18h -12h -6h 0 6h 12h 18h 24h

Iterated Binomial Kernel

Gaussian

 0

 0.1

 0.2

 0.3

 0.4

-24h -18h -12h -6h 0 6h 12h 18h 24h

Iterated MV Kernel

Gaussian

 0

 0.04

 0.08

 0.12

-24h -18h -12h -6h 0 6h 12h 18h 24h

Iterated Box Kernel

Gaussian

Figure 2: Comparison between the kernels in Fig. 1 after 3 iterations and
their approximated Gaussian. (a) Left: An iterated binomial kernel approx-
imates the Gaussian very well. (b) Middle: An iterated MV kernel yields a
poor approximation of the Gaussian. Note that the scale in vertical direction
differs from (a) and (c). (c) Right: An iterated box kernel achieves a good
approximation quality.

In order to find a better compromise between efficiency and approximation
quality, let us now have a look at a factorisation of the box filter. Since its
cycle time is given by h2

6
· (n2 + n), it follows that n = 3 diffusion steps are

necessary to reach the time 2h2 in one cycle. Thus, for three cycles, 3 · 3 = 9
applications of the explicit scheme are needed. Although this is slightly less
efficient than the MV filter factorisation, one can still obtain a cycle time of
order O(n2) within n steps. Moreover, Figure 2(c) illustrates that the ap-
proximation quality is almost as good as the binomial approximation. Thus,
the box filter factorisation gives us the best of two worlds: high efficiency
and good approximation quality.

3 Fast Explicit Diffusion (FED)

In the last section, we have identified box filter factorisation as an efficient and
fairly accurate way to approximate Gaussian convolution in terms of explicit
diffusion steps with varying time step sizes. On the other hand, Gaussian
convolution is equivalent to homogeneous diffusion filtering, and the simplest
way to perform homogeneous diffusion is to use an explicit scheme with
constant time step size. Thus, let us now show that replacing the constant
time step size in an explicit scheme by the nonconstant ones from box filter
factorisation is a powerful general accelation strategy. First we revisit the
homogeneous diffusion case in 1D, before we extend our findings to more
general linear or nonlinear diffusion-like operators in any dimension.

8

3.1 FED Scheme for Homogeneous 1D Diffusion

We reconsider the 1-D diffusion equation (2.3) with homogeneous Neumann
boundary conditions. Moreover, we perform a space discretisation with grid
size h > 0 and N grid points xj :=

(
j − 1

2

)
h with j = 1, . . . , N . Then the

PDE becomes a time-continuous system of ordinary differential equations
(ODEs):

du

dt
= Au , (3.1)

where u = u(t) ∈ RN is the vector with the entries uj(t) ≈ u(xj, t). The
symmetric matrix A ∈ RN×N approximates the second order spatial deriva-
tive operator and takes into account the homogeneous Neumann boundary
conditions:

A =
1

h2
·

−1 1 0
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
0 1 −1

. (3.2)

If the ODE system (3.1) is discretised in time with forward differences with
time step size τ > 0, and the right hand side is evaluated at the old time
level, we obtain an explicit numerical scheme in matrix–vector notation:

uk+1 = (I + τA)uk (k ≥ 0). (3.3)

Here we use the approximations uk ∈ RN with the entries uk
j ≈ u(xj , tk).

The matrix I ∈ RN×N denotes the unit matrix.

It is instructive to analyse the stability of the explicit scheme (3.3). According
to Gershgorin’s theorem (see e.g. [60]), the eigenvalues of the matrix A ∈
RN×N from (3.2) lie in the interval

[
− 4

h2 , 0
]
. These eigenvalues determine

the stability in the Euclidean norm: A stable explicit step requires a time
step size τ such that all eigenvalues of the iteration matrix I + τA are in
the interval [−1, 1]. This is guaranteed for

τ ≤ h2

2
=: τmax. (3.4)

We see that n iterations with the explicit scheme with fixed time step size
τ can only lead to a diffusion time of order O(n). On the other hand, in
Section 2.2 we have learned that with the varying time step sizes τi from
a box filter factorisation, n explicit steps allow to reach a diffusion time of

9

order O(n2). This motivates us to introduce the following cyclic acceleration
strategy into our explicit scheme.

We denote uk+1, 0 := uk and replace the constant time step size in Eq. (3.3)
by a cycle of varying time step sizes τi :

uk+1, i+1 = (I + τi A) uk+1, i (i = 0, . . . , n−1). (3.5)

After the complete cycle we set uk+1 := uk+1, n. For our Fast Explicit Dif-
fusion (FED) scheme, we use the varying time step sizes that originate from
the factorisation of the box filter (cf. Table 1):

τi = τmax ·
1

2 cos2
(
π · 2i+1

4n+2

) (i = 0, ..., n−1) (3.6)

with τmax = h2

2
. Then Table 1 also shows that the vector uk =

(
uk
j

)N

j=1

approximates the values u(xj, k · θn), where

θn =
h2

6
·
(
n2 + n

)
= τmax ·

n2 + n

3
(3.7)

is the time of one cycle with n time steps. Thus, we may interpret a full
FED cycle with time θn as a single super time step in the sense of [25].
This interpretation will also be useful later on when we consider nonlinear
problems.

Our FED scheme has a very interesting property: Some of the time step sizes
τi violate the stability condition τ ≤ h2

2
for the explicit scheme with constant

time step size. This is caused by the factor 1

2 cos2(π· 2i+1

4n+2)
in Eq. (3.6), which

can be significantly larger than 1. It is easy to see that up to 50 percent of
the time step sizes can violate the stability constraint. Table 2 illustrates
this: It shows both the smallest and largest three time step sizes for different
n. Note that for n = 1000, the largest time step size is more than 200000
times larger than the stability limit. The total time after one cycle with
1000 iterations is more than 333 times larger than for an explicit scheme
with constant step size τmax. This demonstrates the substantial speed-up
that can be achieved with unstable time step sizes. However, at the end of
a full cycle we can expect to obtain a stable scheme, since this corresponds
to a box filter. A formal proof of the stability in the Euclidean norm can be
found in Appendix A.5.

So far, the times θn of the FED cycles cover only a discrete set of values.
Inspecting the proof in Appendix A.5 shows that the stability still holds if
we replace τmax in (3.6) by any smaller but fixed time step size τ for which

10

the explicit scheme (3.3) is stable in the Euclidean norm. This allows us to
adapt the scheme to our needs which we discuss next.

In a practical setting, we know the stability limit τmax, and we wish to im-
plement a diffusion time T by a specified number M of FED cycles that
determines the quality of the approximation. Thus, we have to find an ap-
propriate cycle length n and the corresponding time step sizes τ0,...,τn−1 of
our FED scheme. This can be done as follows. First we compute n as the
smallest cycle length with θn ≥ T

M
. Using (3.7) this yields

n =

⌈

−1

2
+

1

2

√

1 +
12 T

Mτmax

⌉

, (3.8)

where the ceiling function ⌈x⌉ denotes the smallest integer ≥ x. Since one
cycle with n steps should implement the cycle time T

M
, we can obtain τ from

the ansatz
T

M
= τ · n

2 + n

3
, (3.9)

which yields

τ =
3 T

M(n2 + n)
. (3.10)

This value for τ determines our cyclic step sizes:

τi = τ · 1

2 cos2
(
π · 2i+1

4n+2

) (i = 0, ..., n−1). (3.11)

3.2 Extension to Arbitrary Diffusion Problems

Our FED scheme has been motivated in the 1-D setting with an explicit
scheme for homogeneous diffusion filtering. This was for didactic reasons
only: Since box filtering is already highly efficient, there is no practical ad-
vantage from factorising it into explicit diffusion steps. However, we have
learned how to speed up an explicit scheme by replacing iterations with a
constant time step size τ by cycles with varying time step sizes τ0,..,τn−1. Let
us now show that this principle is very general and leads to highly efficient
schemes in more challenging situations.

Our goal is to accelerate a general linear explicit scheme

uk+1 = (I + τP)uk (k ≥ 0), (3.12)

11

Table 2: The first three and last three step sizes of FED for 1D homogeneous
diffusion with different cycle lengths n. We have used h = 1 and τ = τmax =
0.5. The last two rows depict the cycle time θn and the speed-up of the FED
scheme compared to the explicit scheme with constant time step size τ = 0.5.

n 50 100 250 500 1000

τ0 0.250060 0.250015 0.250002 0.250001 0.250000

τ1 0.250545 0.250137 0.250022 0.250006 0.250001

τ2 0.251518 0.250382 0.250061 0.250015 0.250004
...

...
...

...
...

...

τn−3 28.79 113.79 706.52 2820.19 11269.25

τn−2 64.68 255.93 1589.57 6345.33 25355.72

τn−1 258.48 1023.45 6358.01 25381.06 101422.61

θn 425.00 1683.33 10458.33 41750.00 166833.33

speed-up 17.00 33.67 83.67 167.00 333.67

where we have replaced the specific matrix A from (3.2) by an arbritrary
symmetric, negative semidefinite matrix P that results from a space dis-
cretisation of a suitable linear parabolic PDE. This PDE can be one- or
multidimensional, isotropic or anisotropic, of second or higher order.

The explicit scheme (3.12) is stable in the Euclidean norm if the eigenvalues
of the iteration matrix I + τP are in the interval [−1, 1]. Thus, the time
step size τ > 0 has to satisfy the restriction

τ ≤ 2

ρ(P)
=: τmax (3.13)

where ρ(P) denotes the spectral radius of the symmetric matrix P , i.e. the
largest modulus of its eigenvalues. It practice one can often replace ρ(P) by
a simple worst case estimate with Gershgorin’s theorem.

Interestingly our results on FED schemes for the 1D homogeneous diffusion
scenario can be extended literally to this more general setting. The following
theorem descibes that the stability of the explicit scheme (3.12) is inherited
to its FED variant.

Theorem 2 (FED Scheme for Linear Problems). Let P ∈ RN×N be
symmetric and negative semidefinite, and let the time step size τ satisfy the

12

stability condition (3.13). Then the FED scheme

uk+1, 0 = uk, (3.14)

uk+1, i+1 = (I + τi P) uk+1, i (i = 0, . . . , n−1), (3.15)

uk+1 = uk+1, n (3.16)

with k = 0, 1, ... and the cyclically varying time step sizes

τi = τ · 1

2 cos2
(
π · 2i+1

4n+2

) (3.17)

is stable in the Euclidean norm, i.e.

‖uk+1‖2 ≤ ‖uk‖2 (k ≥ 0). (3.18)

Moreover, each FED cycle (3.14)–(3.16) with n inner steps corresponds to
one super time step of size

θn = τ · n
2 + n

3
. (3.19)

The proof is presented in Appendix A.6. One should note that this stability
proof requires that P is symmetric and negative definite.

Let us now explain how nonlinear problems can be treated that lead to a
symmetric, negative definite matrix P (u) which depends on the evolving
data u(t). In this case, we can either use a worst case a priori estimate for
the function ρ(P (u(t))) in the time step size restriction (3.13), or one can
update it a posteriori at the beginning of each cycle. For the experiments in
Section 5, we use an a priori estimate. With uk+1, 0 := uk our FED cycle
for nonlinear problems is given by

uk+1, i+1 =
(
I + τi P (uk)

)
uk+1, i (i = 0, ..., n−1). (3.20)

Note that we keep the nonlinearities P (uk) constant during the whole cycle,
i.e. we perform one super time step with P (uk) to obtain uk+1 := uk+1, n.
As we will see later, this strategy is also reasonable to ensure numerical
stability.

