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Composition factors of symmetric powers of
the tautological representation of GL(2,Fq)

Enrico Varela Roldán

Abstract

In this paper we study a submodule filtration for symmetric powers
of the tautological representation V of GL(2,Fq). Adapting results
from Bardoe and Sin, we describe the properties of the successive
quotients in detail.

In particular, this allows for an algorithm that determines the mul-
tiplicities of the composition factors for arbitrary symmetric powers
of V .

The results for the present situation are applicable in future work
on Drinfeld modular forms of level T .

Keywords: GL(2,Fq), modular representations, symmetric powers
MSC 2010: primary 20C33, secondary 20C20, 20G40, 11E57

0 Introduction

Modular representation theory differs fundamentally from representation the-
ory over the complex numbers. In finite characteristic many classical results
or techniques do not apply; the most obvious example being the question of
semi-simplicity.
In the present paper we study representations of G := GL(2,Fq) over the
field Fq. (We make no difference between representations and G-modules,
i.e., Fq-vector spaces with a structure as (left-)modules for the group algebra
Fq[G].)
The fundamental building blocks for representation theory in this setting
have been described explicitly in prior work, for example by Bonnafé [Bon11]
or Wack [Wac96]. In particular, we have explicit descriptions of the simple
G-modules as well as the projective indecomposable G-modules.
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On the other hand, even the theory of symmetric powers of the tautological
G-module V has not yet been fully developed. Some initial results can be
found in [BS00] and play an important role in the present paper.
Related, but slightly different settings have been studied for example by Doty
[Dot85] and Rust [Rus95]. Doty studies the representation theory of the
algebraic group GL(n,Fq) while Rust studies certain arithmetically defined
representations of G in characteristic 0. Neither of these theories can be
directly applied to the situation at hand, however.
The aim of the present paper is to determine the composition factors of ar-
bitrary symmetric powers of V . The key to our approach is the construction
of a specific G-module filtration for symmetric powers. Together with re-
sults by Bardoe and Sin, this filtration allows for a systematic counting of
composition factors.
The present paper summarizes parts of the author’s dissertation [Var15],
in particular chapters 5, 6, 10, and 11. The algorithms provided in the
dissertation have been translated into the language of symmetric powers for
the present work.
The principal results of this paper are Theorem 3.6, which describes the
filtration in question and identifies its successive quotients, Theorem 3.7,
which states a sufficient condition for the largest non-trivial submodule in
the filtration to be non-split, Theorem 4.6, in which the composition factors of
a reoccurring building block are described in detail, and Algorithms 4.13 and
4.14, which together determine explicitly the multiplicities of the composition
factors of symmetric powers of V .
It is worth mentioning that our results have many interesting applications
for the representation theory of Drinfeld modular forms of level T , since the
latter theory heavily involves symmetric powers of V .
In the first section of the present paper, we gather the necessary basic con-
cepts from representation theory without any claim to completeness.
The second section introduces a class of G-modules that has previously been
studied in great detail by Bardoe and Sin. We adapt these results to the
situation at hand.
In the third section, we study symmetric powers of V . In particular, we
describe a special submodule that in turn allows us to construct a submodule
filtration with desirable properties.
In the final section, we use this filtration to count multiplicities of composition
factors of symmetric powers.
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1 Preliminaries

This section provides a brief outline of the necessary basic concepts of mod-
ular representation theory. Our aim is not to give an exhaustive overview
but to fix the language that we are going to use in the present paper.
As a general reference to modular representation theory see, for example,
[Alp86], [Ben91], or [Fei82]. With regard to the situation for the group
GL(2,Fq), we refer to Bonnafé [Bon11] and Wack [Wac96].
Consider first the following, closely related concepts:

1.1 Definition. Let K be a field and M a K-vector space. Further let G be
a group.

1. A group homomorphism ρ : G → AutK(M) is called a representation
of G on M . The space M is called the representation space of ρ. The
dimension of M is called the dimension of the representation ρ.

One-dimensional representations are also called characters of G.

2. If M is equipped with a structure as a module for the group algebra
K[G], we call M a G-module. We also say G acts on M .

Remark. Here and in the following, all modules are left-modules and all group
actions are actions from the left.
For a fixed group G we will use the terms representation and G-module
interchangeably. In particular, we call a vector space itself a representation
if the action by G is uniquely determined from the context.

Direct sums and tensor products of representations are defined in the natural
way and follow the usual conventions.

1.2 Definition. Let M and N be G-modules. A linear map ϕ : M → N is
called G-equivariant or a G-homomorphism if it satisfies

ϕ(gx) = gϕ(x)

for all g ∈ G, x ∈ M .

For the rest of this paper we fix the following situation:

1.3 Notation. For a prime p let Fq be the field with q = pr elements. Further
let

G = GL(2,Fq).

We are going to study exclusively representations of G over the algebraic
closure Fq of Fq.
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Remark. Concerning applications of this paper’s results, it should be noted
that one may replace Fq by the field C∞ encountered in the Drinfeld set-
ting (with notation as in [Var16]; for the concept in general see for example
[Gek86]) because of the canonical isomorphism

Fq[G] ⊗
Fq

C∞

∼=−→ C∞[G].

1.4 Proposition. The group G is generated by the elements
(

a 0
0 1

)
,

(
1 t
0 1

)
,

(
0 1
1 0

)
,

where a and t pass through F×
q .

Remark. When we speak of the generators of G we always refer to the ma-
trices described in the above proposition. Furthermore, whenever a matrix
of type ( a 0

0 1 ) occurs in a formula, it is implied that a ∈ F×
q is arbitrary

(analogously for ( 1 t
0 1 )).

Through Maschke’s theorem (for example [Alp86, I, 3, Theorem 1]) we know
that the group algebra Fq[G] is not semi-simple, since char(Fq) divides the
order of G. Thus, the specific representation theory that we encounter here
is fundamentally different from the classical representation theory over the
complex numbers.
For instance, the most immediate difference is that not every module can be
written as a direct sum of simple modules. Instead, we study composition
series of G-modules (see for example [Ben91, Section 1.1]). Here the simple
modules occur as composition factors.
Next, we are going to outline two methods by which a representation can be
modified to obtain new representations:

1.5 Definition. Let M be a G-module. We call a module of shape

M ⊗ (det)σ, σ ∈ Z,

a determinant twist of M . Here, (det)σ is the σ-th power of the determinant
character and depends only on σ mod q − 1.

1.6 Definition. Let M be a G-module and let θj : Fq → Fq, x 7→ xpj

,
0 ≤ j ≤ r − 1, be a power of the Frobenius automorphism. We equip the
space M with a new group action by defining

(
a b
c d

)
·

θj
x :=

(
apj

bpj

cpj

dpj

)
x for all x ∈ M.

