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A reciprocity principle for constrained
isoperimetric problems and existence of
isoperimetric regions in convex sets

Michael Bildhauer, Martin Fuchs, Jan Müller

Abstract

It is a well known fact, that in Rn a subset of minimal perimeter L
among all sets of a given volume is also a set of maximal volume among
all sets of the same perimeter L. This is called the reciprocity principle
for isoperimetric problems. The aim of this note is to prove this relation
in the case where the class of admissible sets is restricted to the subsets
of some region G ( Rn. Furthermore, we give a characterization of those
(unbounded) convex subsets of R2 in which the isoperimetric problem has
a solution. The perimeter that we consider is the one relative to Rn.

AMS classi�cation: 49Q20
Keywords: isoperimetric problems, reciprocity, sets of �nite perimeter, existence
in convex sets

1 Introduction

In its classical form, the isoperimetric problem asks for the maximal area which
can be enclosed by a curve of given length. In modern mathematical terms, the
task is to determine a measurable subset of Rn which has maximal Lebesgue mea-
sure A among all sets of a given perimeter L ∈ [0,∞). Assuming the existence of
a solution, Steiner in the �rst half of the 19th century showed by means of elemen-
tary geometric arguments, that in R2 the only possible candidate for a solution
is the circle of perimeter L (which has already been suspected since antiquity).
However, the existence part turns out to require a more subtle reasoning. In
nowadays mathematics, it is usually treated in the framework of the theory of
convex sets (see [13]), of Caccioppoli (i.e. sets of �nite perimeter, see [8] for a
compact introduction to the topic) or integral recti�able currents (see, e.g., [16]).
While the �rst method relies on an a priori establishment of the convexity of a
solution, the second approach is based a reformulation of the problem: it is easy
to see by a scaling argument, that a set in Rn which maximizes volume to a given
perimeter is also a set with minimal perimeter among all sets of the respective
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volume. Some authors refer to this connection between the two problems as �reci-
procity� (see, e.g. [6], [9]). The situation is di�erent if we restrict our class of
admissible sets to those which lie inside a proper subset G ( Rn. Then the clas-
sical arguments via convexity and scaling may fail depending on the geometry of
G and it is no longer clear that a volume maximizing subset with given perimeter
occurs as a solution of the reciprocal �minimal-perimeter�-problem. The second
type of problem, i.e. �nding sets of minimal perimeter of a given volume inside
a subset of Rn is well addressed in the literature, ranging from existence results
(which is clear if G is bounded, see [4], Theorem 1.2.2) up to results concerning
the regularity of the boundary and convexity (see, e.g., [10], [19], [21], [20], [12]
and [18]). In [3], Besicovitch investigated volume maximal subsets under the
additional assumption of convexity, thereby avoiding the di�culties about the
existence question. We emphasize, that we only have slim hope for our results
concerning the reciprocity to be completely new, but as we did not �nd any-
thing about it after our (extensive) literature research, we decided to give a proof
here. The same applies to our result on the existence of isoperimetric subsets in
(unbounded) convex subregions of R2, which is formulated in Theorem 2.3.

Actually, our considerations evolved from the following simple question (which
is similar to the problem considered in [2]): given the stripe G = R × [0, 1] in
R2 and L > π, what is the shape of an area maximizing subset E ⊂ G with
perimeter L, or, if you prefer a more colloquial phrasing: what is the shape of the
table with the largest surface area that �ts inside a narrow room of rectangular
layout under the condition, that a given number of persons should be able to
take a chair? (Obviously, in order to provide space for the chairs we then have
to solve the problem in an inner parallel set of the room). It turns out, that a
solution exists in form of a rectangle with two semicircles of radius 1/2 attached
to two opposing sides (which might be the reader's intuitive guess).