One may argue that refraining from adapting the nonlinearity in the interior
of each cycle compromises the accuracy for large cycle times and prohibits too
large cycle times. This observation is not uncommon: Similar tradeoffs can
also be experienced for implicit schemes. While very large time steps may
be allowed from a stability viewpoint, in practice there will be a tradeoff
if one wants to keep also the accuracy high. Thus, for nonlinear PDEs we
recommend to use more but smaller FED cycles than for linear PDEs.

13

3.3 Connection to Super Time Stepping

Our FED scheme uses different time step sizes, where some of them may vio-
late the stability limit. A similar method has been proposed by [70] and [55].
Later, the same idea has been used under the name Super Time Stepping
(STS) [25, 24, 3, 4]. Contrary to our derivation, they have chosen a direct
approach that is not based on a filter factorisation: They sought a set of
different time step sizes that keeps stability after each cycle, and at the same
time maximises the cycle time. In our filter factorisation framework, their
method would factorise the MV kernel

(
1
2
, 0, . . . , 0, 1

2

)
. Since the MV kernel

is very sensitive with respect to high frequencies, it has also been suggested
to introduce an additional damping with a parameter ν > 0 that ensures
better attenuation properties for high frequencies [4]. This regularisation can
be seen as a trade-off between efficiency and damping quality, since larger
values for ν scale down the cycle time. Hence, different damping parameters
yield different results. In our FED framework, such an additional damping
parameter is not necessary since we restrict ourselves to box filter factorisa-
tions. They possess reasonable attenuation properties of high frequencies.

3.4 Stability with Respect to Rounding Errors

In the context of STS it is well-known that, although the ordering of the ex-
plicit diffusion steps does not matter in exact arithmetic, it can influence the
result in practice due to numerical rounding errors when n is large. Similar
problems can also be observed for FED.

Let us explain this behaviour by an example where we choose an ordering
from small to large time step sizes. In the beginning the stable small time
step sizes lead to a rapid decay of high frequent components such that they
approach the machine precision. However, this also means that the relative
perturbations by rounding effects become large. In the subsequent large
time step sizes these rounding errors are amplified substantially such that
instabilities can arise.

To address this issue, we advocate two strategies that obtain a better error
balancing within each cycle by rearranging the sequence of the FED time
step sizes: κ-cycles and Leja ordering.

3.4.1 κ-Cycles

Gentzsch and Schlüter [25] have proposed to rearrange the original sequence
of the explicit time steps τ0, . . . , τn−1 within so-called κ-cycles.

14

To illustrate the principle by an example, let us assume that we have a cycle of
length n = 11. Then the indices from 0 to 5 in Equation (3.17) correspond to
stable steps, while the indices from 6 to 10 represent unstable steps. To avoid
an error accumulation towards the end of the cycle, we rearrange the indices
in smaller subgroups that contain stable and unstable steps. For instance,
we can choose the rearrangement 0, 3, 6, 9 , 1, 4, 7, 10 , 2, 5, 8 . Note that
the indices within the groups differ by multiples of 3. Such a rearrangement
represents a κ-cycle with κ = 3.

In general, a κ-cycle can be formulated as follows: Let p be the smallest
prime number with p ≥ n. For m = 0, . . . , p−1, we compute the values

Φ(m) =
(
m · κ

)
mod p , (3.21)

where κ ∈ {2, . . . , n−1} steers the rearrangement. This yields a new se-
quence Φ(0), Φ(1), . . . ,Φ(p−1). Since we want to cover only values from 0
to n−1, we drop all indices Φ(m) larger than n−1. This gives a feasible
rearrangement of the original sequence.

Unfortunately, there is no panacea for the choice of κ. However, it is possible
to create a look-up table (using test problems) with suitable values κ = κ(n)
that ensure better robustness against numerical rounding errors. We have
used κ-cycles in [27].

3.4.2 Leja Ordering

Since suitable κ-cycles can only be found experimentally and therefore might
depend on the setting of the test problems, we discuss an approach that is
independent of such test settings: It is based on the so-called Leja ordering
[50, 14] that has already been successfully applied to iterative solvers [13].

We sketch only the practical application of Leja ordering and refer e.g. to [13]
for a theoretical justification. We consider a set S consisting of ℓ+1 real
numbers {x0, . . . , xℓ}. This set is Leja ordered, if the numbers are arranged
such that

j
∏

k=0

|xj+1 − xk| = max
x∈S

j
∏

k=0

|x− xk| (j = 0, . . . , ℓ−1), (3.22)

where |x0| = max
x∈S

|x|. In some cases it might happen that more than one

number fulfils the maximum condition. Then we just take the smallest value
to have a unique rearrangement.

The Leja ordering provides a numerically stable order of interpolation points
of a polynomial. In our case these points are the roots {zi | i = 0, ..., n−1} of

15

the polynomial pL(z) from Theorem 1. Since τi = 1/zi, we have to apply the
Leja algorithm to the inverse time steps 1/τi of our FED cycle. Compared to
κ-cycles, the Leja rearrangement offers the advantage that it only depends
on the time step sizes τi: It does not require to select additional parameters
such as the κ value. The Leja ordering can be computed conveniently in
advance to create a look-up table with the Leja ordered sequences.

In the case of our previous example with cycle length n = 11, the Leja
ordering yields the index sequence 0, 10, 5, 7, 3, 9, 2, 6, 1, 8, 4. We observe that
it differs from the κ-cycle arrangement.

We use the Leja ordering within our experiments, since it gives an even higher
numerical robustness than κ-cycles and thus allows larger cycle lengths. In
realistic applications with n ≤ 1000, however, both strategies are absolutely
unproblematic.

3.4.3 Other Orderings

Besides the two presented rearrangements, there are further strategies such
as the one proposed by Lebedev and Finogenov [36]. It is based on a simple
recursion relation. Unfortunately this recursion only works for cycle lengths
n = 2k, k ∈ N. In the worst case, this strategy can double the cycle length
and therefore the effort. However, for cycle lengths n = 2k, it can be an
elegant and powerful alternative to κ-cycles and Leja ordering.

3.5 General FED Algorithm

At this point, we can give a summary of the general FED algorithm. It is
shown in Fig. 3, where we have assumed that we know an a priori estimate of
the stability bound τmax of the underlying explicit scheme. We see that FED
is essentially an explicit scheme with some overhead that is not time critical.
Besides the rearrangement of the sequence, it is very important to update
the nonlinearities only after one complete cycle. Updates within a cycle are
not recommended, because the stability of the intermediate results – and
therefore a correct evaluation of the nonlinearities – cannot be guaranteed
for rearranged cycles.

Note that in the 1D homogeneous diffusion setting, one FED cycle represents
a box filter. Since several iterations of a box filter are required to give a good
approximation of Gaussian convolution (and thus of the correct homogeneous
diffusion result), one should also use more than one cycle to improve the
accuracy of the FED scheme in other scenarios. For linear problems already
M = 3 cycles can be sufficient, while nonlinear problems can require more

16

1. Input Data:
image f , stopping time T , number M of FED cycles, stability limit
τmax for the explicit scheme

2. Initialisation:

(a) Set u0 := f .

(b) Compute the cycle length n according to (3.8).

(c) Compute τ according to (3.10).

(d) Compute τ0,..,τn−1 according to (3.11).

(e) Choose a suitable ordering for the step sizes τi
(e.g. with κ-cycles or Leja ordering).

(f) If the problem is linear, compute the corresponding matrix P .

3. Filtering Loop:
For k = 0, . . . ,M−1 do:

(a) If the problem is nonlinear, compute the corresponding matrix
P (uk).

(b) Perform one linear FED cycle (3.14)–(3.16) or one nonlinear
FED cycle (3.14), (3.20), (3.16), with the above ordering of
the n explicit time steps τi.

Figure 3: General FED algorithm for diffusion filtering.

cycles due to the need for more nonlinear updates. Examples are given in
Section 5.

4 FED-based Methods for Elliptic Problems

Our FED scheme was designed for diffusion-like problems where we are in-
terested in the temporal evolution. They correspond to parabolic PDEs.
However, let us now explain how we can use FED ideas also for elliptic
PDEs. They can appear e.g. as Euler–Lagrange equations for variational
image analysis methods, or as nontrivial steady state of parabolic evolutions
with additional reaction terms. Two algorithmic strategies are popular: We
can approximate a solution by means of a parabolic process with a large
stopping time, or we directly solve the corresponding elliptic equation. We

17

shall discuss both options now.

4.1 Cascadic FED (CFED)

The first choice implies the application of a parabolic FED scheme. To reach
the steady state as quickly as possible, we embed our FED method into a
coarse-to-fine strategy [8], i.e. we use results computed on a coarse level as
an initialisation for a finer scale. This can be regarded as a simple multigrid
approach [10, 21, 11, 30]. It saves a lot of computational effort, since a small
or medium stopping time is already sufficient on each level. Therefore, we
scale down the image data dyadically by pixel averaging to a certain coarse
level and apply the FED scheme on this image. Afterwards we prolongate
the corresponding solution to the next finer level by pixel doubling in each
direction, which is the adjoint operator to our restriction operator. Then we
apply FED again. We use this procedure recursively until the finest (original)
level is reached. To simplify matters, we always use the same parameter
settings for the diffusion process on each level. We call this the Cascadic
Fast Explicit Diffusion (CFED) approach.

Of coarse, it is also possible to extend this idea to non-dyadic down- and
upsampling strategies, which becomes necessary if the image size is not a
power of 2. In this case one can simply assume that the greyvalues are
constant within each pixel and perform interpolation by the integral mean
over the new pixel area.

4.2 Fast Jacobi (FJ) Solver

For the direct solution of elliptic problems, we now propose the so-called
Fast Jacobi (FJ) method. It supplements the simple Jacobi over-relaxation
(JOR) algorithm [60] with varying relaxation parameters that are based on
the FED time step sizes. More precisely, we consider a linear system with N
equations:

Bx = c , (4.1)

where B ∈ R
N×N is a symmetric, positive definite system matrix, c ∈

RN the given right hand side, and x ∈ RN the unknown solution. Such
systems frequently arise from applying finite difference discretisations or the
finite element method to linear elliptic problems. Also for nonlinear elliptic
problems, they can appear after a suitable linerisation.

We can solve such a linear system by means of JOR iterations. With D :=
diag(B), one JOR step with relaxation parameter ω > 0 is given by

xi+1 = xi + ωD−1
(
c − Bxi

)
(4.2)

18

where the upper index denotes the iteration level. For ω = 1, one obtains
the standard Jacobi method.

To understand the stability of the JOR method, we investigate its error vector
ei := xi − x. It is easy to see that it satisfies

ei+1 =
(

I − ωD−1B
)

ei . (4.3)

Since B is positive definite, the Euclidean norm of the error vector converges
to zero if

ω ≤ 2

µmax(D−1B)
=: ωmax, (4.4)

where µmax(D
−1B) denotes the largest eigenvalue of D−1B.