We denote the resulting module structure by M θj

and call it a Frobenius
twist of M .
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1.7 Notation. From now on, let V denote the tautological two-dimensional

representation of G. That is, as a vector space V = F
2

q and G acts from the
left by matrix multiplication. We write (X, Y ) for the standard basis of V .
For a non-negative integer n let Symn(V ) be the n-th symmetric power of
V . If we consider the basis (Xn−iY i | 0 ≤ i ≤ n) of Symn(V ), the action of
a matrix ( a b

c d ) ∈ G is given by

(
a b
c d

)
Xn−iY i = (aX + cY )n−i(bX + dY )i.

The theory of symmetric powers of V is closely connected to the description
of the simple G-modules. The latter have been described by Steinberg in a
more general setting [Ste67]. However, for applications in this paper we are
going to use the following classification, which follows Bonnafé [Bon11] and
Wack [Wac96].

1.8 Notation. Let 0 ≤ s ≤ q − 1 have the p-adic expansion s =
∑r−1

i=0 sip
i,

0 ≤ si ≤ p − 1. The G-module S(s) is defined by

S(s) :=
r−1⊗

i=0

(Symsi(V ))θi

.

For σ ∈ Z let
S(s, σ) := S(s) ⊗ (det)σ.

1.9 Theorem. A complete system of representatives of the isomorphism
classes of simple G-modules is given by the modules S(s, σ) with 0 ≤ s ≤ q−1
and σ ∈ Z/(q − 1)Z.

Proof. The corresponding result for the group SL(2,Fq) is proven for exam-
ple in [Bon11, Theorem 10.1.8] or [Wac96, Korollar 3.11]. The step from
the special linear group to the general linear group is explained in [Wac96,
Section 3.3].

Remark. In contrast to the situation in characteristic 0, the symmetric powers
of the tautological representation are in general not simple G-modules. This
is due to the vanishing of certain binomial coefficients modulo p.
In fact, the module S(n) is the unique simple submodule of Symn(V ) (for
SL(2,Fq) this is also stated in [Bon11, Theorem 10.1.8], which implies the
corresponding result for G).
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2 The modules N [δ]

Next, we are going to study a special class of G-modules. With help from
results by Bardoe and Sin [BS00], the structure of these modules can be
described in detail. Our focus on the two-dimensional case allows us to state
their results in a more explicit way. At the same time, we adjust and expand
their notation to make the presentation of the results more suitable to our
desired applications.

2.1 Notation. Let B ≤ G be the standard Borel subgroup of upper trian-
gular matrices. For 1 ≤ δ ≤ q − 1 define the induced G-module N [δ] :=
IndG

B(χδ), where χδ is the character of B that acts by

χδ

(
a b
0 d

)
= dδ.

We have dim N [δ] = q + 1 for all δ.

Remark. 1. We choose the analytic implementation of the induced repre-
sentation, as described for example in [Lan02, XVIII, §7]. That is, we
define the induced representation as a space of functions G → Fq with
certain transformation properties.

2. At first glance, our implementation of the modules N [δ] differs from
the one of the modules A[d] in [BS00]. However, the relation to cer-
tain induced modules is already mentioned in Remark (3) to [BS00,
Theorem C]. One can show that

N [δ] ∼= A[δ] ⊗ (det)δ.

In fact, the main difference between the respective settings is a question
of duality. Where the authors of [BS00] base their definitions on the
dual V ∗ of the tautological representation V , we are working with the
representation V itself. While this necessitates careful attention to the
technicalities when transferring results from one setting to the other,
these differences cancel out in the end so that our version of [BS00,
Theorem C], stated in Theorem 2.17, agrees essentially verbatim with
the original (cf. [Var15, Anhang B] for a detailed examination).

3. For δ ∈ Z we define N [δ] to be the module determined by δ mod q − 1.

According to the definition of the induced representation, each function in
N [δ] is uniquely determined by its values on a set of representatives for B\G.
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Using the Bruhat decomposition of G, we fix the set of representatives

R :=

{(
1 0
0 1

)}
∪

{(
0 1
1 v

)
| v ∈ Fq

}
.

For our work with the modules N [δ] we need explicit bases.

2.2 Lemma. Let 1 ≤ δ ≤ q − 1. For u ∈ Fq denote by F (δ)
u ∈ N [δ] the

function that is determined for σ ∈ R by

F (δ)
u (σ) =





1 σ = ( 0 1
1 u )

0 σ 6= ( 0 1
1 u ) .

Further let F (δ)
∞ ∈ N [δ] be given by

F (δ)
∞ (σ) =





1 σ = ( 1 0
0 1 )

0 σ 6= ( 1 0
0 1 ) .

Then these functions comprise a basis of N [δ].

2.3 Lemma. Let 1 ≤ δ ≤ q − 1. The transformation properties of the
functions F (δ)

ν ∈ N [δ] with ν ∈ Fq ∪ {∞} under the generators of G are
determined as follows:

( a 0
0 1 ) F (δ)

u = aδF (δ)
ua , u ∈ Fq,

( a 0
0 1 ) F (δ)

∞ = F (δ)
∞ ,

( 1 t
0 1 ) F (δ)

u = F
(δ)
u−t, u ∈ Fq,

( 1 t
0 1 ) F (δ)

∞ = F (δ)
∞ ,

( 0 1
1 0 ) F (δ)

u = u−δF
(δ)
u−1 , u ∈ F×

q ,

( 0 1
1 0 ) F

(δ)
0 = F (δ)

∞ ,

( 0 1
1 0 ) F (δ)

∞ = F
(δ)
0 .

Proof. By means of a straightforward computation we see that in each case
both functions are equal on R and thus identical.

2.4 Lemma. Let 1 ≤ δ ≤ q − 1. For 0 ≤ i ≤ q − 1 put

f
(δ)
i :=

∑

u∈Fq

uiF (δ)
u

with the convention 00 = 1. Further let

f (δ)
∞ :=

∑

u∈Fq

uδF (δ)
u + F (δ)

∞ .

Then these functions form another basis of N [δ].
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2.5 Lemma. Let 1 ≤ δ ≤ q − 1. The generators of G act on the basis given
in Lemma 2.4 by:

( a 0
0 1 ) f

(δ)
i = aδ−if

(δ)
i , 0 ≤ i ≤ q − 1,

( a 0
0 1 ) f (δ)

∞ = f (δ)
∞ ,

( 1 t
0 1 ) f

(δ)
i =

i∑

j=0

(
i

j

)
ti−jf

(δ)
j , 0 ≤ i ≤ q − 1,

( 1 t
0 1 ) f (δ)

∞ =
δ−1∑

j=0

(
δ

j

)
tδ−jf

(δ)
j + f (δ)

∞ ,

( 0 1
1 0 ) f

(δ)
i = f

(δ)
δ−i, 1 ≤ i ≤ δ − 1,

( 0 1
1 0 ) f

(δ)
i = f

(δ)
q−1+δ−i, δ ≤ i ≤ q − 1,

( 0 1
1 0 ) f

(δ)
0 = f (δ)

∞ ,

( 0 1
1 0 ) f (δ)

∞ = f
(δ)
0 .