2 Notation and statement of the results

By a subregion of Rn, we mean a subset G ⊂ Rn (n ≥ 2) such that

G is open and Ln(∂G) = 0 (∗)

(Ln denoting Lebesgue's measure), i.e. an open continuity set of Lebesgue's
measure. For an arbitrary Ln-measurable set E and an open set F ⊂ Rn we
de�ne the perimeter of E in F by

Per(E;F ) := sup

{∫
E

divϕ dx : ϕ ∈ C1
0(F,Rn), |ϕ| ≤ 1

}
.

If F = Rn, then we write for short Per(E) instead of Per(E,Rn).
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Remark 2.1

Note that Per(E) is allowed to take the value +∞. If Per(E) is �nite, then it is
well known (cf. [1]) that the characteristic function χE, viewed as an element of
L1(Rn), is a function of bounded variation, i.e. χE has a distributional derivative
DχE in form of a Radon measure of �nite total mass. If Per(E,K) is �nite for
any compact subset K b Rn, then we say that E has locally �nite perimeter, or
E is a Caccioppoli set (cf. [11]). Note that If two sets E and F di�er only by a
Lebesgue null set, then their perimeter coincide.

We consider the following pair of problems:{
Given L ∈ [0,Per(G)), �nd a subset E ⊂ G

with Per(E) = L and such that Ln(E) is maximal

}
(P )

and the corresponding �reciprocal� problem{
Given A ∈ [0,Ln(G)), �nd a subset E ⊂ G

with Ln(E) = A and such that Per(E) is minimal.

}
(P∗)

Then we have the following result:

Theorem 2.1 (Reciprocity)
Let G ⊂ Rn be a subregion in the sense of (∗), L ∈ [0,Per(G)) and A ∈ [0,Ln(G)).

i) If E ⊂ G is a solution of problem (P ), then E has minimal perimeter among
all subsets of G which have the same volume Ln(E).

ii) If F ⊂ G is a solution of problem (P∗), then F has maximal volume among
all subsets of G which have the same perimeter Per(F ).

Note that Theorem 2.1 does not say anything about the existence of a solution
of problem (P ). What it does say, however, is that any solution of (P ) occurs as
a solution of (P∗) and vice versa. If we additionally assume G to be bounded, the
existence of a solution of problem (P∗) follows easily: let (Fk)k∈N be a perimeter
minimizing sequence of subsets in G with Ln(Fk) = A. Then the corresponding
sequence of characteristic functions (χFk

) is bounded in some space BV (BR(0)),
where R > 0 is large enough s.t. G b BR(0). By the BV-compactness Theorem
(cf Theorem 3.23 in [1]), there is a function f ∈ BV (BR(0)) such that (at least
for a subsequence)

χFk
→ f in L1(Rn) and |Df |(BR(0)) ≤ lim inf

k→∞
Per(Fk).
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Since (after possibly passing to another subsequence) χFk
→ f a.e., f is (up to a

set of measure zero) the characteristic function of the set E = {x ∈ G : f(x) =
1}, which therefore is a solution of problem (P∗). Of course this �direct method�
fails if we apply it to a volume maximizing sequence (Ek)k∈N of subsets with
�xed perimeter Per(Ek) = L, since the limit set E ⊂ G will in general not satisfy
Per(E) = L. Instead, we can use the reciprocity principle to show the existence
of a solution of problem (P ):

Theorem 2.2 (Existence in bounded regions)
Let G ⊂ Rn be a subregion in the sense of (∗) which is additionally bounded.
Then it holds:

i) For all L ∈ [0,Per(G)) problem (P ) admits a solution.

ii) If L > Per(G), then problem (P ) does not have a solution.

Remark 2.2

Note that in the case �L = Per(G) < ∞�, the set G itself is a trivial solution of
(P ).