The error iteration (4.3) resembles the explicit scheme (3.12), where ω plays
the role of the time step size τ and −D−1B replaces the negative definite
matrix P . Moreover, the stability condition (4.4) is the elliptic counterpart
to (3.13). This analogy motivates us to introduce a cyclic variant of the JOR
algorithm which we call Fast Jacobi method: For passing from xk to xk+1,
we define xk+1,0 := xk and compute

xk+1, i+1 = xk+1, i + ωiD
−1
(
c − Bxk+1, i

)
(i = 0, ..., n− 1) (4.5)

with the cyclically varying relaxation parameters

ωi = ω · 1

2 cos2
(
π · 2i+1

4n+2

) . (4.6)

Afterwards we set xk+1 := xk+1,n.

By construction, the Fast Jacobi method inherits the stability properties of
the FED scheme. Moreover, in order to avoid the accumulation of rounding
errors for large cycles, one should use the same reordering strategies as in
Section 3.4.

For nonlinear problems of type

B(x)x = c , (4.7)

where B : RN → RN×N is a symmetric positive definite matrix-valued
function of x, we can modify the iterative scheme (4.5) in a similar way
as in Section 3.2: We evaluate the nonlinearity in an outer loop and keep
it constant within the inner loop. The inner loop consists of a linear Fast
Jacobi cycle:

xk+1, i+1 = xk+1, i + ωiD
−1(xk)

(

c − B(xk)xk+1,i
)

(i = 0, ..., n− 1), (4.8)

19

where the parameters ωi are determined using (4.4) and (4.6). However,
since B and D are now nonlinear functions of x, also our value for ωmax may
depend on x. We can use either an a priori estimate for µmax(D

−1B(.)) or
estimate µmax(D

−1B(xk)) before each inner cycle.

A summary of the whole algorithm is depicted in Fig. 4, where we assume to
have an a priori estimate for the nonlinearity. Similarly to FED, one observes
that multiple outer cycles are beneficial to improve the convergence of the
Fast Jacobi method.

In spite of these structural analogies, one should not forget that there is one
essential difference between FED and FJ: the multiplication of−B withD−1.
It can be interpreted as local adjustment of the relaxation parameters (or
time step sizes). Such an adjustment can be very helpful as a preconditioner
for matrices −B whose diagonal entries vary substantially in their orders of
magnitude. In terms of diffusion, this corresponds to a diffusivity function
with a range over many orders of magnitude. Thus, one can expect that
an elliptic problem whose discretisation leads to strongly varying diagonal
entries can be solved more efficiently with Fast Jacobi than with the FED
approach.

4.3 Interpretation as Optimisation Method

For the sake of completeness, we also give an interpretation of the FJ method
as an algorithm for a finite dimensional quadratic optimisation problem.
Again we consider the linear system Bx = c with a symmetric positive
definite matrix B ∈ RN×N . Then there exists a symmetric positive definite
matrix B̃ ∈ RN×N with B := B̃⊤B̃. Now we define c̃ := (B̃⊤)−1c, and we
consider the strictly convex energy

E(x) = 1
2
‖c̃− B̃x‖22. (4.9)

Minimising E(x) with the gradient descent method with step size ω gives
the iterative scheme

xi+1 = xi − ω∇E

= xi − ω
(

−B̃⊤c̃+ B̃⊤B̃x
)

= xi + ω (c−Bxi), (4.10)

which is also known as the Richardson method for solving Bx = c . It is
stable for ω ≤ 2

ρ(B)
.

20

1. Input Data:
linear system (4.1) or its nonlinear variant (4.7), cycle length n, sta-
ble parameter ω ∈ (0, ωmax) of the JOR scheme, accuracy parameter
ǫ > 0.

2. Initialisation:

(a) Set k := 0 and choose an initial vector x0.

(b) Compute ω0,...,ωn−1 according to Eq. (4.6).

(c) Perform a suitable ordering of these parameters
(e.g. with κ-cycles or Leja ordering).

3. Outer Loop:
Repeat

(a) If the problem is nonlinear, compute B(xk) and its diagonal
D(xk).

(b) xk+1, 0 := xk.

(c) Inner Loop:
Perform one FJ cycle (4.5) or (4.8) with the above ordering of
the n parameters ωi.

(d) xk+1 := xk+1, n.

(e) Increment k by 1.

until ‖xk+1−xk‖2 < ǫ .

Figure 4: Fast Jacobi method.

Thus, the JOR method (4.2) can be seen as a gradient descent with diago-
nal preconditioning. This shows that the FJ method is a gradient descent
method with diagonal preconditioning and the cyclically varying relaxation
parameters (4.6). Alternatively, the diagonal preconditioning can also be
interpreted as a redefinition of the norm. Using

‖y‖D−1 := ‖D−1/2y‖22, (4.11)

a minimiser of
E(x) = 1

2
‖c−Bx‖D−1 (4.12)

must satisfy the preconditioned system

D−1Bx = D−1c. (4.13)

21

4.4 Connection to the Cyclic Richardson Method

The idea of using varying parameters for simple iterative algorithms has
a long tradition. Already Richardson [51] has proposed to allow different
relaxation parameters ωi in his iterative scheme

xi+1 = xi + ωi

(
c − Bxi

)
, (4.14)

but he did not come up with highly efficient parameter settings. While (4.14)
resembles the structure of the Fast Jacobi scheme, we have already seen that
the Richardson method does not use a diagonal preconditioning.
For a symmetric, positive definite matrix B with smallest eigenvalue λmin

and largest eigenvalue λmax, Young [68] has proposed to supplement the
Richardson iterations with the cyclically varying relaxation parameters

ωi =
2

λmax+λmin − (λmax−λmin) · cos
(

π · 2(n−i)−1
2n

)

(i = 0, . . . , n−1). (4.15)

The method remains stable, if one replaces λmin by 0. In this case, the factor
2

λmax
can be interpreted as the maximum relaxation parameter ωmax for the

Cyclic Richardson method (4.14): With the help of 2 cos2 x = 1−cos(π−2x)
the resulting relaxation parameter cycles can be simplified to

ωi =
2

λmax

· 1

2 cos2
(
π · 2i+1

4n

) (i = 0, . . . , n−1). (4.16)

This can be seen as the elliptic variant of the time step sizes that originate
from a factorised MV kernel (cf. Table 1). Thus, the Cyclic Richardson
method is the elliptic analogue to the Super Time Stepping approach from
Section 3.3. We can expect that it also suffers from an insufficient attenuation
of high frequencies.

Since there can be very large relaxation parameters, the Cyclic Richardson
also requires a rearrangement of the parameter sequence to improve the ro-
bustness against numerical rounding errors; see e.g. [5]. To this end, one can
apply the strategies from Section 3.4 again.

5 Applications

Now we show that our proposed methods are well-suited to solve different
parabolic or elliptic problems in an efficient way. We assume a uniform 2-D

22

Figure 5: Test setting for nonlinear isotropic diffusion filtering. (a) Left:
Mammogram (128 × 128 pixels). (b) Right: Filtered with the explicit
scheme using λ = 7.5, σ = 1, τ = 10−2 , and T = 128.

grid with the mesh sizes h1 = h2 = 1. All methods have been implemented
in C and are executed on a standard desktop PC with a 3.2 GHz Intel Xeon
processor. Our error measure between the numerical result u and the refer-
ence solution r is the relative mean absolute error (RMAE). It is defined as
∑

i
|ui−ri|
‖r‖

1

with ‖r‖1 :=
∑

i |ri|.

5.1 FED for Isotropic Parabolic Problems

In our first experiment, we evaluate FED as a solver for isotropic parabolic
problems. As a prototypical application we consider the nonlinear diffusion
filter of Catté et al. [15]. It follows the evolution equation

∂tu = div
(
g
(
|∇uσ|2

)
∇u
)
, (5.1)

where uσ denotes the function u convolved with a Gaussian of standard
deviation σ > 0. The scalar-valued diffusivity function g is given by the
diffusivity [63]

g(s2) =

{
1 (s2 = 0)

1− exp
(

− 3.315
(s2/λ2)4

)

(s2 > 0).
(5.2)

For problems of this type, AOS schemes [26, 37, 65] are regarded as efficient
solvers. Hence, we compare our FED scheme to the AOS approach. It

23

Table 3: Comparison of FED and AOS for nonlinear isotropic diffusion fil-
tering with stopping time T = 128.

(super) time RMAE

step size AOS FED

32 0.0401 0.0069

16 0.0171 0.0034

8 0.0075 0.0021

4 0.0038 0.0013

2 0.0020 0.0006

1 0.0011 0.0003

is easy to check that the explicit scheme on which FED is based has to
satisfy the constant time step size limit τmax = 0.25. Figure 5 shows our test
setting from [63] where we denoise a mammogram to improve the visibility of
micro calcifications. For the stopping time T = 128 we compute a reference
solution by applying the explicit scheme with a very small time step size
τ = 10−2.

Table 3 compares the accuracy of FED and AOS for different time step sizes.
In this context, we regard a full FED cycle as a super time step. We observe
that both schemes are of first order in time: Reducing the time step size by
a factor 2 decreases the error by a factor 2. However, for the same time step
size, the FED error is about 4 times smaller than the AOS error, since FED
does not suffer from splitting artifacts.

In practice one is of course interested in optimising the error w.r.t. the com-
puting time. This relation is analysed in Fig. 6. We see that the FED scheme
requires less computational effort than AOS to reach the same error. Thus, it
is more efficient. If we consider for instance an error of 10−3, FED is almost
four times faster than AOS.

In conclusion, our experiment indicates that for isotropic parabolic problems,
FED is more accurate and more efficient than AOS.

5.2 FED for Anisotropic Parabolic Problems

A numerically more challenging scenario is given by anisotropic parabolic
problems. This shall be illustrated by means of a coherence-enhancing aniso-
tropic diffusion filter [62]. It is based on a PDE with a symmetric, positive

24

 0.001

 0.01

 0.1

 0 100 200 300

R
M

A
E

Computing time [ms]

FED

AOS

Figure 6: Computing time (milliseconds) vs. RMAE (log-scaled) for the AOS
and FED scheme.

definite diffusion tensor D ∈ R
2×2:

∂tu = div
(
D
(
Gρ ∗

(
∇uσ∇u⊤

σ

))
∇u
)
, (5.3)

where Gρ denotes a 2-D Gaussian with standard deviation ρ. This pro-
cess performs basically one-dimensional diffusion along structures with pro-
nounced local orientation. For more details we refer to [62].