Proof. This follows from the transformation properties given in Lemma 2.3.

2.6 Proposition. Let 1 ≤ δ, δ′ ≤ q − 1. Then

dim HomG(N [δ], N [δ′]) =





1 1 ≤ δ = δ′ < q − 1

2 δ = δ′ = q − 1

0 else.

Proof. One verifies that as a B-module N [δ] has precisely two eigenvectors

(up to scaling), namely f
(δ)
0 and F (δ)

∞ . Then the statement is obtained imme-
diately by comparing the corresponding characters and applying Frobenius
reciprocity.

In order to state results from [BS00] for this class of modules, we need to
introduce the following two interrelated concepts. Both concepts and their
relation are already described in the cited paper, see for example [BS00,
Theorem C]. However, we make some adjustments with regard to the desired
applications.

2.7 Notation. Let 1 ≤ δ ≤ q − 1 with p-adic expansion δ =
∑r−1

i=0 δip
i.

1. The set P [δ] of parameters for δ consists of all tuples t = (t0, . . . , tr−1) ∈
{0, 1}r that satisfy

0 ≤ δj + tj+1p − tj ≤ 2(p − 1) for 0 ≤ j ≤ r − 1.
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Here, we understand tr = t0.

We define a partial order on P [δ] by (t′
0, . . . , t′

r−1) ≤ (t0, . . . , tr−1) if and
only if t′

j ≤ tj for all j.

2. We map each parameter t ∈ P[δ] to a unique tuple α = (α0, . . . , αr−1)
in {0, . . . , 2(p − 1)}r by defining

αj = δj + tj+1p − tj for 0 ≤ j ≤ r − 1, (1)

where tr = t0. This induces an injective map

typδ : P [δ] → T := {0, . . . , 2(p − 1)}r \ {(0, . . . , 0)}.

We write
T [δ] := typδ (P [δ]) ⊆ T

and call T [δ] the set of types for δ.

Remark. 1. In contrast to the corresponding definitions in [BS00], we al-
low the case δ = q − 1 in the above.

Another difference lies in our approach that considers different values
of δ simultaneously and thus leads to a general preference of types α

over parameters t as we will see in the following.

2. As with the modules N [δ], we also define P [δ] and T [δ] for δ ∈ Z in
the natural way.

3. The identification tr = t0 (and accordingly αr = α0) allows us to inter-
pret these tuples as sequences with index set Z and a cyclic structure.
For example, we say that tr−1 is the left neighbor of t0.

A straightforward calculation provides the following connection between a
type and the corresponding δ.

2.8 Lemma. Let 1 ≤ δ ≤ q − 1 and let t ∈ P[δ]. For α = typδ(t) ∈ T we
have

r−1∑

i=0

αip
i = δ + t0(q − 1).

2.9 Notation. We define the map

d : T → {1, . . . , q − 1}

α 7→

[
r−1∑

i=0

αip
i

]
.

Here, “[ · ]” denotes the representative modulo q − 1 in {1, . . . , q − 1}.
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Using the preceding, we obtain the following alternative description of the
types for δ.

2.10 Proposition. Let 1 ≤ δ ≤ q − 1. Then

T [δ] = {α ∈ T | d(α) = δ}.

In particular, the set T is the disjoint union of the sets T [δ] with 1 ≤ δ ≤
q − 1.

Proof. The inclusion “⊆” follows immediately from Lemma 2.8.
For the inverse inclusion the p-adic coefficients of d(α) and the unique preim-
age of α under typd(α) can be determined simultaneously by a simple algo-
rithm.
The basic idea is to cover the tuple α by sections (αm, . . . , αm+n) such that
only the entries αm and αm+n differ from p − 1. On each such segment,
equation (1) can be solved for the corresponding ti and δi, which provides
the desired solutions.
The fact that T is the disjoint union of the individual T [δ] is a direct conse-
quence of the first part of the proposition.

2.11 Notation. The parametrizing maps e, η : T → {0, . . . , q−1} are defined
by

e(α) =
r−1∑

i=0

e∗(αi)p
i with e∗(α) =





α 0 ≤ α ≤ p − 1

2(p − 1) − α p − 1 < α ≤ 2(p − 1),

and

η(α) =
r−1∑

i=0
αi>p−1

(αi − (p − 1))pi.

As usual, the empty sum is 0.

Since we can immediately read off the p-adic coefficients of images of the
parametrizing maps, we obtain:

2.12 Lemma. Let α, α
′ ∈ T such that

e(α) = e(α′) and η(α) ≡ η(α′) mod q − 1.

Then α = α
′.

A short calculation gives the following relation between the functions defined
so far:
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2.13 Lemma. Let α ∈ T and t ∈ P[d(α)] such that typd(α)(t) = α. Then

e(α) + 2η(α) = d(α) + t0(q − 1).

For the desired applications of these concepts in the final section of this
paper, we require a description of the fibers of the map e.
The preimage of a singleton {m} with 0 ≤ m ≤ q − 1 strongly depends
on the set of indices at which the p-adic coefficients of m differ from p − 1.
Therefore, we define:

2.14 Definition. Let 0 ≤ m ≤ q − 1 with p-adic expansion m =
∑r−1

j=0 mjp
j.

The dual support of m is defined to be the set

dsupp(m) = {0 ≤ j ≤ r − 1 | mj < p − 1}.

The concept of the dual support allows for the following explicit description
of the fibers of e:

2.15 Proposition. Let 0 ≤ m ≤ q − 1. For U ⊆ dsupp(m) (including the
empty set!) define the tuple

α(m, U) = (α0(m, U), . . . , αr−1(m, U)) ∈ {0, . . . , 2(p − 1)}r,

where

αj(m, U) =





2(p − 1) − mj j ∈ U

mj j 6∈ U.

Then:

1. If m is strictly greater than 0, we have

{α ∈ T | e(α) = m} = {α(m, U) | U ⊆ dsupp(m)}.

The fiber contains 2# dsupp(m) elements.

2. We get

{α ∈ T | e(α) = 0} = {α(0, U) | ∅ 6= U ⊆ {0, . . . , r − 1}}.

The fiber contains 2r − 1 elements.

In particular, we conclude that the map e is surjective.
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Proof. According to the definition of e, we have to find all α ∈ T such that

e∗(αj) = mj for all 0 ≤ j ≤ r − 1.

