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Abstract

Partial differential equations (PDEs) are able to reconstruct im-
ages accurately from a small fraction of their image points. These
inpainting capabilities allow compression codecs with sophisticated
anisotropic PDEs to compete with transform-based methods like JPEG
2000. For simple linear PDEs, optimal known data can be found with
powerful optimisation strategies. However, the potential of these lin-
ear methods for compression has so far not yet been determined.

As a remedy, we present a compression framework with homoge-
neous, biharmonic, and edge-enhancing diffusion (EED) that supports
different strategies for data selection and storage: On the one hand,
we find exact masks with optimal control or stochastic sparsification
and store them with a combination of PAQ and block coding. On the
other hand, we propose a new probabilistic strategy for the selection
of suboptimal known data that can be efficiently stored with binary
trees and entropy coding.

This new framework allows us a detailed analysis of the strengths
and weaknesses of the three PDEs. Our investigation leads to surpris-
ing results: At low compression rates, the simple harmonic diffusion
can surpass its more sophisticated PDE-based competitors and even
JPEG2000. For high compression rates, we find that EED yields the
best result due to its robust inpainting performance under suboptimal
conditions.

1 Introduction

Image compression with partial differential equations (PDEs) exploits the
fact that diffusion processes can give very faithful reconstructions of images
from a small amount of image points. In such an inpainting process, the
respective PDE describes the propagation of known data to missing image
areas. Each successful PDE-based codec has to address three key elements of
PDE-based compression: choosing the right PDE for image reconstruction,
selecting known data, and storing this data efficiently.
Both the position and the value of the known image points can have a large
influence of the reconstruction quality. For homogeneous and biharmonic
inpainting, powerful optimisation strategies for the selection of known data
exist [1–4]. Even these simple PDEs can reach impressive inpainting results if
these methods are applied. However, the specific requirements of compression
lead to a trade-off situation: Optimal known data is in most cases expensive
to store, while suboptimal data that can be significantly cheaper. In codec
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design, the right balance between reconstruction quality and storage cost has
to be found.
The current state of the art in compression with PDEs, the R-EED codec
by Schmaltz et al. [5], relies on edge-enhancing anisotropic diffusion (EED)
[6]. It combines this powerful PDE with known data obtained with a heuris-
tic subdivision strategy. These known points are suboptimal, but can be
efficiently stored by a binary tree representation.
In contrast, homogeneous diffusion has so far only been used successfully
for specific types of images such as cartoons [7] or depth maps [8–10]. The
sophisticated optimisation strategies mentioned above have so far not been
used for compression. Instead, semantic approaches like edge detection are
the main tool for finding known data in this area. Moreover, there is no
codec that relies on biharmonic diffusion at all.
So far, different PDEs have only been compared in a pure inpainting context
without considering the need for efficient storage [1–4] or w.r.t. their overall
performance in a specific codec [5]. Since no comprehensive comparison that
allows different strategies for data selection and efficient storage has been
conducted so far, the true potential of these PDE needs yet to be discovered.

Our Contributions. We evaluate and compare harmonic, biharmonic and
EED inpainting in a compression context. In particular, we analyse how
vital compression strategies, namely quantisation and selection of known
data, impact the performance of each PDE. For such an evaluation, we need
a common compression framework that allows a comparison on equal footing.
To this end, we propose two different new codecs :

1. Compression with exact masks combines unrestricted choice of known
image points with efficient entropy encoding. For linear diffusion, we
use an optimal control scheme [3, 4] to find the position of known
data. Since this approach only works for linear PDEs, we rely on
the stochastic sparsification approach of Mainberger et al. [2] for EED
instead. For the first time, we embed these powerful data optimisation
strategies into a complete compression codec.

2. Stochastic tree densification restricts the location of known data to a
locally adaptive grid that is represented by a binary tree. This new
strategy combines successful tree-based ideas from heuristic algorithms
[5, 11] with thorough stochastic optimisation [2, 10]. In post-processing,
a nonlocal node exchange avoids local minima of this stochastic opti-
misation.

Our paper extends on preliminary results of a conference paper by the same
authors [12]. In the present work, however, we do not restrict ourselves to
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linear methods, but also integrate anisotropic diffusion into our framework.
This also requires the use of different optimisation strategies in both codecs.
Moreover, we focus on a detailed experimental analysis of the strengths and
weaknesses of the three PDEs. In contrast, the main focus of the previous
publication was the competitive performance of linear PDEs compared to
transform-based codecs.

Related Work. The codecs presented in this section differ primarily by
their inpainting PDE and their strategy for selection of known data. On the
one hand, there are optimisation-driven methods that carefully optimise the
locations of scattered data points to minimise the difference to the original.
On the other hand, feature-driven codecs store semantic structural compo-
nents of the image such as edges and try to get the maximum quality out of
this given data.
Linear diffusion has so far only be used in feature-driven methods for certain
classes of images. Since there is a long history of representing image content
purely by edges [13–24], it is not surprising that many PDE-based compres-
sion codecs also rely on this feature. This choice can also be motivated by the
theoretical results of Belhachmi et al. [1], which suggest to choose known data
at locations with large Laplacian magnitude. One obvious advantage over
the optimisation-driven encoders is run time: edges can be cheaply detected,
e.g. with a Canny edge detector [25] or more sophisticated methods.
Mainberger et al. [7, 26] have shown that simple homogeneous diffusion can
beat JPEG 2000 on cartoon-like images. The availability of exact edge data
circumvents the main drawback of homogeneous diffusion, its inability to re-
construct sharp contrast changes. There are several codecs that rely on vari-
ations of the same core idea and all employ homogeneous diffusion: Carlsson
[27] proposed an early sketch-based approach with linear homogeneous dif-
fusion which was later modified and extended by Desai et al. [28]. Wu et al.
[29] use JPEG2000 to store known data at thickened edges, while Bastani
et al. [30] use source points as given locations. Zhao and Du [31] employ a
modified Perona-Malik for presmoothing before edge extraction.
Depth maps are also particularly well-suited for this kind of compression,
because this data is naturally composed of piecewise smooth image regions.
Both Gautier et al. [8] and Li et al. [9] use edge features and homogeneous
diffusion similarly as the approach of Mainberger et al. [26] with specific
adaptations to depth maps. Hoffmann et al. [10] go beyond pure storage of
edge data and partition the depth map into non-overlapping regions. Between
these regions, sharp edges are preserved.
PDE-based codecs for general image content are predominantly optimisation-
driven and rely on EED [6]. Initially, this class of methods was proposed by
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Galić et al. [11], while the current state of the art is the R-EED codec by
Schmaltz et al. [5]. Modifications and extensions of R-EED include colour
codecs [32], 3-D data compression [5], and progressive modes [33].
In addition, there are several works that are closely related to compression,
but do not consider actual encoding [1–4, 34]. Instead, they deal with opti-
mal reconstruction from small fractions of given data. We directly use results
from the optimal control scheme for harmonic PDEs by Hoeltgen et al. [3]
and its biharmonic extension. Our densification approach on restricted point
sets is inspired by the approach of Mainberger et al. [2, 34]. They consider
a stochastic sparsification on unrestricted point sets which has the advan-
tage that it can be applied for any inpainting method without the need for
modifications.