The anisotropy of the diffusion tensor creates mixed derivative terms that
cannot be handled with typical AOS schemes anymore. Semi-implicit schemes
that require the solution of linear systems are good alternatives. They are
more efficient than explicit schemes with a constant time step size that is
typically limited by τmax = 0.25. Thus, we want to compare FED with such
semi-implicit schemes. As space discretisation, we use the one from [66], since
it hardly suffers from numerical diffusion artifacts. In the semi-implicit case,
we solve the occurring linear systems of equations either with a successive
over-relaxation (SOR) or a conjugate gradient (CG) algorithm [54]. Both
solvers are stopped when the residual of the current iteration xk satisfies

∥
∥Bxk − c

∥
∥
2
< 10−3 · ‖c‖2 , (5.4)

where B denotes the system matrix and c the right hand side. The error
tolerance ε = 10−3 provides a good trade-off between the accurate solution

25

Figure 7: Test setting for nonlinear anisotropic coherence-enhancing diffusion
filtering. (a) Left: Original fingerprint image (300×300 pixels). (b) Right:
Filtered reference image (T = 256, σ = 0.5, ρ = 4, τ = 10−2), rescaled to
[0, 255].

of the linear system and the efficiency. While the CG method implicitly
computes the residual for each iteration, the SOR solver needs an explicit
evaluation that is done every 10 iterations. For SOR we optimise the relax-
ation parameter ω manually in order to obtain fast convergence (ω = 1.2).

As a test scenario, we enhance a fingerprint image with this anisotropic
diffusion process. First we compute a reference solution by applying a semi-
implicit scheme with the small time step size τ = 10−2. The original image
and the filtered reference result with stopping time T = 256 can be seen in
Fig. 7.

Table 4 shows that FED and the semi-implicit method are both first order in
time and yield comparable errors. With respect to computational efficiency
illustrated in Fig. 8, however, FED outperforms the semi-implicit schemes,
regardless whether they use SOR or CG as linear system solvers. Last but not
least, it should be noted that FED is much simpler to implement than semi-
implicit approaches and does not require to optimise additional parameters
such as the error tolerance and the relaxation parameter.

26

Table 4: Comparison of FED and the semi-implicit method for anisotropic
diffusion.

(super) time RMAE

step size semi-impl. FED

64 0.0102 0.0112

32 0.0069 0.0075

16 0.0045 0.0049

8 0.0028 0.0028

4 0.0016 0.0015

2 0.0009 0.0008

1 0.0005 0.0004

5.3 CFED for Elliptic Problems with Constant Coef-
ficients

So far, we have only performed experiments with parabolic PDEs. They
describe evolution processes. Let us now analyse an elliptic problem that
can be regarded as a steady state of a parabolic evolution.

As a prototype we consider an inpainting application that is inspired from
PDE-based image compression (see e.g. [23]). It keeps a number of selected
pixels (given by the so-called inpainting mask), and interpolates the missing
data by inpainting with the biharmonic equation

∆2u = 0. (5.5)

Note that here we are dealing with a linear fourth order PDE with constant
coefficients. To solve it numerically, we evolve its parabolic counterpart

∂tu = −∆2u (5.6)

for t → ∞ with three explicit schemes for parabolic problems: the standard
explicit scheme, FED, and Super Time Stepping (STS).

In order to apply these schemes, we need an estimate of the stability limit
τmax = 2

ρ(P)
of the explicit scheme, where P is a discretisation of the bi-

harmonic operator. By Gershgorin’s theorem [60], one easily sees that for a
discrete 4-point approximation A of the 2-D Laplacian, one has ρ(A) = 8.
Thus, ρ(P) = 82 = 64, and we obtain τmax = 1

32
. This very small step size

limit makes an explicit scheme with constant time step size fairly inefficient.
Thus, it is highly desirable to use FED or STS that allow steps beyond this

27

 0.0005

 0.001

 0.01

 0.03

 0 1 2 3 4 5 6

R
M

A
E

Computing time [s]

FED

SOR

CG

Figure 8: Computing time (seconds) vs. RMAE (log-scaled). The semi-
implicit scheme uses SOR or CG solvers.

restrictive limit. Moreover, since we are interested in the steady state, we
use a cascadic embedding to speed up the evolution.

Our test setting is depicted in Fig. 9. We have computed a reference recon-
struction for the stopping time T = 106 with the help of an explicit scheme
(τ = 0.025) on the original level, without any coarse-to-fine strategies.

In our experiments we compare CFED, cascadic Super Time Stepping, and a
cascadic standard explicit scheme approach, where the coarse-to-fine strategy
uses three levels: 256 × 256, 128 × 128, and 64 × 64 pixels. In Section 3.5
we have mentioned that already three cycles can provide good results for
linear problems. In fact, Table 5 shows that CFED with three cycles per
level yields very small errors which decrease when the stopping time grows.
However, the errors of cascadic Super Time Stepping are up to about 1300
times larger. Interestingly, increasing the stopping time does not improve
these errors, since cascadic Super Time Stepping suffers from bad attenuation
properties of high frequencies. Therefore, CFED turns out to be much more
efficient. This is also illustrated in Fig. 10. Here we have used stopping times
from 50 to 1600 in order to show the dependency between the errors and
the computing times. On the other hand, a comparison with the cascadic
standard explicit scheme which does not suffer from poor attenuation of

28

Figure 9: Biharmonic inpainting. (a) Left: Original image (256 × 256).
(b) Middle: Inpainting mask. (c) Right: Reconstruction with biharmonic
inpainting in the unspecified regions (stopping time T = 106).

Table 5: Comparison of CFED and cascadic Super Time Stepping (CSTS)
with 3 cycles per level for biharmonic inpainting.

stopping time RMAE

per level CSTS CFED

50 0.06304 0.00225

100 0.06197 0.00134

200 0.06687 0.00068

400 0.06348 0.00032

800 0.07420 0.00015

1600 0.07725 0.00006

high frequences, illustrates a much higher efficiency of CFED. Obviously the
factorisation of the box filter leads to cycle coefficients that are responsible for
an efficient damping of high frequencies. This makes them useful components
within a cascadic multigrid setting.

Overall, this example illustrates that CFED is well-suited for elliptic prob-
lems with constant coefficients, and that already three cycles can be sufficient
for such linear problems.

5.4 Fast Jacobi for Elliptic Problems with Strongly

Varying Coefficients

The previous elliptic problem involved constant coefficients, where it turned
out that CFED is an appropriate solver for this purpose. In our next exper-

29

 0.0001

 0.001

 0.01

 0.1

 0 100 200 300 400

R
M

A
E

Computing time [ms]

CSTS
CSED
CFED

Figure 10: Computing time (milliseconds) vs. RMAE (log-scaled) for cas-
cadic FED (CFED), cascadic super time stepping (CSTS), and a cascadic
standard explicit diffusion scheme (CSED).

iment, we consider an elliptic problem with strongly varying coefficients and
show that in this case Fast Jacobi is more efficient than a parabolic approach
with FED.

Continuous Model Problem. Our prototypical scenario is given by an
isotropic nonlinear image regularisation method. It computes a denoised
version u(x) of the image f(x) by minimising an energy functional with a
quadratic data term and with the subquadratic regulariser of Charbonnier
et al. [18]:

E(u) =

∫

Ω

(

(u− f)2 + α · 2λ2
√

1 + |∇u|2/λ2
)

dx (5.7)

where Ω denotes the image domain, α > 0 the regularisation weight, and
λ > 0 is a contrast parameter. The corresponding Euler-Lagrange equation
is given by

u− f − α div
(
g(|∇u|2)∇u

)
= 0 (5.8)

with the diffusivity function

g(s2) :=
1

√

1 + s2/λ2
. (5.9)

30

Figure 11: Test setting for Charbonnier regularisation. (a) Left: Original
image (monarch, 256×256 pixels). (b) Middle: Noisy image (additive white
Gaussian noise, σ = 40). (c) Right: Regularisation of the noisy image with
λ = 10−2 and α = 2500.

It is also possible to obtain a solution of the Euler-Lagrange equation (5.8)
as the steady state solution of the parabolic gradient descent equation

∂tu = div
(
g(|∇u|2)∇u

)
+

f − u

α
. (5.10)

FED Scheme. An explicit discretisation of Eq. (5.10) with time step size
τ > 0 and implicitly stabilised fidelity term yields

uk+1 − uk

τ
= A(uk)uk +

f − uk+1

α
. (5.11)

Here the symmetric matrix A(uk) represents the usual central finite differ-
ence approximation to the divergence term div(g(|∇u|2)∇u) ; see e.g. [61]
for more details. Scheme (5.11) can be rewritten as

uk+1 =
α
(
I + τ A(uk)

)
uk + τf

α + τ
. (5.12)

It should be noted that this equation involves the expression (I+τ A(uk))uk.
This is the solution of an explicit diffusion step without data fidelity term.
Since (5.12) only performs a convex combination of this solution and f , it
has the same stability limit as this explicit diffusion scheme, namely τmax =
0.25. In an optimisation context, Equation (5.12) can be interpreted as an
application of a forward–backward splitting that computes first an explicit
gradient descent step with respect to the nonlinear diffusion part followed by
a proximal map with respect to the squared data term.

31

 0.001

 0.01

 0.1

 1

0 100 200 300 400

R
M

A
E

Computing time [ms]

FED
Fast-Jacobi

 0.001

 0.01

0 100 200 300 400

R
M

A
E

Computing time [ms]

Cyclic Richardson
Jacobi

Fast-Jacobi

Figure 12: Computing time (milliseconds) vs. RMAE for Charbonnier regu-
larisation. (a) Left: Comparison of FED and FJ with cycle length 25. (b)
Right: Comparison of Jacobi, Fast Jacobi and Cyclic Richardson with cycle
length 25.

One way to end up with an FED version of (5.12) is as follows. We replace
the explicit step (I + τ A(uk))uk by a full FED cycle:

vk+1 := (I + τn−1A(uk)) . . . (I + τ0 A(uk))uk, (5.13)

if necessary also with time step size permutations. Afterwards we obtain
uk+1 from the convex combination

uk+1 =
αvk+1 + θnf

α + θn
, (5.14)

where θn denotes the cycle time step size. Since each full FED cycle is stable
in the Euclidean norm, it follows that (5.14) with initialisation u0 = f

inherits this stability:

‖uk‖2 ≤ ‖f‖2 (k = 0, 1,). (5.15)

Fast Jacobi Scheme. Instead of a parabolic evolution, we now want to solve
the Euler-Lagrange equation (5.8) by means of the Fast Jacobi method. The
discretisation of Eq. (5.8) yields a nonlinear system of equations:

(
I − αA(u)

)
u = f . (5.16)

As is proposed in Section 4.2, we first replace this nonlinear problem by a
sequence of linear systems of equations:

(
I − αA(uk)

)

︸ ︷︷ ︸

:=M(uk)

uk+1 = f (k ≥ 0). (5.17)

32

Since the system matrix M(uk) is symmetric and positive definite, we can
apply the Fast Jacobi method with uk+1, 0 := uk :

uk+1, i+1 = uk+1, i + ωiD
−1
(

f − M(uk)uk+1, i
)

=
(

I + ωi αD−1A(uk)
)

uk+1, i + ωiD
−1
(
f − uk+1, i

)
. (5.18)

After the complete cycle with length n, we can set uk+1 := uk+1, n and
update the nonlinearities A(uk) by A(uk+1). With Gershgorin’s theorem
[60], one can safely estimate ωmax =

2
µmax(D−1M(·)) by 1.

Experimental Evaluation. Our testbed is depicted in Fig. 11. We have
degraded the test image monarch by additive Gaussian noise with standard
deviation σ = 40. To denoise it with Charbonnier regularisation, we use the
smoothness weight α = 2500 and the contrast parameter λ = 10−2. The
corresponding reference solution in Fig. 11(c) has been computed by means
of the Jacobi method with 100000 iterations and nonlinear updates after each
iteration.