In case mj equals p−1 this is uniquely solved by αj = p−1. For 0 ≤ mj < p−1
both αj = mj < p − 1 and αj = 2(p − 1) − mj > p − 1 are admissible.
Thus we see that, by construction, each element of the fiber of m must be
of shape α(m, U) for a suitable U ⊆ dsupp(m). On the other hand, all
α(m, U) are contained in the preimage of {m} with the sole exception of
α(0, ∅) = (0, . . . , 0).
Since U consists precisely of those indices j such that α(m, U)j > p − 1, we
find that α(m, U) 6= α(m, U ′) for U 6= U ′.

As a direct consequence we observe the following behavior of η:

2.16 Corollary. The values of η on a fiber of e are pairwise distinct modulo
q − 1. Using the above parametization for the elements of the fiber of a
singleton {m}, we find

η(α(m, U)) =
∑

j∈U

(p − 1 − mj)p
j.

We can now state the principal result from [BS00] that is applicable for the
present situation. Some adjustments to the notation have been made; in
particular, as far as types and the newly introduced parametrizing maps e
and η are concerned.

2.17 Theorem (Bardoe-Sin). Let 1 ≤ δ ≤ q − 2. Then:

1. The module N [δ] is multiplicity free, that is, all composition factors in
a composition series of N [δ] occur with multiplicity one.

2. The composition factors of N [δ] can be parametrized by P [δ] as well as
by T [δ]. For t ∈ P[δ] with type α = typδ(t) ∈ T [δ] the corresponding
composition factor is

S(e(α), η(α)). (2)

3. For a submodule U ⊆ N [δ] let P [δ]U ⊆ P[δ] be the set of parameters
of its composition factors. Then P [δ]U is an ideal of (P [δ], ≤), i.e. a
subset of P [δ] that is closed under the relation “≤” from Notation 2.7.

4. The map U 7→ P [δ]U describes an isomorphism from the submodule
lattice of N [δ] onto the ideal lattice of (P [δ], ≤), ordered by inclusion.
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Proof. All claims are proven in [BS00, Theorem C]. For a detailed examina-
tion of the change of notation that is involved, see [Var15, Anhang B].

The structure of the module N [q−1] can be read off from the transformation
properties described in Lemma 2.5.

2.18 Proposition. The module N [q − 1] admits a decomposition as a direct
sum of simple G-modules

N [q − 1] =
〈
f

(q−1)
0 , . . . , f

(q−1)
q−2 , f (q−1)

∞

〉

︸ ︷︷ ︸
∼=Symq−1(V )

⊕
〈
f

(q−1)
0 − f

(q−1)
q−1 + f (q−1)

∞

〉
.

︸ ︷︷ ︸
∼=Fq

The set P [q − 1] contains the two parameters

(0, . . . , 0) with type (p − 1, . . . , p − 1),

(1, . . . , 1) with type (2(p − 1), . . . , 2(p − 1)).

The simple submodules of N [q − 1] are parametrized by the types in T [q − 1]
according to (2). The type (p − 1, . . . , p − 1) belongs to the submodule that is
isomorphic to Symq−1(V ).

Remark. 1. In the notation from [BS00], our module N [q −1] corresponds
with the module kP , which is studied in Theorem A of the cited paper.
Despite its semi-simplicity, we study this module alongside the other
N [δ], since they are defined uniformly and occur side by side in our
applications.

For q = 2, the only module of this class is semi-simple, namely N [1] =
F2 ⊕ V .

2. From our previous results for types, in particular Lemma 2.12, we ob-
serve that the module

⊕q−1
δ=1 N [δ] is multiplicity free. Note that this

already follows from a more general statement, see [BS00, Lemma 2.1].
However, we will encounter a situation that is similar to the first argu-
ment when we introduce the pattern of n in section 4.

For δ = 1 we observe the following interesting case:

2.19 Proposition. Let q > 2. There is an isomorphism of G-modules

N [1] ∼= Symq(V ).

In particular, Symq(V ) is uniserial, that is, the set of its submodules is totally
ordered under inclusion.
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Proof. The isomorphism can be read off from Lemma 2.5. The uniqueness
of the composition series of N [1] follows from Theorem 2.17.

The theory of the modules N [δ] can also be applied to describe some other
symmetric powers.

2.20 Proposition. For 1 ≤ δ ≤ q − 1 we identify the module Symδ(V ) with
its image under the embedding of G-modules Symδ(V ) →֒ N [δ], given by

Xδ−iY i 7→ f
(δ)
i , 0 ≤ i ≤ δ − 1,

Y δ 7→ f (δ)
∞

and linear extension. As a submodule of N [δ], Symδ(V ) corresponds with the
ideal P0[δ] := {t ∈ P[δ] | t0 = 0} of (P [δ], ≤).

Proof. The embedding is obvious from the transformation properties de-
scribed in Lemma 2.5.
For 1 ≤ δ ≤ q − 2 the corresponding ideal is described in [BS00, Section 10].
In the case δ = q−1 the statement follows directly from Proposition 2.18.

The G-module structure of these symmetric powers can now be easily derived
from Theorem 2.17 (for δ = q − 1 the symmetric power is a simple module).

3 A filtration of Symn(V )

In this section we study a certain submodule of Symn(V ) for n ≥ q + 1 and
a related submodule filtration. The central element in these constructions
is an eigenvector of G, whose transformation properties can be verified by a
straightforward computation.

3.1 Lemma. Let n ≥ q + 1. Multiplication with XY q − XqY induces an
injective G-homomorphism

Symn−(q+1)(V ) ⊗ (det)1 → Symn(V ).

Proof. The map is obviously injective. The determinant twist on the left-
hand side ensures the G-equivariance due to the fact that XY q − XqY ∈
Symq+1(V ) is an eigenvector with character (det)1.

We study the image of this G-homomorphism in more detail.
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3.2 Notation. Let n ≥ q + 1. Let L(n) be the submodule of Symn(V ) that
is isomorphic to Symn−(q+1)(V ) ⊗ (det)1 by means of the multiplication map
described in Lemma 3.1.
For ease of notation, we denote the monomials in Symn(V ) by

Zj := Xn−jY j, 0 ≤ j ≤ n,

as long as n ≥ q + 1 is fixed.

The following lemma allows us to describe congruences of monomials modulo
L(n).

3.3 Lemma. Let n ≥ q + 1. A basis of the submodule L(n) ⊆ Symn(V ) is
given by the elements

Zj+q − Zj+1 with 0 ≤ j ≤ n − (q + 1).

In particular, two monomials Zi, Zj ∈ Symn(V ), 0 ≤ i, j ≤ n, are congruent
modulo L(n) if and only if

1 ≤ i, j ≤ n − 1 and i ≡ j mod q − 1.

A basis of the quotient module Symn(V )/L(n) is given by

{Zj | 0 ≤ j ≤ q − 1} ∪ {Zn}.

Proof. Obviously, the elements Zj+q − Zj+1 are the images of the monomials

in Symn−(q+1)(V )⊗(det)1 under the given multiplication map. The remaining
statements follow immediately.