Organisation of the Paper. We begin with a review of different optimi-
sation techniques for image inpainting in Section 2. This covers both the
selection and representation of locations for known pixels, as well as the op-
timisation of pixel values. In Section 3 we review different approaches for
efficient storage of known data that act as the foundation for our new codecs.
These approaches include entropy coding as well as additional preprocessing
steps such as prediction. We introduce our two new compression codecs in
Section 4. They are specifically designed to allow a practically relevant eval-
uation of different inpainting PDEs in the compression context. Based on
these codecs, we perform a detailed experimental analysis in Section 5. This
allows us to evaluate both the overall performance of PDEs in compression, as
well as the influence and interaction of individual compression steps. Section
6 concludes our paper with a summary and outlook on future work.

2 Optimising and Representing Known Data

Image Inpainting. First we briefly recapitulate PDE-based image recon-
struction. The greyscale image f : Ω → R is known on the inpainting mask
K ⊂ Ω, and we want to reconstruct the missing data in the inpainting domain
Ω \K. The general inpainting equation

(1− c(x))Lu− c(x)(u− f) = 0 (1)

uses a confidence function c(x) : Ω→ R to balance closeness to the original
data and the smoothness constraint imposed by a suitable differential oper-
ator L. For a binary confidence function that is 1 on K, and 0 on Ω \K, we
can use a parabolic PDE-formulation instead: We obtain the missing image
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parts u as the steady state (t→∞) of the image evolution that is described
by the PDE

∂tu = Lu on Ω \K. (2)

Here, we impose reflecting boundary conditions at the image boundary ∂Ω.
In addition, the known data is fixed on K, thus creating Dirichlet boundary
conditions u = f . In the following, we consider two different parameter-
free choices for the differential operator L. In the simplest case, we apply
homogeneous diffusion [35]:

Lu = ∆u = div(∇u). (3)

Since experiments suggest that the biharmonic operator

Lu = −∆2u (4)

may give better reconstructions [4, 5, 11], it is also considered. Both op-
erators propagate known information equally in all directions and behave
consistently throughout the whole image evolution. Finally, we also use edge-
enhancing anisotropic diffusion (EED) [6] with

Lu = div(D∇u) (5)

and an anisotropic tensor D that adapts to the local image structure. The
first eigenvector v1 of D is parallel to the gradient and thus points across
edges. The second eigenvector v2 is perpendicular to v1 and thereby gives
the direction along the edge. We allow full diffusion along edges by setting
the eigenvalue µ2 = 1. Across edges, we want to inhibit diffusion. To this
end, we use a Charbonnier diffusivity [36] to define our first eigenvalue:

µ1 =

(
1 +
|∇uσ|2

λ2

)−1

. (6)

Here, we use convolution with a Gaussian kernel Kσ with standard deviation
σ to obtain a presmoothed image uσ := Kσ ∗ u. The gradient magnitude
|∇uσ|2 acts as an edge detector.
In principle, the anisotropic diffusion tensor allows EED to obtain more accu-
rate reconstructions from the same amount of known data [5, 11]. However,
the price for this increase in quality are algorithms with higher computational
complexity and the need to optimise the contrast parameter λ. Therefore,
successful compression codecs like R-EED [5] rely on heuristics to optimise
known data. There is a lot of evidence [1–4] that good reconstruction quality
depends highly on the known data. For an inpainting mask that contains
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a fixed fraction of all image points, two optimisation strategies can be ap-
plied: spatial optimisation selects the location of known data, while tonal
optimisation chooses the corresponding grey or colour value. In the follow-
ing we provide a review of optimisation methods that are relevant for our
new codecs.

2.1 Spatial Optimisation

Finding optimal positions for a fixed amount of mask points is nontrivial. Let
us consider a simple example: We have a discrete image with a resolution
of 256 × 256 and want a sparse representation that contains only 5% of the
total number of pixels. Combinatorics tell us that there are(

65536
3277

)
≈ 1.7 · 105648 (7)

possibilities to select this amount of known data. This large search space
increases both with the resolution of the original image and the percentage
of selected pixels. In the following, we review the three most successful
approaches to solve this problem in image compression.

Optimal Control. Hoeltgen et al. [3] and Chen et al. [4] optimise the loca-
tions of the inpainting mask by solving a constrained optimisation problem
of the form

argmin
u, c

1

2

∫
Ω

(
(u(x)− f(x))2 + δ|c(x)|+ εc(x)2

)
dx,︸ ︷︷ ︸

=:E(u,c)

(8)

such that c(x)(u(x)− f(x))− (1− c(x))Lu(x) = 0. (9)

Note that at the image boundaries, reflecting boundary conditions still apply.
Here the goal is to find simultaneously the reconstruction u and the real-
valued confidence function c(x) by minimising the energy E(u, c). The gen-
eral inpainting equation (1) acts as a side-constraint. The term (u(x)−f(x))2

penalises deviations of the reconstruction u from the original f , while the
term |c(x)| imposes sparsity of the confidence function. Thereby, the param-
eter δ > 0 can be used to determine the amount of known data that influences
the reconstruction. The other parameter, ε > 0, is fixed to a small positive
value, since the existence of a solution for efficient solvers is not guaranteed
for ε = 0 (see Hoeltgen et al. [3]).
In fact, minimising the energy E(u, c) is challenging due to two facts: the
sparsity term is non-differentiable and the problem is non-convex. Neverthe-
less, efficient algorithms are possible by considering a series of related linear
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problems from optimal control theory. It has been shown that fast primal-
dual schemes can be employed for finding a solution [3, 4]. While Hoeltgen
et al. [3] focus on homogeneous diffusion, biharmonic inpainting is considered
in addition by Chen et al. [4].
Note that for compression, a continuous confidence function is disadvanta-
geous, since the coding cost of real numbers is much higher than for the
integer case. However, Hoeltgen and Weickert [37] have shown that there
is no drawback, if the continuous confidence function is reduced to a binary
mask by thresholding. The same reconstruction quality as with a continuous
confidence function can be achieved, if one optimises not only the location,
but also the value of the known pixels. We discuss such tonal optimisation
strategies at the end of this section.