The first experiment in Fig. 12(a) compares FED and Fast Jacobi. Both
approaches use a cycle length of 25. Since τmax = 0.25, this corresponds
to the diffusion time T = 0.25 · 25·26

3
≈ 54.17 per FED cycle. As one can

see in Fig. 12(a), the speed of convergence is significantly higher for Fast
Jacobi than for FED. This illustrates that for elliptic problems with strongly
varying coefficients, Fast Jacobi should be preferred over FED.

In our second experiment, we compare Fast Jacobi with its noncyclic JOR
counterpart and the Cyclic Richardson method. This allows us to investigate
the usefulness of the specific parameter cycles of the Fast Jacobi method.
Since ωmax was estimated by 1, JOR comes down to the Jacobi method.
Richardson’s cyclic method uses the relaxation parameters from (4.16), and
λmax was obtained with the Gershgorin estimate 1 + 8α. The results are
depicted in Fig. 12(b), where we again have used a cycle length of 25. We
observe that Fast Jacobi outperforms the Jacobi method which shows the
usefulness of varying relaxation parameters. Interestingly, cyclic Richardson
is inferior to both the Jacobi and the Fast Jacobi method. For our problem
with varying coefficients, it suffers from the lack of diagonal scaling that
sets it apart from Jacobi-type methods. Moreover, its use of MV relaxation
parameters instead of box relaxation parameters gives worse attenuation of
the noisy high frequencies.

In summary, we have presented evidence that Fast Jacobi performs much
better than a parabolic FED approach for elliptic problems with strongly

33

varying coefficients. It also appears to be a favourable choice among Jacobi-
like solvers, since it combines fast convergence due to varying relaxation
parameters with good attenuation properties of high frequencies.

It should be noted that Fast Jacobi methods can cope well with strongly
varying coefficients, but these coefficients have to remain bounded. This ex-
cludes e.g. total variation denoising [53] as long as no regularisation is applied
that avoids that the diffusivity becomes infinity. To handle variational meth-
ods with singularities, specific nonsmooth optimisation algorithms based on
primal-dual formulations have been developed; see e.g. [16] or [17]. Interest-
ingly, also in this scenario it is possible to design efficient cyclic alternatives,
as was shown by Setzer et al. [58].

5.5 Fast Jacobi as an Optimisation Method

We have seen that the Fast Jacobi method can solve linear systems of equa-
tions with a symmetric system matrix that arise from discretisations of
smooth elliptic PDEs. Thus, in all cases where this PDE can be interpreted
as an Euler–Lagrange equation of an energy functional, one could also see
the Fast Jacobi method as a numerical method for continuous optimisation
problems. Numerical optimisation is a very broad field [9, 42], and in recent
years many efforts have been pursued to devise efficient and well parallelis-
able first order methods; see e.g. [17, 48]. Therefore, let us now compare the
Fast Jacobi method with other solvers for optimisation problems.

As a model problem, we follow the suggestion of one reviewer and consider a
finite-dimensional variant of Nesterov’s worst case function for smooth and
strongly convex optimisation problems (see [41], Section 2.1.4):

f(x) =
κ− 1

8

(

x2
1 +

N∑

i=1

(xi − xi+1)
2 − 2x1

)

+
1

2
‖x‖22, (5.19)

with a parameter κ > 1, and a large integer number N . Its gradient is given
by

∇f(x) =
κ− 1

4
(Ax− b) + x (5.20)

with

A =

2 −1 0
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
0 −1 1

, b =

1
0
...
0

. (5.21)

34

Setting the gradient to zero yields a linear system of equations. For N → ∞,
its analytical solution is known [41]:

xk =

(√
κ− 1√
κ + 1

)k

(k = 1, 2, ...). (5.22)

We approximate this optimisation problem numerically with the standard
Jacobi, the Fast Jacobi, and the conjugate gradient method. Furthermore, we
also consider a recent method for strongly convex optimisation named iPiasco
[43]. This approach essentially consists of performing a usual gradient step
with an additional inertial term, which is then evaluated using a proximal
map.

Figure 13 displays the ℓ2 error for the different methods as a function of
the CPU time. We have chosen the parameters κ = 10 and N = 105 and
selected a cycle length of 4 for our Fast Jacobi approach. We observe that
both iPiasco and Fast Jacobi outperform the conjugate gradient and standard
Jacobi solvers. Evaluations on different hardware indicate that the runtimes
of iPiasco and Fast Jacobi are comparable: While iPiasco is slighlty ahead
on the architecture used for benchmarking in our experiments (3.2 GHz Intel
Xeon Processor), tests on other hardware (2.6 GHz Intel Core i5) have shown
that this can also be the other way around.

This experiment indicates that the Fast Jacobi method can be an alternative
to modern first order optimisation algorithms such as iPiasco, for which
optimality results in terms of linear convergence rates are known. In our
future work we plan to investigate if also corresponding theoretical results
can be established for Fast Jacobi techniques, using e.g. the recent framework
of Drori and Teboulle [20].

5.6 Higher Dimensional Problems and GPU Imple-
mentations

By means of 2-D optic flow computations, it has already been demonstrated
that FED is well-suited for parallelisation on GPUs [29]. In this subsection,
we illustrate that this also holds for Fast Jacobi and in three dimensions.

As an example application we have chosen an anisotropic range image inte-
gration problem, which aims at acquiring a single 3-D model from multiple
range images [57]. It requires to solve an elliptic PDE that can be written as

p(u) u− α div
(
D
(
Gρ ∗

(
∇uσ∇u⊤

σ

))
∇u
)

= q(u), (5.23)

35

 1e-14

 1e-11

 1e-08

 1e-05

 0.01

 0 5 10 15 20 25 30 35

E
rr

o
r

Computing time [ms]

Fast Jacobi
CG

Jacobi
iPiasco

Figure 13: Comparison of the convergence rates on Nesterov’s worst case
function ((5.19)). The runtimes refer to a 3.2 GHz Intel Xeon Processor.

where u : R3 → R is the unknown solution. Here p(u) and q(u) are suitably
chosen, real-valued functions. The diffusion tensor D, the Gaussian Gρ,
and the nabla operator ∇ are defined in a three-dimensional setting, and
the parameter α denotes a positive smoothness weight. More details can be
found in [57].

After a finite difference discretisation, our model becomes a nonlinear system
with N equations:

(P (u)− αA(u))u = q(u) , (5.24)

where N is the number of voxels. The N -dimensional vectors u and q(u) are
obtained by a spatial discretisation of the functions u and q(u), respectively.
The matrix A(u) ∈ RN×N is the 3-D discrete divergence operator with a
diffusion tensor D

(
Gρ ∗

(
∇uσ∇u⊤

σ

))
. Moreover, P (u) := diag(p(u)) ∈

R
N×N with the discrete version p(u) ∈ R

N of p(u). This nonlinear system
can be solved in a way that is analogous to Eq. (5.16).

In our experiment, we compare the running times of a sequential CPU and
a parallel GPU implementation of the Fast Jacobi applied to Eq. (5.24).
This comparison is shown in Table 6, where we use the 3.2 GHz Intel Xeon

36

Figure 14: Test setting for anisotropic range image integration. (a) Left:
One rendered image of Stanford Bunny. (b) Middle: Noisy range surface.
(c) Right: Reconstruction computed with Fast Jacobi (ωmax = 0.3, n = 50,
10 cycles).

Table 6: Computing times (sec.) for the sequential CPU and the paral-
lel GPU implementation of the Fast Jacobi algorithm for anisotropic range
image integration.

data size CPU [s] GPU [s] speed up factor

643 30.03 0.31 96.9

1283 239.70 1.70 141.0

2563 2006.05 12.93 155.1

processor and a single GPU of the NVIDIA GeForce GTX 690, respectively.
The number of unknowns is identical to the voxel number. In our example
with the Stanford bunny1 shown in Fig. 14, we have tested reconstructions
with up to 2563 ≈ 16·106 unknowns. Our numerical experiments have shown
that ωmax = 0.3 provides stable results, and convergence was achieved within
10 cycles of length 50. As we see in Table 6, the parallel implementation is
up to 155 times faster than its sequential counterpart. In conclusion, our
experiment illustrates that 3-D implementations of cyclic methods do not
create additional challenges, and their parallelisation is straightforward and
highly beneficial.

More generally, it should be mentioned that the cyclic methods share the ad-
vantages of many iterative methods for solving linear and nonlinear systems
of equations: Often a few iterations are sufficient to produce an approxima-
tion to the desired solutions with acceptable accuracy, while a user who can

1taken from the Stanford 3-D scanning repository

37

afford longer runtimes is rewarded by higher accuracy. In contrast to direct
algorithms, cyclic methods perform only simple matrix-vector multiplications
as well as additions, subtractions and scaling of vectors. Thus, they may fully
exploit the sparsity of the matrices and do not require a huge memory over-
head. This makes cyclic methods ideal algorithms for problems that require
efficient parallel processing of huge datasets with increasing accuracy in time.

6 Conclusions

We have shown that two of the simplest methods from numerical analysis
of PDEs can lead to remarkably efficient algorithms when they are only
slightly modified: This has led us to cyclic variants of the explicit scheme
and the Jacobi method. By means of six prototypical scenarios, we have
demonstrated that these cyclic schemes are widely applicable to all kinds of
smooth elliptic and parabolic problems in PDE-based image analysis that
lead to symmetric matrices. We conjecture that they may also be applicable
to some nonsymmetric problems; see e.g. [28] or [44] for some related results.
Since this requires a more complicated stability analysis, this is left for future
research.

Although cyclic algorithms have been around in the numerical analysis com-
munity for a long time, their usefulness in image analysis has first been
established in the conference version [27] of the present paper. However,
this transfer of knowledge from numerical analysis to image analysis is not a
one-way road: By considering a factorisation of general smoothing filters, we
have also introduced novel, signal processing based ways of deriving cycle pa-
rameters to the numerical analysis community. They have led to previously
unexplored methods with alternative parameter cycles. These methods have
better smoothing properties than classical numerical concepts such as Super
Time Stepping and the cyclic Richardson algorithm.

In the past, cyclic approaches have never been the most popular methods
for the numerical solution of PDEs. With the widespread availability of
low cost parallel computing hardware and the growing demand for simple
algorithms that work for a broad class of problems, the situation has changed
substantially. It seems that more than 100 years after the seminal work of
Richardson [51], cyclic methods are finally getting the merits they deserve.

Public Domain Code. Since we are convinced that the best way to ex-
perience the advantages of cyclic methods is to test them on own problems,
we have developed a library that offers the FED and FJ functionalities for

38

a broad range of processes. It is easy to embed into C and C++ programs.
This library is freely available from our website

http://www.mia.uni-saarland.de/Research/SC FED.shtml.

Acknowledgements. We gratefully acknowledge funding by the German
Research Foundation (DFG) through the project We2602/7-1 as well as the
Gottfried Wilhelm Leibniz Prize We2602/9-1.