3.4 Notation. In the following, we fix the unique decomposition

n = ν + ν̂(q − 1) with 1 ≤ ν ≤ q − 1.

3.5 Proposition. Let n ≥ q + 1. Then there is a G-isomorphism

Symn(V )/L(n)
∼=−→ N [ν] = N [n]

given by

Zj 7→ f
(ν)
j , 0 ≤ j ≤ q − 1,

Zn 7→ f (ν)
∞

and linear extension.
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Proof. Obviously, the map is an isomorphism of vector spaces.
In order to verify its G-equivariance, we study the basis of L(n) determined
in Lemma 3.3 under the action of the generators of G.
We obtain immediately

( a 0
0 1 ) Zj = an−jZj = aν−jZj, 0 ≤ j ≤ q − 1,

( a 0
0 1 ) Zn = Zn, ( 0 1

1 0 ) Z0 = Zn, ( 0 1
1 0 ) Zn = Z0.

Also, we observe

( 0 1
1 0 ) Zj = Zn−j ≡ Z[ν−j] mod L(n), 1 ≤ j ≤ q − 1,

where “[ · ]” denotes the representative modulo q − 1 in {1,. . . ,q-1}.
For 0 ≤ j ≤ q − 1 we have

( 1 t
0 1 ) Zj =

j∑

l=0

(
j

l

)
tj−lZl.

Finally, we must give a presentation of

( 1 t
0 1 ) Zn =

n∑

l=0

(
n

l

)
tn−lZl

with respect to the chosen basis of Symn(V )/L(n).
According to Lemma 3.3 we have

( 1 t
0 1 ) Zn ≡ Z0 +

q−1∑

b=1




n−1∑

l=1
l≡b mod q−1

(
n

l

)



︸ ︷︷ ︸
=:λb

tν−bZb + Zn mod L(n).

By means of the decomposition of n fixed in Notation 3.4 we obtain for
1 ≤ b ≤ q − 1

λb =
ν̂∑

m=0

(
ν + ν̂(q − 1)

b + m(q − 1)

)
− δν,b

with Kronecker delta. Here we make use of the fact that

(
ν + ν̂(q − 1)

b + ν̂(q − 1)

)
=





1 b = ν

0 ν < b ≤ q − 1

to achieve a uniform upper bound of the sum over m.
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Using a general result from the theory of binomial coefficients modulo p (see
[Var15, Proposition A.16]) the sum can be simplified as follows:

λb =





(
ν

b

)
1 ≤ b ≤ ν − 1

0 ν ≤ b ≤ q − 1.

Hence,

( 1 t
0 1 ) Zn ≡

ν−1∑

l=0

(
ν

l

)
tν−lZl + Zn mod L(n).

The G-equivariance of the given isomorphism now follows by means of com-
parison with Lemma 2.5.

We can now use the preceding to construct the following G-module filtration
of symmetric powers.

3.6 Theorem. Let n ∈ N with unique decomposition n = n + n̂(q + 1),
0 ≤ n ≤ q. Then Symn(V ) admits a filtration of G-submodules

{0} ( L(n̂,n) ( L(n̂−1,n) ( · · · ( L(1,n) ( L(0,n) = Symn(V ),

where
L(i,n) ∼= Symn−i(q+1)(V ) ⊗ (det)i for 0 ≤ i ≤ n̂.

For 0 ≤ i ≤ n̂ − 1 the successive quotients satisfy

L(i,n)/L(i+1,n) ∼= N [n − 2i, i].

Proof. The existence of the filtration follows immediately if we define L(i,n)

to be the image in Symn(V ) of Symn−i(q+1)(V ) ⊗ (det)i under multiplication
with (XY q − XqY )i, cf. Lemma 3.1.
Using the notation previously established in this section, this definition gives

L(i,n) ∼= Symn−i(q+1)(V ) ⊗ (det)i

and

L(i+1,n) ∼= L(n − i(q + 1)) ⊗ (det)i.

The structure of the successive quotients can now be read off directly by
means of Proposition 3.5.

Finally, one may ask: Is there a G-module complement of L(n) in Symn(V )?
The answer is negative if n is not a multiple of q.

3.7 Theorem. Let n ≥ q+1 be not divisible by q. Then there is no G-module
complement of L(n) in Symn(V ).
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Remark. If, on the other hand, n is a multiple of q then the answer is in
fact positive. However, the proof of this statement in the general context
of symmetric powers is cumbersome due to the required calculations. It is
much simpler to make use of the connection between symmetric powers and
Drinfeld modular forms. We will discuss this result in a future publication.

The basic idea for our proof of Theorem 3.7 is to show that there is no sub-
module of Symn(V ) that is both a complement to L(n) and G-isomorphic to
N [ν]. This variant is equivalent to the theorem according to Proposition 3.5.
The actual steps vary depending on q and n as described in the following.
First, let us assume that q is not 2. In this situation we may use the following
lemma, which describes a necessary (but in general not sufficient) condition
for elements of Symn(V ) with special transformation properties:

3.8 Lemma. Let q be strictly larger than 2 and let n ≥ q + 1 be not divisible
by q. If an element P ∈ Symn(V ) is invariant under matrices of types ( a 0

0 1 )
and ( 1 t

0 1 ), then P is a linear combination of monomials Zj such that

0 ≤ j ≤ n − (q − 1) and j ≡ n mod q − 1.

Proof. Assume P ∈ Symn(V ) has the stated transformation properties. Since

( a 0
0 1 ) Zj = an−jZj for 0 ≤ j ≤ n

and P is invariant under the matrices ( a 0
0 1 ), we can write

P = λZn + P ′

with λ ∈ Fq and P ′ a linear combination of Zj such that j ≤ n − (q − 1) and
j ≡ n mod q − 1.
Due to the invariance of P under ( 1 t

0 1 ) we have

λZn + P ′ = P = ( 1 t
0 1 ) P

= λ
n∑

j=0

(
n

j

)
tn−jZj + ( 1 t

0 1 ) P ′,

where ( 1 t
0 1 ) P ′ is again a linear combination of Zj with j ≤ n − (q − 1). In

order to obtain that λ must equal 0 under the initial assumption, we have to
find an index l such that

n − (q − 1) < l < n (3)

and (
n

l

)
6= 0, (4)
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(that is, such that Zl occurs in ( 1 t
0 1 ) Zn with a non-trivial coefficient).

Indeed, we find such an index as follows: According to the prerequisites we
have the unique decomposition

n = m + m̂q mit 1 ≤ m ≤ q − 1.

If, in addition, m < q − 1 holds, then l := n − m obviously satisfies condi-
tion (3). Furthermore, the Lucas congruence for binomial coefficients implies

(
n

n − m

)
=

(
m + m̂q

m̂q

)
≡

(
m

0

)(
m̂

m̂

)
≡ 1 mod p,

and thus condition (4) is satisfied as well.
For m = q−1 it is trivial to show that l := n−1 satisfies both conditions.