Stochastic Optimisation. While optimal control approaches are mathe-
matically well-founded and can be implemented efficiently, they also have
two drawbacks: On the one hand, there is no straightforward extension to
nonlinear anisotropic diffusion, so far. On the other hand, the parameter δ
controls the amount of known data only indirectly. It has to be tuned to
achieve a specific density of the inpainting mask.
Instead, one can employ the stochastic sparsification approach of Mainberger
et al. [2]. It starts with a full mask that contains all image points. From this
mask, we remove a fixed percentage α of known data. After inpainting with
the smaller mask, we add a fraction β of the removed pixels with the highest
reconstruction error back to the mask. This sparsification algorithm iterates
the aforementioned steps until the target mask density is reached.
However, there is a substantial risk that this algorithm is caught in a local
minimum. To avoid this problem, Mainberger et al. [2] propose a nonlocal
pixel exchange for post processing: First, they remove n randomly selected
points from the mask and reconstruct the image. Afterwards, a candidate set
of m > n non-mask pixels is selected randomly. From this candidate set, the
algorithm adds the n points that have the largest reconstruction error back to
the mask. If the new mask yields a better reconstruction it is kept, otherwise
the change is reverted. Optimal control and stochastic sparsification with
nonlocal pixel-exchange yield results with comparable reconstruction quality.
However, the stochastic approach is usually significantly slower.

Tree-based Subdivision. The R-EED codec in [5] uses another approach
to spatial optimisation: A subdivision algorithm partitions the original im-
age into rectangular subimages. For each subimage, it selects the corner
points and its midpoint as known data. If the local reconstruction error in
a subimage exceeds a user-defined error threshold, the image is subdivided,
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Figure 1: Tree Representation of Inpainting Masks. Each square-
shaped leaf node in a tree corresponds to a subimage with the same number.
Red circles represent the locations stored by each subimage. The subdivision
tree has minimum depth 2 and maximum depth 4. Therefore, only the levels
3 and 4 (marked by dashed box) need to be stored: each leaf node as a 0, each
inner node as a 1. This yields the overall binary representation 0111001011
with 4 bits for level 3 and 6 bits for level 4.

thus adding more known data in regions that are not reconstructed well. The
advantages of this method are twofold: On one hand, it reduces the coding
cost of the locations since the subdivision can be efficiently represented by a
binary tree. On the other hand, it also reduces the size of the search space.
The obvious drawback of tree-based approaches is that the restriction to a
locally adaptive grid might also reduce the reconstruction quality. In this
paper, we also want to investigate how such restrictions affect different in-
painting PDEs. We cannot rely on a heuristic subdivision strategy, since this
might skew the comparison to exact masks that arise from optimal control or
stochastic sparsification. Therefore, we propose a new tree-based stochastic
approach in Section 4. We discuss the tree representation that we need for
this purpose in more detail in the following paragraphs.
For a tree T consisting of nodes t0, . . . , tn, the root node t0 stands for cutting
the original image in half in its largest dimension. By adding nodes to the
tree, one of the two subimages corresponding to the parent node is split fur-
ther. In order to encode the tree efficiently in a binary sequence, we exploit
that leaf nodes are indicators for termination, i.e. the subimage correspond-
ing to a leaf node is not split any further. Thereby, we can represent the
tree as a bit sequence (0 for leaf nodes, 1 for other nodes) that results from
traversing the tree level by level. We can reduce the coding cost even further
by storing the minimum and maximum tree depth. All nodes on tree levels
up to the minimum depth are split, and all nodes on levels above the max-
imum tree depth are leaf nodes. Thus, only the tree structure for the levels
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in-between these depths needs to be encoded. Fig. 1 provides a visualisation
of tree representation. In particular, it also gives a concrete example for a
conversion of a tree to a binary sequence.

2.2 Tonal Optimisation

Tonal optimisation is the task of choosing optimal pixel values for an in-
painting mask with fixed locations. Intuitively, tonal optimisation can be
understood as introducing a small error to the sparse known data to achieve
a more significant improvement in the inpainting domain.
In the linear case, tonal optimisation can be formulated as a least squares
problem [34]. Let f ∈ Rnxny denote the original image in vector notation,
c ∈ {0, 1}nxny the corresponding binary mask, and r(c, g) the reconstruction
that one obtains with linear diffusion inpainting from the mask c and the
known data g. Then, optimal known data can be found by the minimisation

argmin
g
|f − r(c, g)|2. (10)

Hoeltgen et al. [34] have shown that this problem has a unique solution, if
the mask is not empty and a linear PDE is used for reconstruction. There
are many ways to find this solution. Originally, Mainberger et al. [2] have
proposed a randomised Gauß-Seidel scheme that relies on so-called inpainting
echoes. Setting a single point of the inpainting mask to 1 and all other mask
points to 0 yields the influence of this mask point on the reconstruction,
its echo. Mainberger et al. [2] have shown that the full inpainting can then
be represented as a weighted sum of these echoes, which makes inpainting
extremely fast, once these echoes have been computed. However, computing
the individual echoes takes time and they are only valid for a specific mask
configuration.
More recently, other methods have been proposed that circumvent the costly
computation of the echoes. For example, Chen et al. [4] and Hoeltgen and
Weickert [37] apply primal-dual methods to solve the problem directly. Hoelt-
gen et al. [34] propose a gradient descent algorithm that is accelerated with
fast explicit diffusion (FED) [38]. In Section 4 we argue that for our specific
use in compression, the original echo-based approach is still viable compared
to these newer, more efficient methods. Moreover, note that the least squares
formulation yields continuous optimal grey values that are just as costly to
store as the continuous confidence function from the previous section. We
address this problem also in Section 4.
Unfortunately, the aforementioned solvers are not directly applicable to non-
linear anisotropic diffusion. Instead we apply a straightforward iterative
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algorithm that is also used in R-EED [5]: We visit all mask pixels in ran-
dom order and check if increasing or decreasing the pixel value by fixed steps
yields an improvement. If it does, we keep the new pixel value, otherwise
we revert to the original. We iterate these random walks over the whole
mask. Similar to the probabilistic algorithm, this method is rather slow, but
universally applicable to a wide range of inpainting operators.