References

[1] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables (9th print-
ing), Dover, New York, 1972, ch. “Orthogonal Polynomials” (Ch. 22),
pp. 771–802.

[2] P. F. Alcantarilla, J. Nuevo, and A. Bartoli, Fast explicit
diffusion for accelerated features in nonlinear scale spaces, in Proc. 2013
British Machine Vision Conference, T. Burghardt, D. Damen, W. Mayol-
Cuevas, and M. Mirmehdi, eds., Bristol, England, Sept. 2013, BMVA
Press, pp. 13.1–13.11.

[3] V. Alexiades, Overcoming the stability restriction of explicit schemes
via super-time-stepping, in Proceedings of Dynamic Systems and Appli-
cations, vol. 2, Atlanta, Georgia, May 1995, pp. 39–44.

[4] V. Alexiades, G. Amiez, and P.-A. Gremaud, Super-time-
stepping acceleration of explicit schemes for parabolic problems, Commu-
nications in Numerical Methods in Engineering, 12 (1996), pp. 31–42.

[5] R. S. Anderssen and G. H. Golub, Richardson’s non-stationary
matrix iterative procedure, Tech. Rep. STAN-CS-72-304, Computer Sci-
ence Department, Stanford University, August 1972.

[6] E. Bänsch and K. Mikula, A coarsening finite element strategy in
image selective smoothing, Computation and Visualization in Science, 1
(1997), pp. 53–61.

[7] R. Ben-Ari and G. Raveh, Variational depth from defocus in real-
time, in Computer Vision Workshops, 2011 IEEE Int. Conf. on Com-
puter Vision, 2011, pp. 522–529.

39

[8] F. Bornemann and P. Deuflhard, The cascadic multigrid method
for elliptic problems, Numerische Mathematik, 75 (1996), pp. 135–152.

[9] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge
University Press, Cambridge, UK, 2004.

[10] H. Brakhage, Über die numerische Behandlung von Integralgleichun-
gen nach der Quadraturformelmethode, Numerische Mathematik, 2
(1960), pp. 183–196.

[11] A. Brandt, Multi-level adaptive solutions to boundary-value problems,
Mathematics of Computation, 31 (1977), pp. 333–390.

[12] A. Bruhn, J. Weickert, T. Kohlberger, and C. Schnörr, A
multigrid platform for real-time motion computation with discontinuity-
preserving variational methods, International Journal of Computer Vi-
sion, 70 (2006), pp. 257–277.

[13] D. Calvetti and L. Reichel, Adaptive Richardson iteration based
on Leja points, Journal of Computational and Applied Mathematics, 71
(1996), pp. 267–286.

[14] , On the evaluation of polynomial coefficients, Numerical Algo-
rithms, 33 (2003), pp. 153–161.

[15] F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll, Image selective
smoothing and edge detection by nonlinear diffusion, SIAM Journal on
Numerical Analysis, 32 (1992), pp. 1895–1909.

[16] A. Chambolle, An algorithm for total variation minimization and
applications, Journal of Mathematical Imaging and Vision, 20 (2004),
pp. 89–97.

[17] A. Chambolle and T. Pock, A first-order primal-dual algorithm for
convex problems with applications to imaging, Journal of Mathematical
Imaging and Vision, 40 (2011), pp. 120–145.

[18] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Bar-

laud, Two deterministic half-quadratic regularization algorithms for
computed imaging, in Proc. 1994 IEEE International Conference on Im-
age Processing, vol. 2, Austin, TX, Nov. 1994, IEEE Computer Society
Press, pp. 168–172.

40

[19] J. Crank and P. Nicolson, A practical method for numerical evalu-
ation of solutions of partial differential equations of the heat-conduction
type, Proceedings of the Cambridge Philosophical Society, 43 (1947),
pp. 50–67.

[20] Y. Drori and M. Teboulle, Performance of first-order methods for
smooth convex minimization: a novel approach, Mathematical Program-
ming, 145 (2014), pp. 454–482.

[21] R. P. Fedorenko, A relaxation method for solving elliptic differ-
ence equations, USSR Computational Mathematics and Mathematical
Physics, 1 (1962), pp. 1092–1096.

[22] S. Frankel, Convergence rates of iterative treatments of partial differ-
ential equations, Mathematical Tables and Other Aids to Computation,
4 (1950), pp. 65–75.

[23] I. Galić, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, and

H.-P. Seidel, Image compression with anisotropic diffusion, Journal of
Mathematical Imaging and Vision, 31 (2008), pp. 255–269.

[24] W. Gentzsch, Numerical solution of linear and non-linear parabolic
differential equations by a time discretisation of third order accuracy,
in Proceedings of the Third GAMM-Conference on Numerical Methods
in Fluid Mechanics, E. H. Hirschel, ed., Friedr. Vieweg & Sohn, 1979,
pp. 109–117.

[25] W. Gentzsch and A. Schlüter, Über ein Einschrittverfahren
mit zyklischer Schrittweitenänderung zur Lösung parabolischer Differ-
entialgleichungen, ZAMM, Zeitschrift für Angewandte Mathematik und
Mechanik, 58 (1978), pp. T415–T416. (in German).

[26] D. G. Gordeziani and G. V. Meladze, Simulation of the third
boundary value problem for multidimensional parabolic equations in an
arbitrary domain by one-dimensional equations, USSR Computational
Mathematics and Mathematical Physics, 14 (1974), pp. 249–253.

[27] S. Grewenig, J. Weickert, and A. Bruhn, From box filtering
to fast explicit diffusion, in Pattern Recognition, M. Goesele, S. Roth,
A. Kuijper, B. Schiele, and K. Schindler, eds., vol. 6376 of Lecture Notes
in Computer Science, Berlin, 2010, Springer, pp. 543–552.

41

[28] K. F. Gurski and S. O’Sullivan, An explicit super-time-stepping
scheme for non-symmetric parabolic problems, in AIP Conference Pro-
ceedings: International Conference of Numerical Analysis and Applied
Mathematics, vol. 1281, Rhodes (Greece), 2010, pp. 761–764.

[29] P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. We-

ickert, A highly efficient GPU implementation for variational optic
flow based on the Euler-Lagrange framework, in Trends and Topics in
Computer Vision, K. N. Kutulakos, ed., vol. 6554 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2012, pp. 372–383.

[30] W. Hackbusch, Multigrid Methods and Applications, Springer, New
York, 1985.

[31] G. Hellwig, Partial Differential Equations, Teubner, Stuttgart, 1977.

[32] S. Hoffmann, M. Mainberger, J. Weickert, and M. Puhl,
Compression of depth maps with segment-based homogeneous diffusion,
in Scale Space and Variational Methods in Computer Vision, A. Kuijper,
K. Bredies, T. Pock, and H. Bischof, eds., vol. 7893 of Lecture Notes in
Computer Science, Springer, Berlin, 2013, pp. 319–330.

[33] B. Jawerth, P. Lin, and E. Sinzinger, Lattice Boltzmann models
for anisotropic diffusion of images, Journal of Mathematical Imaging
and Vision, 11 (1999), pp. 231–237.

[34] Z. Krivá and K. Mikula, An adaptive finite volume scheme for solv-
ing nonlinear diffusion equations in image processing, Journal of Visual
Communication and Image Representation, 13 (2002), pp. 22–35.

[35] P. Laasonen, Über eine Methode zur Lösung der
Wärmeleitungsgleichung, Acta Mathematica, 81 (1949), pp. 309–
317.

[36] V. I. Lebedev and V. N. Finogenov, Ordering the iteration param-
eters in the cyclic Chebychev iterative method, USSR Computational
Mathematics and Mathematical Physics, 11 (1971), pp. 155–170.

[37] T. Lu, P. Neittaanmäki, and X.-C. Tai, A parallel splitting up
method and its application to Navier-Stokes equations, Applied Mathe-
matics Letters, 4 (1991), pp. 25–29.

[38] A. Luxenburger, H. Zimmer, P. Gwosdek, and J. Weick-

ert, Fast PDE-based image analysis in your pocket, in Scale Space

42

and Variational Methods in Computer Vision, A. M. Bruckstein, B. ter
Haar Romeny, A. M. Bronstein, and M. M. Bronstein, eds., vol. 6667 of
Lecture Notes in Computer Science, Springer, Berlin, Germany, 2011,
pp. 544–555.

[39] A. Mang, T. A. Schuetz, S. Becker, A. Toma, and T. M.

Buzug, Cyclic numerical time integration in variational non-rigid im-
age registration based on quadratic regularisation, in Proc. Vision, Mod-
eling, and Visualization 2012, Magdeburg, Germany, Nov. 2012, Euro-
graphics Digital Library, pp. 143–150.

[40] J. A. Meijerink and H. A. van der Vorst, An iterative solution
method for linear systems of which the coefficient matrix is a symmetric
M-matrix, Mathematics of Computation, 31 (1977), pp. 148–162.

[41] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course, vol. 87 of Applied Optimization, Kluwer, Boston, 2004.

[42] J. Nocedal and S. J. Wright, Numerical Optimization, Springer,
New York, 2006.

[43] P. Ochs, T. Brox, and T. Pock, iPiasco: Inertial proximal algo-
rithm for strongly convex optimization, Journal of Mathematical Imag-
ing and Vision, (2015). Online First.

[44] G. Opfer and G. Schober, Richardson’s iteration for nonsymmetric
matrices, Linear Algebra and its Applications, 58 (1984), pp. 343–361.

[45] D. W. Peaceman and H. H. Rachford Jr., The numerical solution
of parabolic and elliptic differential equations, Journal of the Society for
Industrial and Applied Mathematics, 3 (1955), pp. 28–41.

[46] P. Perona and J. Malik, Scale space and edge detection using
anisotropic diffusion, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 12 (1990), pp. 629–639.

[47] P. Peter, Three-dimensional data compression with anisotropic diffu-
sion, in Pattern Recognition, J. Weickert, M. Hein, and B. Schiele, eds.,
vol. 8142 of Lecture Notes in Computer Science, Springer, Berlin, 2013,
pp. 231–236.

[48] T. Pock and A. Chambolle, Diagonal preconditioning for first or-
der primal-dual algorithms in convex optimization, in Proc. 13th Inter-
national Conference on Computer Vision, Barcelona, Spain, Nov. 2011,
pp. 1762–1769.

43

[49] L. L. Rakêt and B. Markussen, Approximate inference for spatial
functional data on massively parallel processors, Computational Statis-
tics and Data Analysis, 72 (2014), pp. 1723–1730.

[50] L. Reichel, Newton interpolation at Leja points, BIT Numerical Math-
ematics, 30 (1990), pp. 332–346.

[51] L. F. Richardson, The approximate arithmetical solution by finite
differences of physical problems involving differential equation, with an
application to the stresses in a masonry dam, Transactions of the Royal
Society of London, Ser. A (1910), pp. 307–357.

[52] G. Rosman, L. Dascal, A. Sidi, and R. Kimmel, Efficient Bel-
trami image filtering via vector extrapolation methods, SIAM Journal on
Imaging Sciences, 2 (2009), pp. 858–878.

[53] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation
based noise removal algorithms, Physica D, 60 (1992), pp. 259–268.

[54] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadel-
phia, second ed., 2003.