If we additionally assume that n is not divisible by q − 1, Theorem 3.7 is
equivalent to the following statement:

3.9 Proposition. Let q > 2 and let n ≥ q + 1 be divisible neither by q nor
by q − 1. Then there is no G-homomorphism N [ν] → Symn(V ) whose image
is a G-module complement to L(n).

Proof. Let ϕ : N [ν] → Symn(V ) be a G-equivariant homomorphism. In
Lemma 3.3 we have seen that the monomial Zn does not occur in any element
of L(n) with a non-trivial coefficient. Therefore the proof is complete if we
show that no element in the image of ϕ contains Zn.
Consider the basis {f

(ν)
b | 0 ≤ b ≤ q − 1} ∪ {f (ν)

∞ } of N [ν]. Using Lemma 2.5
we can derive necessary conditions for the images of the basis elements under
ϕ.
Since ϕ is G-equivariant, the transformation properties of the basis elements
and the monomials Zj under ( a 0

0 1 ) imply

ϕ(f
(ν)
b ) =

n∑

j=0
j≡b mod q−1

λ
(b)
j Zj, 0 ≤ b ≤ q − 1,

ϕ(f (ν)
∞ ) =

n∑

j=0
j≡ν mod q−1

λ
(∞)
j Zj

with coefficients in Fq.

Thus all ϕ(f
(ν)
b ) with b 6= ν can be written as linear combinations of mono-

mials Zj with 0 ≤ j < n. Since we assume that q − 1 does not divide n, this

is true for ϕ(f
(ν)
q−1) in particular.
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This also means that ( 1 t
0 1 ) ϕ(f

(ν)
q−1) does not contain the monomial Zn. By

means of a straightforward calculation we obtain

( 1 t
0 1 ) ϕ(f

(ν)
q−1) =

q−1∑

l=0

(
q−1

l

)
tq−1−lϕ(f

(ν)
l ).

On the one hand, we have seen previously that none of the summands for
l 6= ν contains Zn. Since on the other hand the coefficient of ϕ(f (ν)

ν ) in the
remaining summand is

(
q − 1

ν

)
t−ν = (−1)νt−ν 6= 0,

we see that Zn does not occur in ϕ(f (ν)
ν ).

To conclude that ϕ(f (ν)
∞ ) does not contain Zn either, consider

f (ν)
∞ − f (ν)

ν = F (ν)
∞ ∈ N [ν].

According to Lemma 2.3 this element is invariant under matrices of types
( a 0

0 1 ) and ( 1 t
0 1 ). Hence, its image under the G-equivariant map ϕ has the

same invariances. Thus, Lemma 3.8 implies that Zn does not occur in ϕ(f (ν)
∞ −

f (ν)
ν ) and therefore neither in ϕ(f (ν)

∞ ).

If, on the other hand, q − 1 divides n, we may use that N [q − 1] ∼= Fq ⊕
Symq−1(V ) to simplify the proof of the theorem. It is now sufficient to show:

3.10 Proposition. Let q be strictly larger than 2 and let n ≥ q + 1 be a
multiple of q −1 but not of q. If an element P ∈ Symn(V ) is invariant under
the action of G, then P ∈ L(n).

Proof. Let P ∈ Symn(V ) be G-invariant. Lemma 3.8 together with the
invariance of P under ( 0 1

1 0 ) implies that P can be written uniquely as a
linear combination of monomials Zj such that

q − 1 ≤ j ≤ n − (q − 1) and j ≡ n ≡ 0 mod q − 1.

By means of Lemma 3.3 we know that all such monomials are congruent to
Zq−1 modulo L(n). We can thus write

P = λZq−1 + PL

with λ ∈ Fq and PL ∈ L(n). Consider the action of ( 1 t
0 1 ) on both sides of this

equation and compare the respective coefficients of Z0, taking into account
the invariance of P under ( 1 t

0 1 ). We obtain P = PL ∈ L(n) and the proof is
complete.
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For q = 2 the situation is similar, since it is again sufficient to prove that
there is no G-invariant element in Symn(V )\L(n). However, we cannot make
use of Lemma 3.8 since q − 1 = 1.

3.11 Proposition. Let q equal 2 and let n ≥ 3 be odd. Then there is no
element in Symn(V ) \ L(n) that is invariant under the action of G.

Proof. In this situation one can verify directly that any G-invariant element
of Symn(V ) is of shape

P =

n−1

2∑

j=1

λj(Zj − Zn−j)

with coefficients in Fq which implies together with Lemma 3.3 that P ∈
L(n).

Taken together, Propositions 3.9, 3.10 and 3.11 prove Theorem 3.7.

4 Multiplicities of composition factors

The fact that each of the successive quotients of the filtration described in
Theorem 3.6 is a determinant twist of some N [δ] opens the possibility to
determine the composition factors of Symn(V ) for n ≥ q + 1. (As mentioned
in section 2, the situation is well-known for n ≤ q.)

4.1 Proposition. Let n ≥ q +1 with unique decomposition n = n+ n̂(q +1),
0 ≤ n ≤ q. Then Symn(V ) has the same composition factors (counting
multiplicities) as the module

n̂−1⊕

i=0

N [n − 2i, i] ⊕ (Symn(V ) ⊗ (det)n̂).

By definition, the modules N [n − 2i, i] in the above direct sum depend only
on the classes of n and i modulo q −1. Therefore as a first step, we study the
case where i passes through a full system of representatives modulo q − 1.

4.2 Notation. In the remainder of this section let R be a fixed but arbitrary
full system of representatives modulo q − 1. For x ∈ Z denote by [x]R its
representative modulo q − 1 in R.
For n ∈ N the module ⊕

i∈R

N [n − 2i, i]
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is independent of the choice of R and depends only on n modulo q − 1. We
call this module the pattern of n.

In order to determine all parameters δ such that determinant twists of N [δ]
occur in the pattern of n, we have to solve the congruence

n − 2i ≡ δ mod q − 1 (5)

for i ∈ R. The structure of the set of solutions depends on whether q = pr

is an odd or even prime power and is an easy exercise in elementary number
theory.

4.3 Lemma. Let n ∈ N.

1. If p equals 2, then for each 1 ≤ δ ≤ q − 1 there is precisely one deter-
minant twist of N [δ] among the direct summands of the pattern of n.
The exact twist is determined by

i ≡ 2r−1(n − δ) mod q − 1.

2. For p > 2 only determinant twists of modules N [δ] with δ ≡ n mod 2
occur as direct summands in the pattern. There are two twists in each
such case, given by

i ≡
n − δ

2
mod q − 1 and i ≡

n − δ

2
+

q − 1

2
mod q − 1.