3 Storing Data Efficiently

In this section we discuss general requirements and restrictions that the com-
pression setting imposes on optimisation algorithms. This enables us to de-
sign codecs that offer a good trade-off between file size and inpainting quality.
The most important ingredient for efficient storage of known data in PDE-
based compression is entropy coding.

3.1 Entropy Coding

All entropy coders share the common goal of removing redundancy from
data. Thereby, they store information losslessly, but with a reduced file
size. Huffman coding [39], adaptive arithmetic coding [40], and PAQ [41]
have all been successfully used in PDE-based compression [5]. So far, the
primary task of these encoders has been to encode the known pixel values.
Pixel locations that are represented by a binary tree have only very little
potential for further lossless compression. Scheer [42] has shown that even
with considerable effort, reductions of the file size are small.
Schmaltz et al. [5] have already conducted an extensive evaluation of the
aforementioned entropy coders. They have concluded that arithmetic cod-
ing and PAQ offer the best compression results. PAQ is a highly evolved
version of prediction by partial matching: It compresses a binary stream by
predicting with a very high accuracy if the next bit is a 0 or a 1. To this
end, it relies on a large number of complex context models that track how
often certain patterns occur in the file. All of these context models are then
mixed in a neural network that adapts to the local content of a file during
encoding. Such context mixing allows to compress files with varying content
very efficiently. The adaptation of context weights is performed by a gradient
descent on the coding cost that is computed after a bit is encoded: At this
point it becomes clear if the prediction was right or wrong.
In our setting, PAQ appears to be particularly interesting due to its ability
to adapt to the local content of a file. If we want to store pixel-accurate
locations, this comes down to storing a binary image in addition to the
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sequence of grey values. In contrast to the tree representation in R-EED,
such a binary image contains much more redundancy. Therefore, PAQ can
be directly applied as an efficient container format for both positional and
brightness data.

3.2 Storing Binary Images

We have tried many different methods that are specialised on the encoding
of sparse, binary patterns. In the following we give a short overview of these
methods. First, there are off-the-shelf codecs that specialise in binary images.

JBIG uses lossless compression by prediction and arithmetic coding [43].
It considers a fixed configuration of image points that optionally also
includes a single pixel with variable position as a context. Depending
on the frequency of occurrence of black or white pixels in this context,
it predicts the colour of the next pixel. Arithmetic coding is the most
efficient entropy coder supported by JBIG.

JBIG2 extends the ideas of JBIG by introducing pattern matching and
dictionary approaches [44]. It is specifically tailored to text and half-
tone images. To this end, it creates a dictionary of repetitive patterns
that occur frequently in the image. This dictionary is then used for
efficient lossless or lossy compression. For the storage of patterns that
do not fit the dictionary, JBIG2 falls back to JBIG encoding.

DjVu is a collection of different compression algorithms that work in tan-
dem [45]: For encoding of mixed content (e.g. images and text), it
decomposes images in a binary image foreground and a grey- or colour-
valued background part. It compresses the background with wavelet-
based compression (IW44 codec) and the foreground with an encoder
called JB2. JB2 is a modified version of JBIG2 that relies on the same
core concepts.

In PDE-based compression, the aforementioned codecs have been already
compared in the context of cartoon compression [26]. Nevertheless, we per-
form a new evaluation for our compression framework in Section 4, since the
nature of our binary images is different. Mainberger et al. [26] compress edge
images that feature a lot of connected lines while our optimised masks consist
mainly of scattered individual pixels (see e.g. Fig. 2). For the same reason,
we also consider different approaches for storing binary images, namely block
coding schemes [46–49] and coordinate coding [48]. While we have tried all
of the aforementioned approaches, our experiments in Section 4.1 show that
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Stored Edges Stored Exact Mask

Figure 2: Examples of edges stored in semantic approaches (left, courtesy
of Mainberger et al. [26]) and exact masks (right) for the test image trui.
Since the edge-image contains a lot more connected components and is well-
structured, efficient encoding with JBIG is possible. In contrast, the scat-
tered data in the exact mask is more challenging to compress.

ZA Block Coding by Zeng and Ahmed [46] is the best choice for our specific
context. This algorithm is specifically designed for sparse binary patterns:
It transforms the image into a sequence of binary values by traversing the
image row by row. This sequence is then divided into blocks of length b.
During encoding, it separates each block by a 0-bit and encodes the relative
position of each 1 in the block. The number of bits necessary to encode these
positions is given by the block length. Furthermore, each stored coordinate
has a leading 1-bit such that the end of block can be detected.

3.3 Quantisation

In addition to the positions of the inpainting mask, we also need to store
the pixel values. An important tool for lossy compression of images is the
reduction of brightness or colour values from a real-valued domain to a small
number of integer values, the so-called quantisation. Since we deal with
discrete, digital input images, the grey values of the ground truth are usually
already quantised. In the following, we assume input images with 8bit grey
value depth. Thus, there are initially 28 = 256 grey values (0, ..., 255).
Reducing the number of grey values to some q ∈ N, q < 256 is one of
the easiest ways to reduce the file size. It has the added benefit that the
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human visual system can only distinguish a limited amount of grey values.
Therefore, quantisation can be used for perceptive coding.
In this paper we perform only uniform quantisation. In order to reduce the
initial number of p ∈ N grey values to a coarser quantisation with only q < n
values, we partition the grey value domain in q subintervals of length p/q.
This defines a quantisation mapping of the original range Gp = {0, . . . , p −
1} to the new grey value range Gq = {0, . . . , q − 1}: Every value from a
given subinterval is mapped to the same grey value from Gq. Obviously, this
mapping is lossy. A transformation of a value x ∈ Gq back to the original
dynamic range yields a reconstruction value y from the original range Gp

according to

y :=

⌊
xp

q
+

1

2

⌋
. (11)