[55] V. K. Saul’yev, Integration of Equations of Parabolic Type by the
Method of Nets, Pergamon, Oxford, 1964.

[56] A. Schmidt-Richberg, J. Ehrhardt, R. Werner, and H. Han-

dels, Fast Explicit Diffusion for registration with direction-dependent
regularization, in Biomedial Image Registration, B. M. Dawant, G. E.
Christensen, J. M. Fitzpatrick, and D. Rueckert, eds., vol. 7359 of Lec-
ture Notes in Computer Science, Berlin Heidelberg, 2012, Springer,
pp. 220–228.

[57] C. Schroers, H. Zimmer, L. Valgaerts, A. Bruhn, O. Demetz,

and J. Weickert, Anisotropic range image integration, in Pattern
Recognition, A. Prinz, T. Pock, H. Bischof, and F. Leberl, eds., vol. 7476
of Lecture Notes in Computer Science, Berlin, 2012, Springer, pp. 73–82.

[58] S. Setzer, G. Steidl, and J. Morgenthaler, On cyclic gradient
descent reprojection, Computational Optimization and Applications, 54
(2013), pp. 417–440.

[59] A. Spira, R. Kimmel, and N. Sochen, A short-time Beltrami ker-
nel for smoothing images and manifolds, IEEE Transactions on Image
Processing, 16 (2007), pp. 1628–1636.

44

[60] R. S. Varga, Matrix Iterative Analysis, Prentice Hall, Englewood
Cliffs, 1962.

[61] J. Weickert, Anisotropic Diffusion in Image Processing, Teubner,
Stuttgart, 1998.

[62] , Coherence-enhancing diffusion filtering, International Journal of
Computer Vision, 31 (1999), pp. 111–127.

[63] , Applications of nonlinear diffusion in image processing and com-
puter vision, Acta Mathematica Universitatis Comenianae, 70 (2001),
pp. 33–50.

[64] J. Weickert, K. Hagenburg, M. Breuß, and O. Vogel, Lin-
ear osmosis models for visual computing, in Energy Minimisation Meth-
ods in Computer Vision and Pattern Recognition, A. Heyden, F. Kahl,
C. Olsson, M. Oskarsson, and X.-C. Tai, eds., vol. 8081 of Lecture Notes
in Computer Science, Springer, Berlin, 2013, pp. 26–39.

[65] J. Weickert, B. M. ter Haar Romeny, and M. A. Viergever,
Efficient and reliable schemes for nonlinear diffusion filtering, IEEE
Transactions on Image Processing, 7 (1998), pp. 398–410.

[66] M. Welk, G. Steidl, and J. Weickert, Locally analytic schemes:
A link between diffusion filtering and wavelet shrinkage, Applied and
Computational Harmonic Analysis, 24 (2008), pp. 195–224.

[67] W. M. Wells, Efficient synthesis of Gaussian filters by cascaded uni-
form filters, IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 8 (1986), pp. 234–239.

[68] D. Young, On Richardson’s method for solving linear systems with pos-
itive definite matrices, Journal of Mathematics and Physics, 32 (1954),
pp. 243–255.

[69] D. M. Young, Iterative Methods for Solving Partial Difference Equa-
tions of Elliptic Type, PhD thesis, Dept. of Mathematics, Harvard Uni-
versity, Cambridge, MA, May 1950.

[70] Yuan’Chzhao-Din, Some difference schemes for the solution of the
first boundary value problem for linear differential equations with partial
derivatives, PhD thesis, Moscow State University, 1958. (in Russian).

45

Appendix

A.1 Proof of Theorem 1 (Diffusion Factorisation of
Symmetric Filters)

At first, we prove by induction that

∆m
h fi =

1

h2m
·

m∑

k=−m

(−1)m+k

(
2m

m+ k

)

fi+k . (A.1)

For m = 0, Eq. (A.1) obviously holds.

If we assume that Eq. (A.1) is valid for an arbitrary m ≥ 0, this yields for
m+1:

∆m+1
h fi = ∆m

h

(
fi+1 − 2fi + fi−1

h2

)

(A.1)
=

m∑

k=−m

(−1)m+k

h2m

(
2m

m+k

)
fi+1+k − 2fi+k + fi−1+k

h2

=
1

h2(m+1)

(

fi+1+m +
m−1∑

k=−m

(−1)m+k

(
2m

m+k

)

fi+1+k

− 2

m∑

k=−m

(−1)m+k

(
2m

m+k

)

fi+k

+

m∑

k=−m+1

(−1)m+k

(
2m

m+k

)

fi−1+k + fi−1−m

)

. (A.2)

We perform two changes of indices for both the first (k → k−1) and the
third sum (k → k+1). Furthermore, we use that

(
2m

−1

)

=

(
2m

2m+ 1

)

= 0 . (A.3)

46

This yields

1

h2(m+1)

(

fi+1+m +
m∑

k=−m

(−1)m+k−1

(
2m

m+k−1

)

fi+k

− 2 ·
m∑

k=−m

(−1)m+k

(
2m

m+ k

)

fi+k

+
m∑

k=−m

(−1)m+k+1

(
2m

m+ k + 1

)

fi+k + fi−1−m

)

=
1

h2(m+1)

(

fi+m+1 + fi−m−1 +
m∑

k=−m

(−1)m+k+1 fi+k ·

·
((

2m

m+k+1

)

+ 2

(
2m

m+k

)

+

(
2m

m+k−1

)))

. (A.4)

Using the relation

(
2m

m+k+1

)

+ 2

(
2m

m+k

)

+

(
2m

m+k−1

)

=

(
2m+ 2

m+k+1

)

(A.5)

we finally get

1

h2(m+1)

(

fi+(m+1) + fi−(m+1) + +

m∑

k=−m

(−1)(m+1)+k

(
2(m+ 1)

(m+ 1) + k

)

fi+k

)

=
1

h2(m+1)

m+1∑

k=−(m+1)

(−1)(m+1)+k

(
2(m+1)

(m+1) + k

)

fi+k. (A.6)

This concludes the proof of Eq. (A.1).

If we replace ∆m
h by the left hand side of Eq. (A.1), then

n∑

m=0

α(n)
m ∆m

h fi =
n∑

m=0

α
(n)
m

h2m

m∑

k=−m

(−1)m+k

(
2m

m+k

)

fi+k . (A.7)

On the other hand, we have the given (symmetric) filter

Lh
2n+1 fi =

n∑

k=−n

w|k| · fi+k (A.8)

47

with the weights w0, . . . , wn ∈ R. Comparing the two equations (A.7) and

(A.8) yields a system of n+1 linear equations with n+1 unknowns α
(n)
m :

n∑

m=k

(−1)m+k · 1

h2m

(
2m

m+ k

)

α(n)
m = wk (A.9)

for all k ∈ {0, ..., n}. The corresponding matrix-vector notation of Eq. (A.9)
is given by

Bα(n) = w , (A.10)

where B = (bk,m) ∈ R
(n+1)×(n+1) with

bk,m = (−1)m+k · 1

h2m

(
2m

m+ k

)

(k,m = 0, . . . , n). (A.11)

Since bk,m = 0 for k > m and bk,k = 1/h2k 6= 0, it follows that B is
a regular upper triangular matrix. Therefore, Eq. (A.10) has the unique

solution α(n) = B−1w. This shows that the coefficients α
(n)
m uniquely depend

on the weights of the filter kernel.

To obtain a closed-form expression for the coefficients, we want to determine
an explicit representation of the matrix B−1. To this end, we show that the
entries of B−1 =

(
b−1
k,m

)
are given by

b−1
k,m = h2k

((
m+k

2k

)

+ (1−δm+k, 0)

(
m+k−1

2k

))

(k,m = 0, . . . , n). (A.12)

This means that we have to verify

n∑

p=0

b−1
k,p · bp,m = δk,m . (A.13)

Since both B and B−1 are upper triangular matrices, the summation is only
necessary for p ∈ {k, ..., m}. Thus, the above equation can be simplified to

m∑

p=k

b−1
k,p · bp,m = δk,m . (A.14)

This equation obviously holds for k > m. If k = m, then it is also valid
because of

b−1
k,k = h2k =

1

bk,k
. (A.15)

48

Let now m > k ≥ 0. Then this yields

m∑

p=k

b−1
k,p · bp,m = h2(k−m) ·

m∑

p=k

((
p+k

2k

)

+

+ (1− δp+k,0)

(
p+k−1

2k

))

(−1)m+p

(
2m

m+ p

)

. (A.16)

We first consider the case k > 0, i.e. δp+k,0 = 0. The 2k-degree polynomial

s(p) :=

(
p+ k

2k

)

+

(
p+ k − 1

2k

)

=

2k∏

j=1

p + (k + 1− j)

j
+

2k∏

j=1

p+ (k − j)

j
(A.17)

fulfils the equations s(p) = s(−p) and s(p) = 0 for all p ∈ {−k+1, ..., k−1}.
With the help of this, we get

0
(A.19)
=

m∑

p=−m

s(p) · (−1)m+p

(
2m

m+p

)

=
−k∑

p=−m

s(p) · (−1)m+p

(
2m

m+p

)

+
m∑

p=k

s(p)(−1)m+p

(
2m

m+p

)

= 2 ·
m∑

p=k

s(p) · (−1)m+p

(
2m

m+p

)

, (A.18)

where we have used that
r∑

j=0

(−1)j P (j)

(
r

j

)

= 0 (A.19)

for any polynomial P (j) with degree less than r > 0.

In the case of k = 0, we have b−1
0,0 = 1 and b−1

0,p = 2 for p 6= 0. Hence,

m∑

p=0

b−1
0,p (−1)m+p

(
2m

m+ p

)

= (−1)m
(
2m

m

)

+ 2 ·
m∑

p=1

(−1)m+p

(
2m

m+ p

)

= (−1)m
(
2m

m

)

+

m∑

p=−m
p 6=0

(−1)m+p

(
2m

m+ p

)

=

m∑

p=−m

(−1)m+p

(
2m

m+ p

)
(A.19)
= 0 . (A.20)

49

Considering the equations (A.18) and (A.20), it follows that

m∑

p=k

b−1
k,p · bp,m = 0 (A.21)

for m > k. Thus, we get Eq. (2.6).

Now we assume that the weights wk sum up to 1. According to the funda-
mental theorem of algebra, the polynomial pL(z) has n roots z0, ..., zn−1 ∈ C.
Hence, it can be written as a product of n linear factors:

pL(z) = c ·
n−1∏

i=0

(zi − z) , (A.22)

where c ∈ R is the normalisation factor

c = α
(n)
0 ·

(
n−1∏

i=0

zi

)−1

. (A.23)

Since the weights satisfy wk = w−k and sum up to 1, we have

α
(n)
0 =

n∑

k=0

((
k

0

)

+ (1− δk,0)

(
k − 1

0

))

wk

= w0 + 2

n∑

k=1

wk = 1. (A.24)

This implies that pL(0) = α
(n)
0 = 1 , which shows that z = 0 cannot appear

as a root of the polynomial pL. Morover, pL(z) can be rewritten as

pL(z) =

n−1∏

i=0

(

1 − z

zi

)

. (A.25)

Replacing −z by the operator ∆h and interpreting the corresponding prod-
uct as a composition of operators finally shows that

Lh
2n+1 =

n−1∏

i=0

(
I + z−1

i ∆h

)
, (A.26)

where I denotes the identity operator. Obviously, the right hand side of
Eq. (A.26) is a series of explicit diffusion steps.