The above result immediately implies the following parametrization of the
composition factors of the pattern.

4.4 Lemma. Let n ∈ N. The composition factors of the pattern of n can be
parametrized by the set

K := K(n) := {(α, i) ∈ T × R | d(α) ≡ n − 2i mod q − 1}.

The composition factor for one such pair (α, i) ∈ K is isomorphic to

S(e(α), η(α) + i)

and occurs in the summand N [n − 2i, i] of the pattern.
In case p equals 2, the projection (α, i) 7→ α defines a bijection

K → T .

For p > 2 the map (α, i) 7→ α describes a surjective 2 : 1-map

K →
⋃

1≤δ≤q−1
δ≡n mod 2

T [δ].
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In general the pattern is not multiplicity free. This difference compared to
the module

⊕q−1
δ=1 N [δ] (see the remark following Proposition 2.18) is caused

by the additional determinant twists in the summands of the pattern.
In order to count the multiplicity of a given simple G-module as a composition
factor of the pattern, we have to count the summands N [n − 2i, i] which
admit this particular simple module as a composition factor. We use the
classification of the simple G-modules given in Theorem 1.9.

4.5 Notation. Let n ∈ N. For 0 ≤ m ≤ q − 1 and µ ∈ R define Im,µ(n)
to be the set of all i ∈ R such that S(m, µ) is isomorphic to a composition
factor of N [n − 2i, i].

4.6 Theorem. Let n ∈ N. Let 0 ≤ m ≤ q − 1 and µ ∈ R. Then the simple
module S(m, µ) is isomorphic to a composition factor of the pattern of n if
and only if m and µ satisfy the congruence

m ≡ n − 2µ mod q − 1. (6)

In this case:

1. For m > 0 with p-adic expansion
∑r−1

j=0 mjp
j one has

Im,µ(n) =





[
µ −

∑

j∈U

(p − 1 − mj)p
j

]

R

| U ⊆ dsupp(m)



 .

The multiplicity of S(m, µ) as a composition factor of the pattern of n
is 2# dsupp(m).

2. For m = 0 one has

I0,µ(n) =





[
µ −

∑

j∈U

(p − 1)pj

]

R

| ∅ 6= U ⊆ {0, . . . , r − 1}



 .

The simple module S(0, µ) has multiplicity 2r − 1 as a composition
factor of the pattern of n.

Proof. First we show the necessity of condition (6). Let therefore S(m, µ) be
isomorphic to a composition factor of the pattern. Lemma 4.4 implies that
there are α ∈ T and i ∈ R such that

m = e(α),

µ ≡ η(α) + i mod q − 1,

d(α) ≡ n − 2i mod q − 1.

(7)
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After a short calculation, in which we use Lemma 2.13, we find

m ≡ n − 2µ mod q − 1,

as desired.
Now let m and µ satisfy condition (6). We determine the modules N [n−2i, i]
that have a composition factor isomorphic to S(m, µ). That is, we have to
determine all pairs (α, i) ∈ T ×R that satisfy the set of conditions (7). Then
Im,µ(n) consists of all i obtained this way.
The first condition in (7) implies that only the types α in the preimage of m
under the map e must be considered. For each such α the second condition
is only satisfied by the unique representative

iα = [µ − η(α)]R.

Another short calculation involving Lemma 2.13 verifies that all pairs con-
structed this way satisfy the third condition as well.
The stated shape of the elemens of Im,µ(n) follows from our prior results for
the maps e and η, specifically Lemma 2.16. In particular, the representatives
iα are pairwise distinct.

Remark. 1. As we have described in Lemma 4.3, we can easily determine
explicitly all m and µ that satisfy condition (6).

2. In addition to the multiplicities in the entire pattern, we can easily
count multiplicities of composition factors for submodules of shape⊕

i∈J N [n − 2i, i] for a subset J ⊆ R by considering J ∩ Im,µ(n).

4.7 Theorem. Let n ∈ N. Counting multiplicities, the pattern of n has
(2p − 1)r − 1 composition factors.

Proof. This theorem can be proven combinatorially by counting all numbers
in {0, . . . , q − 1} with dual support of a fixed size and adding up the results.
Alternatively, for even q the statement follows trivially from Lemma 4.4.

In addition to the above results for the pattern, we need to determine the
composition factors of L(n̂,n), the smallest non-trivial module of the filtration
defined in Theorem 3.6. For brevity’s sake we simply call it the smallest
filtration module.

4.8 Proposition. Let n ∈ N have the unique decomposition n = n+ n̂(q+1),
0 ≤ n ≤ q. The smallest filtration module is isomorphic to a submodule of
N [n − 2n̂, n̂] and is thus multiplicity free.
To be more precise, one finds:
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1. For n = 0
L(n̂,n) ∼= (det)n̂

is itself a simple module and isomorphic to the one-dimensional direct
summand of N [q − 1, n̂] = N [n − 2n̂, n̂].

2. For 1 ≤ n ≤ q − 1 the module L(n̂,n) is isomorphic to the submodule

Sym[n−2n̂](V ) ⊗ (det)n̂ ⊆ N [n − 2n̂, n̂],

where “[ · ]” is the representative modulo q − 1 in {1, . . . , q − 1}.

The composition factors of L(n̂,n) are given by a subset of the composi-
tion factors of N [n − 2n̂, n̂], cf. Proposition 2.20.

3. For n = q we get

L(n̂,n) ∼= N [1, n̂] = N [n − 2n̂, n̂].

Proof. The first and second statement follow immediately from the isomor-
phism L(n̂,n) ∼= Symn(V ) ⊗ (det)n̂ and the fact that n − 2n̂ ≡ n mod q − 1.
In the third statement we additionally use our previous observation that
Symq(V ) ∼= N [1].

In particular we see:

4.9 Corollary. Let n ∈ N. A simple module may only occur as a composition
factor of Symn(V ) if it is a composition factor of the pattern of n.

We already know: To check whether or not the simple module S(m, µ) occurs
among the composition factors of N [n − 2n̂, n̂], we only have to determine if

[n̂]R ∈ Im,µ(n)

holds. However, if the smallest filtration module is a strict submodule of
N [n − 2n̂, n̂], we must restrict to a suitable subset of Im,µ(n).

4.10 Notation. For 0 ≤ m ≤ q − 1 and µ ∈ R we define the subset

I0
m,µ(n) ⊆ Im,µ(n)

to consist of those representatives i ∈ R such that S(m, µ) is isomorphic to
a composition factor of the submodule Sym[n−2i](V ) ⊗ (det)i of N [n − 2i, i].

As before, this specific set of representatives can be determined explicitly.