Nevertheless, this backtransformation only yields q different values from Gn.
Since this introduces an error to the known data, it is a lossy preprocessing
step to the lossless entropy coding. In a PDE-based setting, the benefits
of tonal optimisation can be diminished, if such a quantisation is applied
afterwards. Therefore, in Section 4, we perform tonal optimisation under the
constraint of the coarse quantisation.
Note that quantisation has a long tradition in signal processing and many
more sophisticated quantisation techniques exist. Non-uniform quantisation
allows to distribute quantised values over the full range of original values
in such a way that a given error criterion is minimised. These ideas have
already been pursued since the dawn of information theory (see e.g. Max
[50], Lloyd [51]). For image compression, virtually all lossy methods apply
some kind of quantisation. For example, JPEG and JPEG2000 quantise
transform coefficients in a non-uniform way. In the case of colour images,
one can even consider to quantise vectorial values directly. The drawback
of these more complex methods is the need for additional optimisation and
potential overhead, since the details of the non-uniform quantisation are
needed for decompression. Gersho and Gray [52] provide a detailed overview
of both scalar and vector quantisation.

13



4 Evaluating Inpainting Operators

for Compression

Our goal is to evaluate three different diffusion-based inpainting operators
with respect to their viability in compression: homogeneous, biharmonic, and
edge-enhancing anisotropic inpainting. In particular, we are also interested
in how the optimisation methods from Section 2 and the compression steps
from Section 3 affect each operator.
Therefore, to assess the true potential of these operators, we have to design
codecs that allow them to show their potential in a comparable setting. Note
that the compression frameworks which we propose below work in a discrete
setting. To this end, we consider the finite difference approximations of
the inpainting equation in the same way as Mainberger et al. [2] for linear
diffusion and use the standard discretisation for EED as in the R-EED codec
[5] .
We propose two different codecs depending on their selection and representa-
tion of known data: First we select exact (pixel-accurate) masks with optimal
control schemes and stochastic sparsification in Section 4.1. Then we restrict
ourselves to locally adaptive grids with an efficient tree representation in
Section 4.2.

4.1 Exact Masks with Optimal Control

In the previous sections we have established all building blocks that are
necessary to build a codec based on high quality, pixel-accurate masks. In
particular, we discuss in the following, how we can store these masks effi-
ciently.
We want our codec to have the following general structure: First, we find
an optimal mask that contains a certain percentage of image points. This
mask density acts as a quality parameter in the range 1 to 100, as in JPEG.
We find this optimal mask by the algorithms from Section 2.1: For linear
diffusion we use optimal control [3, 4] and for EED we employ stochastic
sparsification with nonlocal pixel exchange [2]. This yields a binary image
that needs to be stored. Furthermore, we have to decide how to integrate
tonal optimisation and quantisation into our codec.
Storing Mask Locations. In order to store the binary image containing
the locations of optimal known data efficiently, we have conducted a detailed
evaluation of the compression techniques from Section 3.2. We found that
block coding schemes [46–49] and coordinate coding [48] are outperformed
significantly by encoders for binary images such as JBIG [43], JBIG2 [44]
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Figure 3: Encoding of exact masks. Comparison of different compres-
sion methods for exact masks obtained with an optimal control scheme for
homogeneous inpainting of the image peppers.

and DjVu [45]. However, they are viable as preprocessing steps for entropy
coders such as PAQ [41].
Fig. 3 shows compression experiments conducted on exact masks of different
density. They were obtained with an optimal control scheme for homogeneous
diffusion on the test image peppers. On first glance, the results are surprising:
JBIG2 performs consistently worse than its predecessor JBIG, even though it
features a more sophisticated pattern matching approach. However, one has
to keep in mind that JBIG2 is designed for repeating patterns that occur for
example in text from a scanned document. In contrast, our masks contain a
lot of scattered points that make the creation of a dictionary with repeating
patterns difficult.
Similarly, JBIG and DjVu are primarily designed for text documents and
natural binary images that contain a lot of connectivity and regular patterns.
This explains why the simple block coding scheme by Zeng and Ahmed [46]
in combination with PAQ is the best choice. It reduces the file size by up to
10% in comparison to JBIG and DjVu depending on the mask density.

Storing and Optimising Grey Values. In order to store the grey value
data associated with the mask efficiently, we have to choose the number q of
quantised grey values. As mentioned in Section 3.3, performing such a coarse
quantisation after tonal optimisation can affect the results negatively. The
grey value optimisation algorithm from R-EED already considers the restric-
tion to a set of coarse grey values. However, the least squares approaches for
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Input: Original image f , admissible set of quantised grey values Q := {q1, ..., qn},
inpainting mask c.

Initialisation: u := r (c,f) and g := f .

Compute:
For all i ∈ K:

Compute the inpainting echo bi.

Do

For all i ∈ K:

1. Compute the correction term α :=
b>i (f−u)

|bi|2
.

2. Set uold := u.

3. Update the grey value gi := gi + α.

4. Apply coarse quantisation: g′i := argminq∈Q |gi − q|
5. Update reconstruction u := u + α′ · bi with α′ = g′i − ui.

while |MSE(u,f)−MSE(uold,f)| > ε.

Output: Optimised quantised grey values g.