50

Thus, Eq. (A.26) states that Lh
2n+1 can be decomposed into n explicit homo-

geneous diffusion steps with the time step sizes τi = z−1
i . Because of

n−1∑

i=0

τi =
n−1∑

i=0

z−1
i = α

(n)
1 , (A.27)

the cycle time of the scheme in Eq. (A.26) is equal to the coefficient

α
(n)
1 = h2 ·

n∑

k=1

((
k + 1

2

)

+

(
k

2

))

wk

= h2 ·
n∑

k=1

k2 · wk, (A.28)

and the theorem is proven.

A.2 Factorisation of the Binomial Filter Kernel

A binomial kernel Kh
2n+1 of length (2n+ 1)h is defined by the weights

wk =
1

4n

(
2n

n+ k

)

. (A.29)

By construction, the nice property of binomial kernels is that the (discrete)
convolution of two kernels is again a binomial kernel:

Kh
2n1+1 ∗ Kh

2n2+1 = Kh
2(n1+n2)+1 . (A.30)

This means we can represent each binomial kernel by means of a convolution
with kernels of length 3h. More precisely, convolving Kh

3 with itself n−1 times
yields Kh

2n+1. In terms of the polynomial, this corresponds to the n-th power
of the polynomial belonging to the binomial kernel with length 3h. Thus, to
compute a filter factorisation, we simply have to consider a binomial kernel
of length 3h. Using Eq. (2.6) we get the two coefficients

α
(1)
0 = 1 , α

(1)
1 = h2 · w(1)

1 =
h2

4
. (A.31)

Hence, the polynomial of an arbitrary binomial kernel Kh
2n+1 is given by

pK(z) =

(

1 − h2

4
z

)n

=

n∑

m=0

(
n

m

)
h2m

4m
(−z)m . (A.32)

It has only a single root z = 4
h2 with multiplicity n. This implies a constant

time step size τ = h2

4
. Thus, the cycle time of Kh

2n+1 is given by θn = h2

4
· n.

51

A.3 Factorisation of the Maximum Variance
Filter Kernel

We consider the symmetric kernel Mh
2n+1 that has positive weights only at

the boundaries, i.e. w−n = wn = 1
2
and wk = 0 else. The coefficients α

(n)
m

of pM can be computed by means of Eq. (2.6):

α(n)
m =

h2m

2
·
((

n+m

2m

)

+

(
n+m− 1

2m

))

=
h2m

2
·
(
n +m

2m

)(

1 +
n−m

n+m

)

= h2m n

n +m

(
n +m

2m

)

. (A.33)

Thus, the polynomial of Mh
2n+1 is given by

pM(z) =
n∑

m=0

h2m n

n+m

(
n+m

2m

)

(−z)m . (A.34)

The next step is to show that pM(z) is related to a Chebyshev polynomial of
the first kind. They are defined by the recursion

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2x · Tn(x)− Tn−1(x).

(A.35)

Acoording to [1] they and have the following closed form:

Tn(x) =
n

2
·
⌊n/2⌋
∑

m=0

(−1)m

n−m

(
n−m

m

)

(2x)n−2m. (A.36)

Thus, we get

pM(z) = n

n∑

m=0

(−1)m

n +m

(
n+m

2m

)

(h2 · z)m

= n

n∑

m=0

(−1)n−m

2n−m

(
2n−m

2(n−m)

)
(
h2 · z

)n−m

= (−1)n · 2n
2

⌊2n/2⌋
∑

m=0

(−1)m

2n−m

(
2n−m

m

)
(
h ·

√
z
)2n−2m

= (−1)n · T2n

(
h
√
z

2

)

. (A.37)

52

Note that we have changed the order of summation (m → n − m) in the
second step.

With this relation, the time step sizes are connected to the roots of the
Chebyshev polynomials. They can be computed as

τi =
h2

2
· 1

2 cos2
(
π · 2i+1

4n

) (i = 0, ..., n−1). (A.38)

According to Theorem 1, the cycle time is given by

θn = h2
n∑

k=1

k2wk =
h2

2
· n2 . (A.39)

A.4 Factorisation of the Box Filter Kernel

The weights wk of a box filter with length (2n+1)h, Bh
2n+1, are uniform:

wk =
1

2n+1
. Its polynomial pB is also related to Chebyshev polynomials.

According to Eq. (2.6) we have α
(n)
0 = 1. Moreover, for m > 0 we obtain

α(n)
m =

h2m

2n + 1

n∑

k=m

((
k +m

2m

)

+

(
k +m− 1

2m

))

=
h2m

2n + 1

(
n+m∑

k=2m

(
k

2m

)

+

n+m−1∑

k=2m

(
k

2m

))

=
h2m

2n + 1

((
n+m+ 1

2m+ 1

)

+

(
n+m

2m+ 1

))

=
h2m

2n + 1

(
n +m+ 1

2m+ 1

(
n +m

2m

)

+
n−m

2m+ 1

(
n+m

2m

))

=
h2m

2n + 1
· 2n+ 1

2m+ 1

(
n+m

2m

)

=
h2m

2m+ 1

(
n+m

2m

)

. (A.40)

Thus, the polynomial pB(z) of the box filter Bh
2n+1 is given by

pB(z) =

n∑

m=0

h2m

2m+ 1

(
n +m

2m

)

(−z)m . (A.41)

53

Furthermore, we can state that

T2n+1(x) =
2n+ 1

2

n∑

m=0

(−1)m

2n+ 1−m

(
2n+1−m

2(n−m)+1

)

(2x)2(n−m)+1

=
2n+ 1

2

n∑

m=0

(−1)n−m

n+m+ 1

(
n+m+1

2m+1

)

(2x)2m+1

= (−1)n(2n+1) x

n∑

m=0

(−1)m

2m+1

(
n+m

2m

)
(
4x2
)m

(A.42)

and hence for z > 0:

pB(z) = (−1)n ·
2 · T2n+1

(
h
√
z

2

)

(2n+ 1)h
√
z

. (A.43)

Note that this representation also makes sense for z → 0, since

lim
z→0

(−1)n ·
2 · T2n+1

(
h
√
z

2

)

(2n+ 1)h
√
z

= 1 = pB(0) . (A.44)

Hence, the roots z0, . . . , zn−1 of pB(z) are related to the n positive roots of
T2n+1. Since these roots are given by

xi = cos

(

π · 2i+ 1

4n + 2

)

(0 ≤ i ≤ n−1), (A.45)

the roots zi of pB fulfil

zi =
4

h2
· x2

i =
4

h2
· cos2

(

π · 2i+ 1

4n+ 2

)

. (A.46)

This yields the following conclusion, which is a special case of Theorem 1:
The 1-D discrete box filtering with Bh

2n+1 is equivalent to a cycle of n explicit
1-D homogeneous diffusion steps with the time step sizes

τi =
h2

2

1

2 cos2
(
π 2i+1

4n+2

) (i = 0, ..., n−1). (A.47)

With Theorem 1, the corresponding cycle time also grows quadratically in
n:

θn = h2

n∑

k=1

k2wk =
h2

2n + 1

n∑

k=1

k2 =
h2

6
·
(
n2 + n

)
. (A.48)

54

A.5 Stability Analysis of the FED Scheme (3.5)–(3.6)

The result uk+1 ∈ R
N with k ≥ 0 after a complete cycle of the linear FED

scheme (3.5) can be written as the matrix-vector product

uk+1 =
(n−1∏

i=0

(I + τi A)
)

︸ ︷︷ ︸

=:QA

uk . (A.49)

Let us now analyse the eigenvalues λ1, . . . , λN of the matrix QA ∈ R
N×N .

To this end, we consider the orthonormal eigenvectors v1, . . . , vN of the sym-
metric matrix A with the corresponding real-valued eigenvalues

µ1(A), . . . , µN(A) ∈
[
− 4

h2 , 0
]
.

We have

QA vj =
(n−1∏

i=0

(I + τi A)
)

vj =

n−1∏

i=0

(
1 + τi µj(A)

)
vj . (A.50)

This means that the vectors v1, . . . , vN are also eigenvectors of QA with
eigenvalues

λj =
n−1∏

i=0

(
1 + τi µj(A)

)
(j = 1, . . . , N). (A.51)

From the filter factorisation of the box filter, we know that

n−1∏

i=0

(
1 − τi z

)
= pB(z) , (A.52)

which implies λj = pB(−µj(A)) for j = 1, . . . , N . Since the polynomial
pB(z) satisfies |pB(z)| ≤ 1 for z ∈

[
0, 4

h2

]
, we have λj ∈ [−1, 1]. Thus, the

FED scheme (3.5)–(3.6) is stable in the Euclidean norm. This stability result
remains also valid if we replace all τi by qτi with some fixed q ∈ [0, 1), which
is equivalent to replacing τmax in (3.6) by a constant τ ∈ [0, τmax).

A.6 Proof of Theorem 2 (FED Scheme for Linear Prob-
lems)

If we replace the matrix A in Appendix A.5 by an arbitrary symmetric and
negative semidefinite matrixP ∈ R

N×N whose eigenvalues µ1(P), . . . , µN(P)

55

lie in [−ρ(P), 0], an analogue computation for the eigenvalues λ′
1, . . . , λ

′
N of

QP yields

λ′
j =

n−1∏

i=0

(
1 + τi µj(P)

)
= pB(−µj(P)) (j = 1, . . . , N). (A.53)

Note that we still use the time step sizes τi of the linear FED scheme. Since
it could happen that ρ(P) > 4

h2 , we cannot guarantee that the polynomial
fulfils |pB(−µj(B))| ≤ 1 for all j. However, if we replace these time steps τi
by τ ′i :=

2
ρ(P)

· 2
h2 · τi, then we obtain the eigenvalues

λ′
j =

n−1∏

i=0

(
1 + τ ′i µj(P)

)
= pB

(

− 4

h2
· µj(P)

ρ(P)

)

(j = 1, . . . , N) . (A.54)

Since −µj (P)

ρ(P)
∈ [0, 1], we can now state that

∣
∣
∣
∣
pB

(

− 4

h2
· µj(P)

ρ(P)

)∣
∣
∣
∣
≤ 1 (j = 1, . . . , N) , (A.55)

and thus λ′
j ∈ [−1, 1] for all j. This shows stability in the Euclidean norm for

the cyclic scheme with the matrix P and the time step sizes from Eq. (3.17)
with τ = τmax :=

2
ρ(P)

. Clearly, this stability is also preserved if the constant

τ is chosen from the interval (0, τmax).
To prove that the cycle time θn fulfils (3.19), note that (A.47) and (A.48)
imply that

n−1∑

i=0

1

2 cos2
(
π · 2i+1

4n+2

) =
n2 + n

3
. (A.56)

Thus, we obtain

θn =
n−1∑

i=0

τi = τ
n−1∑

i=0

1

2 cos2
(
π · 2i+1

4n+2

) = τ · n
2 + n

3
. (A.57)

56