25



4.11 Proposition. Let n ∈ N. Further let 0 ≤ m ≤ q − 1 and µ ∈ R. Then

m ≡ n − 2µ mod q − 1

is a necessary condition for I0
m,µ(n) to be non-empty. If m and µ satisfy the

congruence one finds:

1. For m > 0 with p-adic expansion
∑r−1

j=0 mjp
j we have

I0
m,µ(n) =





[
µ −

∑

j∈U

(p − 1 − mj)p
j

]

R

| U ⊆ dsupp(m) \ {max dsupp(m)}



 .

2. For m = 0 we get

I0
0,µ(n) =





[
µ −

∑

j∈U

(p − 1)pj

]

R

| ∅ 6= U ⊆ {0, . . . , r − 2}



 .

In particular, I0
0,µ(n) is empty for r = 1.

Proof. The necessity of the stated congruence follows from Theorem 4.6,
since I0

m,µ(n) is a subset of Im,µ(n).
The structure of I0

m,µ(n) can be determined by closer inspection of the proof
of the cited theorem. There, we constructed a representative iα for each α

in the preimage of m under e. In the present situation we only consider
those α that satisfy an additional constraint: One can show that the simple
module associated to a type α is a composition factor of the submodule
Symδ(V ) ⊆ N [δ] if and only if either α = (p − 1, . . . , p − 1) or if αj < p − 1
holds, where 0 ≤ j ≤ r − 1 is the largest index such that αj 6= p − 1.
In terms of the parametrization of the preimage by subsets of dsupp(m) (see
Proposition 2.15) this means that we allow precisely those subsets that do
not include the maximum of dsupp(m) (with the further exception of the
empty set if m equals 0).
The remaining statements now follow as in the proof of Theorem 4.6.

In the remaining cases from Proposition 4.8, that is n = 0 and n = q, the
conditions for S(m, µ) to be a composition factor of the smallest filtration
module are straightforward. We combine these with Proposition 4.11 to
obtain the following exhaustive answer to this question:

4.12 Theorem. Let n ∈ N. Further let 0 ≤ m ≤ q − 1 and µ ∈ R. Then:

1. For n = 0 the simple module S(m, µ) is a composition factor of L(n̂,n)

if and only if
m = 0 and µ ≡ n̂ mod q − 1.
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2. For 1 ≤ n ≤ q − 1 the simple module S(m, µ) is a composition factor
of L(n̂,n) if and only if

[n̂]R ∈ I0
m,µ(n).

3. For n = q the simple module S(m, µ) is a composition factor of L(n̂,n)

if and only if
[n̂]R ∈ Im,µ(n).

For our final result, we describe algorithmically the methods obtained previ-
ously in this section. Specifically, we show how the individual steps can be
combined to count multiplicities of composition factors for a given symmetric
power Symn(V ).
We begin by determining some data of the pattern. This step may be reused
for different symmetric powers, since the output depends only on n mod q−1.

4.13 Algorithm (Multiplicities in the pattern). Input: n ∈ N.
Pass over all pairs (m, µ) with 0 ≤ m ≤ q − 1 and µ ∈ R such that

m ≡ n − 2µ mod q − 1.

For each such pair (m, µ) apply the following procedure:

1. Initialize the set

I0 :=





{[µ]R} m > 0

∅ m = 0.

2. If m = q − 1, then put

Iq−1,µ(n) := I0
q−1,µ(n) := I0

and terminate the procedure for the current pair.

3. Else determine the p-adic coefficients mj of m, 0 ≤ j ≤ r − 1, and read
off the dual support dsupp(m). Put

l := max dsupp(m)

and initialize the set

I1 :=
{
[µ − (p − 1 − ml)p

l]R
}

.
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4. Let U pass through all non-empty subsets of dsupp(m) \ {l}. Define

iU := µ −
∑

j∈U

(p − 1 − mj)p
j

and put

I0 := I0 ∪ {[iU ]R} ,

I1 := I1 ∪
{
[iU − (p − 1 − ml)p

l]R
}

.

5. Display the result for the current pair:

I0
m,µ(n) := I0,

Im,µ(n) := I0 ∪ I1.

Proof (Correctness). The correctness of the algorithm follows immediately
from the explicit descriptions of Im,µ(n) and I0

m,µ(n) in Theorem 4.6 and
Proposition 4.11, respectively.

For each simple module S(m, µ) we can now determine its multiplicity λ(n; m, µ)
as a composition factor of Symn(V ).

4.14 Algorithm (Multiplicity in symmetric powers). Input: n ∈ N.

(Initialization) Pass through all pairs (m, µ) with 0 ≤ m ≤ q − 1 and
µ ∈ R. Put

λ(n; m, µ) := 0.

(Precomputation) Compute the unique decomposition

n̂ = u + v(q − 1) with 0 ≤ u ≤ q − 2 and v ∈ N0.

Define
J := {[n̂ − l]R | 1 ≤ l ≤ u} .

If n = q, then add the representative [n̂]R to the set J .

(Main loop) Pass through the pairs (m, µ) with 0 ≤ m ≤ q − 1 and
µ ∈ R that satisfy

m ≡ n − 2µ mod q − 1.

For each such pair perform the following procedure:
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1. (Data of the pattern) Look up the sets Im,µ(n) and I0
m,µ(n) in the

output of Algorithm 4.13.

2. (Smallest filtration module) If n = q, put

λE(n; m, µ) := 0.

Else if n = 0, define

λE(n; m, µ) :=





1 m = 0 and µ ≡ n̂ mod q − 1

0 else.

Else if 1 ≤ n ≤ q − 1, put

λE(n; m, µ) :=





1 [n̂]R ∈ I0
m,µ(n)

0 else.

3. (Result) The result for the current pair (m, µ) is

λ(n; m, µ) := v (#Im,µ(n)) + # (J ∩ Im,µ(n)) + λE(n; m, µ).

Proof (Correctness). In Proposition 4.1 we have already established that
Symn(V ) has the same composition factors as

n̂−1⊕

i=0

N [n − 2i, i] ⊕ Symn(V ) ⊗ (det)n̂.

Let us first consider the partial sum over N [n − 2i, i] for i between 0 and n̂−
u−1. It consists precisely of v copies of the pattern of n, since n̂−u = v(q−1)
according to the precomputation. The contribution to the multiplicity of the
composition factor S(m, µ) is v#Im,µ(n).
By construction, the set J contains all the remaining indices i between n̂ −
u − 1 and n̂ − 1. Furthermore, it contains the additional element n̂ if and
only if the smallest filtration module is isomorphic to N [n − 2n̂, n̂] (that is,
if and only if n equals q).
We know from the remark following Theorem 4.6 that the multiplicity of
S(m, µ) as a composition factor of

⊕
i∈J N [n − 2i, i] is # (J ∩ Im,µ(n)).

Finally, for n ≤ q − 1 the contribution of the smallest filtration module has
to be checked as described in Theorem 4.12 and is encoded in the variable
λE(n; m, µ).
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