Algorithm 1: Quantisation-aware grey value optimisation.

linear diffusion do not respect this constraint.
As a remedy, we propose quantisation-aware grey value optimisation in Algo-
rithm 1. We can express the inpainting solution of the harmonic and bihar-
monic operator by a superposition of the inpainting echoes [2] from Section
2.2. For a given mask c and corresponding grey values f , we denote the as-
sociated inpainting result from Section 2 as r(c,f) . During optimisation, a
Gauss-Seidel scheme successively updates the grey values at mask positions
one by one. The crucial difference to the tonal optimisation algorithm of
Mainberger et al. [2] is that we directly quantise the grey values after every
update. Note that the most time-consuming part is the computation of the
inpainting echoes. However, since the inpainting mask remains constant, the
echoes can be reused for arbitrary quantisation parameters q. Therefore, we
are able to optimise q thoroughly and efficiently for the linear operators. For
EED, this is more costly.
The choice of q influences the overall file size, since the entropy coding of
the grey values becomes more efficient for smaller numbers of different grey
values. Therefore, decreasing the parameter q also reduces the file size in
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general. Simultaneously, the error increases, since the optimised grey values
are misrepresented. This negative affect can be somewhat attenuated by the
quantisation aware grey value optimisation, but is still present.
Consequently, for a given mask, a suitable parameter q must be found that
offers the best trade-off between file size and reconstruction quality. This
means that both the inpainting error and the file size have to be minimised
simultaneously. For a given quantisation parameter q ∈ {0, ..., 255}, let
s : {0, ..., 255} → N be the file size in byte and e : {0, ..., 255} → R the
corresponding mean square error. By normalising both quantities to the
range [0, 1] and combining them additively, we define the trade-off coefficient
µ as

µ :=
s(q)

s(255)
+

e(q)

e(255)
. (12)

The smaller this coefficient, the better the trade-off for a given q. Our goal is
to find the best q for a given mask. To this end, we minimise µ with respect
to q in combination with quantisation-aware grey value optimisation. This
implies a three-step codec for exact masks:

1. Select a fraction d of total pixels with the optimal control approach [3]
(harmonic/biharmonic) or stochastic sparsification [2] (EED).

2. Perform quantisation-aware grey value optimisation and select the quan-
tisation parameter q with optimal trade-off between file-size and recon-
struction quality.

3. Optimise block size for optimal compression with PAQ. Concatenate
header, positional, and grey value data and apply PAQ to the total file.

The reconstruction is straightforward. All the entropy-coded data is recov-
ered and a single inpainting reconstructs the image.

4.2 Stochastic Tree-Building

In this section, we pursue an approach that restricts known data to a regular
adaptive grid. In order to lower the coding cost of these locations, we use the
binary subdivision tree representation from Section 2.1. Unfortunately, there
is no straightforward extension of the optimal control approaches for exact
masks from the previous section. Moreover, only the heuristic subdivision
scheme from R-EED [5] has been used so far to obtain tree-based masks. For
a fair comparison, we want to stay as close to the exact codec as possible with
respect to the optimisation strategies. Therefore, we extend the stochastic
approach of Mainberger et al. [2] to subdivision trees in the following.
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Input: Original image f , fraction m of tree nodes used as candidates for den-
sification, fraction n of candidate nodes that are added in each iteration,
desired final mask density d.

Initialisation: Splitting tree T containing only the root node t0. Initial leaf node
set L := {t1, t2} containing child nodes of t0.

Compute:
Do

1. Compute reconstruction u from mask C(T ) and image data f .

2. Choose randomly a candidate set A ⊂ L containing m · |L| nodes.

3. For all ti ∈ A compute the subimage error e(ti).

4. Add a subset of n · |A| candidate nodes ti with the largest errors e(ti)
to the tree T .

5. Update L to contain all children of leaf nodes from T .

while |C(T )| < d · |Ω|.

Output: Tree T with corresponding mask C(T ) of density d.

Algorithm 2: Stochastic tree densification.

If we want to transfer the basic concepts of stochastic sparsification from
Section 2.1 to a binary tree representation, there are some key differences:
We have experimentally determined that densification is more efficient for
tree structures than sparsification. Therefore, we start with a small amount
of data and iteratively add more points at locations with large error until the
target density is reached.
In addition, we consider to add nodes to the tree instead of dealing with mask
points directly. Since we want to perform a single additional subdivision, the
tree structure tells us that only subimages corresponding to leaf nodes may
be split. Such a split is equivalent to adding two child nodes to the leaf
node (see Fig. 1). Note that several mask points might be added by a single
subdivision (the corners and the midpoint of the corresponding subimage).
These mask points might also be contained in several of the neighbouring
subimages.
Furthermore, the error computation must be adapted. In order to avoid a
distortion of the influence of each node, we do not consider the mean square
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Input: Original image f , binary tree T , parameters n < m.

Compute: Repeat

1. Create a backup copy Told of the splitting tree T .

2. Compute reconstruction uold from mask C(Told) and image data f .

3. Remove the children of n randomly chosen terminal nodes from T .

4. Randomly select a set A containing m leaf nodes from T .

5. For all ti ∈ A compute the subimage error e(ti).

6. Add the children of the n nodes with the largest error e(ti) to T .

7. Compute reconstruction u from mask C(T ) and image data f .

8. If MSE(u,f) > MSE(uold,f)

Reset changes, i.e. T = Told.

until number of maximum iterations is reached.

Output: Optimised tree T .

Algorithm 3: Nonlocal node exchange.

error in each subimage, but the sum e(tk) of unnormalised squared differences

e(tk) =
∑

(i,j)∈Ωk

(fi,j − ui,j)2 (13)

where Ωk denotes the image domain of the subimage corresponding to the tree
node tk. Without this unnormalised error measure, the same per-pixel-error
in small subimages would be weighted higher than in large subimages. Taking
all these differences into account, we define stochastic tree densification in
Algorithm 2. For a target density d, it produces an optimised tree T with a
corresponding pixel mask C(T ) ⊂ Ω.
Just as for the original sparsification approach, there is a risk that Algorithm
2 is trapped in a local minimum. To avoid this problem, we propose Algo-
rithm 3, an adapted version of the nonlocal pixel exchange of Mainberger
et al. [2] that we have described in Section 2: They first remove random
points from the inpainting mask. Then they replace them with potentially
better non-mask pixels.
In the following we transfer this concept to our subdivision trees. Most
importantly, we have to respect the tree structure in order to define a nonlocal
node exchange. In the first step, we want to remove n randomly selected
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BA AB

exchange terminal node A with leaf node B

Figure 4: Nonlocal Node Exchange. This Figure visualises the concept
of exchanging terminal and leaf nodes. Terminal nodes are not split any
further, which means that both of their children are leaf nodes. Leaf nodes
are marked as blue rectangles, terminal nodes as orange triangles. A single
exchange corresponds to reversing the split of a terminal node and splitting
a leaf node instead. In our example, we exchange the position of the leaf
node A and the terminal node B.

nodes from the tree. However, this set underlies some restrictions: It can
only consist of nodes that are split exactly once. This is the case if and only
if both children of a node are leaf nodes. We call these nodes terminal nodes.
The reversion of their associated image split comes down to removing their
leaf nodes. Thereby, we convert the terminal node to a leaf node.
In the second step of the nonlocal node exchange, we want to add back
nodes to the tree. First, we select a candidate set of m leaf nodes. From
these candidates, we select the n nodes that correspond to the subimages
with the highest reconstruction error w.r.t. the initial mask. We split these
subimages by adding both children to the tree, thus converting leaf nodes
into terminal nodes.
These modifications lead to Algorithm 3. The example in Fig. 4 illustrates
that the modifications applied to the tree by our algorithm can be interpreted
as swapping the positions of pairs consisting of a leaf node and a terminal
node.
Finally, the binary trees obtained from the densification and nonlocal node
exchange can be stored as a sequence of bits. As in the example from Fig. 1,
we store a maximum and minimum tree depth and only save the node-
structure explicitly inbetween. The only additional required header data are
the image size and the number q of quantised grey values. We combine the
tree densification with the same strategies for grey-value optimisation and
quantisation as in the previous section and obtain the following four-step
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compression pipeline:

1. Select a fraction d of total pixels with tree densification (Algorithm 2).

2. Optimise the splitting tree with nonlocal node exchange (Algorithm 3).

3. Perform grey value optimisation and optimise the quantisation param-
eter w.r.t. the trade-off between file size and reconstruction quality.

4. Concatenate header, positional, and grey value data and apply PAQ.

For reconstruction, we decode the PAQ container, extract positional data
from the tree, combine it with the grey values and perform a single inpainting.

5 Experiments

In the following we evaluate the capabilities of harmonic, biharmonic, and
EED inpainting for the two compression methods from the previous sections.
Our experiments rely on a set of widely used test images. First, we evaluate
the sensitivity of the individual operators under different optimisation and
compression steps. Then we compare their overall performance to R-EED,
which marks the current state of the art in PDE-based compression, and to
the transform-based coders JPEG and JPEG2000.

Influence of Data Selection Strategies. In Fig. 6 we compare inpaint-
ing results with three different masks that contain 5% known data of the
256 × 256 image peppers : A random mask containing the same uniformly
distributed locations for all three algorithms, an exact mask obtained with
optimal control or stochastic sparsification, and a restricted mask from tree
sparsification (see Fig. 5). The optimised masks are different for each in-
painting operator and we do not apply coarse quantisation. For all three
methods we have performed tonal optimisation.
EED shows to be far less sensitive to the restriction to an adaptive grid and
provides the overall best reconstruction quality for all cases. Biharmonic in-
painting performs better than harmonic inpainting in general and also less
sensitive to tree-based known data. Also, the results with biharmonic in-
painting are more visually pleasing in general: The smoothness constraints
of the biharmonic operator avoid the typical singularities that occur at known
data for harmonic inpainting. Hoffmann et al. [53] have explained this phe-
nomenon in terms of Green’s functions. These singularities are particularly
obvious in Fig. 6 (a), the harmonic inpainting with random known data.
EED also avoids these singularities and is able to produce the best result
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consistently. Especially its robust performance on the suboptimal tree-based
grid is remarkable. However, it should also be noted that for exact masks, the
difference between the three diffusion models is small and would not justify
to use the complex nonlinear model instead of the efficient linear ones.

Influence of Mask Density. In order to asses the influence of the mask
density on the inpainting results, we optimise exact and restricted masks with
different densities, perform grey-value optimisation and compare the mean
square error (MSE) at the same mask density. The results in Fig. 7 (a) show
that, in general, biharmonic performs better than harmonic inpainting given
the same amount of known data. This is consistent with previous results [4].
EED can outperform both methods, but the difference is only significant for
low densities. Note, however, that sparse masks are exactly the requirement
for efficient compression. The graph also shows again that the restriction of
the mask to an adaptive grid has a significant negative impact on the quality.
This affects harmonic inpainting more than its biharmonic counterpart and
EED.

Influence of Quantisation. The most interesting and surprising results
come from a comparison w.r.t. the influence of quantisation. In Fig. 8 we
compare results with exact masks and grey value optimisation. This time, we
apply a coarse quantisation to 64, 32, and 16 individual grey values. Inter-
estingly, the grey value optimisation is able to compensate for this negative
effect very well in the case of harmonic diffusion and EED: The increase of
the error is almost negligible compared to the results without quantisation
from Fig. 6. However, the higher-order biharmonic inpainting suffers a lot
more. As we will see in the following, this affects compression performance
significantly.

Compression Performance. An evaluation of the actual compression per-
formance with the codecs from Sections 4.1 and 4.2 in Fig. 7(b) shows a
significantly different ranking than in the density comparison. For exact
masks, harmonic inpainting can even surpass its biharmonic counterpart.
The coding cost for the known data is similar in both cases, but since har-
monic inpainting is less sensitive to a coarse quantisation of the grey values,
it performs overall better than biharmonic inpainting. The drawbacks of
the restrictions in the tree-based approach are attenuated by the reduced
positional coding cost. After a break-even point around ratio 20:1, the bi-
harmonic tree-based method outperforms both exact approaches. Since EED
does not have distinct advantages at high mask densities, it does not out-
perform the linear methods at low compression rates. At high compression
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harmonic bi-harmonic EED
random

exact

tree

Figure 5: Optimal Inpainting Masks for Different PDEs. All masks
contain 5% of the total image points of the test image peppers. The locations
of known data are marked in black. (a) Top row: The same uniformly
distributed random mask is used for all three diffusion types. (b) Middle
row: For the harmonic mask, points are stored left and right of edges. In
the biharmonic case, the structure remains similar, but points either spread
out more or cluster closer together to store a whole region verbatim. The
EED mask is spread out much more. (c) Bottom row: The masks from
tree densification with nonlocal node exchange follow a similar pattern like
the exact ones. However, the differences between the choice of locations is
less pronounced than in the exact case due to the reduced number of possible
choices.
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harmonic bi-harmonic EED
random

MSE 124.03 MSE 76.84 MSE 67.24

exact

MSE 17.72 MSE 16.85 MSE 15.65

tree

MSE 45.49 MSE 34.07 MSE 28.87

Figure 6: Influence of Data Selection Strategies on Inpainting. Re-
construction from the 5% masks from Fig. 5 with different inpainting oper-
ators. (a) Top row: Both biharmonic and EED perform much better than
harmonic on random data. This already indicates their higher robustness
to suboptimal known locations. Moreover, harmonic suffers from severe sin-
gularities. (b) Middle row: The difference between the three inpainting
operators is much less pronounced for optimal spatial and tonal data. The
singularities are still there for harmonic inpainting, but they are hardly visi-
ble in print. (c) Bottom row: Harmonic inpainting suffers the most from
the restriction to a locally adaptive grid. Biharmonic and EED lose less
quality compared to optimal locations.
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Figure 7: Comparisons for the 256 × 256 image peppers. The top row com-
pares harmonic and biharmonic versions of our codecs, and the bottom row
compares our best methods to transform coders and R-EED. (a) Top Left:
Comparison at same mask density. (b) Top Right: Comparison at same
compression ratio. (c) Bottom Left: Low to medium compression ratios.
(d) Bottom Right: High compression ratios.

rates however, its robustness under both restricted locations and coarsely
quantised grey values allow it to outperform its competitors.

Comparison to Other Encoders. In relation to transform-based coders,
the tree-based method performs consistently better than JPEG and in many
cases also outperforms JPEG2000 for compression rates larger than 35:1.
Surprisingly, for very high compression rates, the heuristic approach of R-
EED outperforms the more sophisticated stochastic tree densification with
EED. While this seems counter-intuitive at first glance, there is a simple
explanation: R-EED treats entropy coding and quantisation in a different
fashion. Our method first selects a single tree and then optimises q for the
best trade-off between file size and reconstruction quality. In contrast, R-
EED defines a target compression ratio first and then builds a lot of different
trees that fit to this ratio. Thus, it already incorporates coding costs into
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harmonic bi-harmonic EED
exact, q = 64

MSE 18.00 MSE 18.30 MSE 15.91

exact, q = 32

MSE 18.70 MSE 21.06 MSE 16.96

exact, q = 16

MSE 21.44 MSE 32.00 MSE 21.02

Figure 8: Influence of Quantisation on Inpainting. Reconstruction from
the exact 5% masks from Fig. 5 with different inpainting operators. For all
results, we have performed quantisation-aware grey value optimisation with
64, 32, and 16 different grey values. Reducing the number of grey values from
256 to 64 does not change the quality dramatically for all diffusion methods.
However, the ranking of harmonic and biharmonic inpainting has already
changed compared to Fig. 6. Reducing the parameter q even further reveals
that harmonic and EED inpainting are much less sensitive to quantisation
than biharmonic interpolation.
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JPEG JPEG2000 R-EED Exact Homogeneous

MSE 13.64 MSE 10.42 MSE 11.74 MSE 9.74

MSE 37.72 MSE 33.83 MSE 34.41 MSE 33.58

Figure 9: Compression results for peppers and elaine. (a) Top: Results
for peppers (256 × 256 pixels) with compression ratio ≈ 8:1. (b) Bottom:
Results for elaine (512× 512 pixels) with compression ratio ≈ 18 : 1.

the selection of known data, not afterwards. At low compression ratios, this
does not have a high impact, but it makes a difference for very small files.
In comparison to other PDE-based methods, linear diffusion performs best in
the area of low to medium compression rates (up to 15:1). Fig. 7 and Fig. 9
show that it can beat both R-EED and JPEG2000. On smooth images like
peppers, harmonic diffusion with exact masks even outperforms JPEG2000.
This demonstrates how powerful simple PDEs can be.
In Table 1, we allow both edge-enhancing anisotropic diffusion with proba-
bilistic tree densification and exact harmonic masks obtained with optimal
control. On low compression rates, all of our results outperform or match R-
EED and are highly competitive to JPEG2000. Regarding high compression
rates, the performance is comparable to R-EED. However, the more efficient
integration of the entropy coder into the choice of mask points gives R-EED
still a slight edge.
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Table 1: MSE comparison on several test images. For the compression rate
of 15:1 we use exact masks with homogeneous inpainting for elaine and lena.
The rest of the error values for our method are obtained with tree-based
EED.
Ratio ≈ 15 : 1 ≈ 60 : 1

Image elaine lena trui walter elaine lena trui walter

JPEG 34.69 20.06 16.24 6.73 77.39 97.37 116.98 69.40

JPEG2000 31.23 14.73 12.27 5.70 54.18 60.48 88.96 47.09

R-EED 35.48 16.56 11.27 5.48 49.87 56.96 44.38 24.05

Our Method 31.38 17.00 10.48 4.53 54.83 53.56 47.42 21.74

6 Conclusion

The investigation of the interplay between diffusion-based inpainting and
different compression steps in this paper has both practical implications and
provides general insights into codec design.
On the practical side, we have shown that codecs with parameter-free linear
inpainting PDEs can beat both the quasi standard JPEG2000 of transform-
based compression and the state of the art in PDE-based compression. This
is an indication that simple and fast PDEs have a lot of potential that has not
been fully used to this point. In particular, they might be integral for the de-
sign of synchronous compression codecs that are fast in both compression and
decompression. However, the selection of known data still hinders this goal:
Optimal control and stochastic sparsification have not yet reached real-time
performance, but linear diffusion needs thorough optimisation to produce
competitive quality. Therefore, future research should focus on faster mask
selection algorithms.
A valuable general insight gained from our evaluation concerns the compar-
ison of inpainting operators: The performance of PDEs for compression can
only be evaluated in the context of actual codecs. Comparisons that do not
consider all compression steps can lead to false rankings of inpainting oper-
ators that do not reflect their real compression capabilities. In particular,
the sensitivity of the biharmonic operator to coarsely quantised known data
makes the simpler harmonic diffusion the preferable choice for compression.
If mask positions are suboptimal, but cheap to store, EED performs best.
Note, however, that we have only covered optimisation-driven compression
approaches with our paper. In the future we would like to investigate the po-
tential of semantic approaches that combine segmentation or edge detection
with diffusion. So far, these approaches have only been used in specialised
applications such as depth map compression.
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