Our last result concerns the existence of solutions of problem (P ) in unbounded
regions. In general, isoperimetric sets do not necessarily exist for arbitrary choices
of L ∈ [0,Per(G)) as the following example shows:

x

y

G

Example 2.1

Consider G :=

{
(x, y) ∈ R2 : −1 ≤ x ≤ 1, 0 ≤ y ≤ x2

1−x2

}
(see the picture

above) and choose L = 2π. Then (P ) does not have a solution in G: by com-
parison with the sequence of maximal disks with center (0, n) inside G (n ∈ N),
we see that the area of a solution of (P ) would be π. But by the isoperimetric
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inequality in R2, this can only be attained by a circle of radius 1, which does not
exist in G.

However, in two dimensions we can give a complete characterization of the
convex regions in which (P ) can be solved for any choice of L ∈ [0,Per(G)):

Theorem 2.3 (Existence in convex regions)
Let G ⊂ R2 be open and convex and de�ne

r(G) := sup
{
r ∈ [0,∞) : ∃x ∈ G such that Br(x) ⊂ G

}
.

Then, if either

r(G) =∞ or r(G) = max
{
r ∈ [0,∞) : ∃x ∈ G such that Br(x) ⊂ G

}
,

problem (P ) admits a solution for any L ∈ [0,Per(G)), which in addition is
convex.

Remark 2.3

As Example 2.1 shows, the theorem above gives a sharp characterization of the
convex sets in R2 in which (P ) (and thus, by Theorem 2.1 (P∗)) can be solved.

Remark 2.4

We would like to emphasize at this point, that in contrast to e.g. [14] we consider
the perimeter of sets relative to Rn.

Remark 2.5 i) The existence of a solution in the case r(G) =∞ in form of a
disk is clear.

ii) If G is a bounded convex region, then the existence of a maximal disk in G,
i.e. a disk of radius r(G) (also called incircle, see De�nition 11.7 in [13])
follows from general principles, cf. Corollary 16.2 in [13].

iii) Theorem 2.3 particularly applies to our example of a �maximal table in a
narrow room� from the introduction. By making use of the regularity results
for solutions of (P∗) from [19] and [18], it is easy to determine the shape of
isoperimetric sets in the stripe R× [0, 1] (compare also *1.4.3 on p. 5 in [5]):
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3 Proof of Theorem 2.1

We start with part i). Let L ∈ [0,Per(G)) be given and let E ⊂ G have maximal
volume A = Ln(E) among all subsets of G with perimeter L. Assume that there
is another subset E ′ ⊂ G with Ln(E ′) = A and Per(E ′) = L′ < L = Per(E). Due
to Per(E ′) < Per(G), it must hold

Ln(G− E ′) > 0.

Thus, by Lebesgue's density Theorem (see [7], Corollary 3 on p. 45) there exists
a point x0 ∈ G− E ′ for which

lim
ρ↓0

Ln
(
Bρ(x0) ∩ (G− E ′)

)
Ln(Bρ(x0))

= 1

and therefore

lim
ρ↓0

Ln
(
Bρ(x0) ∩ E ′

)
Ln(Bρ(x0))

= 0.

Now choose ρ0 > 0 so small, that

Per(Bρ0(x0)) <
L− L′

2
and Ln(Bρ0(x0) ∩ E ′) <

1

2
Ln(Bρ(x0))

and consider the set
Ẽ := E ′ −Bρ0(x0).

Then it holds

Per(Ẽ) ≤ Per(E ′) + Per(Bρ0(x0)) < L′ +
L− L′

2
< L.

Set L̃ := L− Per(Ẽ) and note that

L̃ >
L− L′

2
> Per(Bρ0(x0)).

Therefore, we can choose a compact subset C b Bρ0(x0) such that

Ln(C) > 1

2
Ln(Bρ0(x0)) and Per(C) = L̃.

But then the set Ê := Ẽ ∪ C satis�es

Per(Ê) = Per(Ẽ) + Per(C) = L = Per(E)

as well as
Ln(Ê) = Ln(Ẽ) + Ln(C) > Ln(E),
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which contradicts the volume maximality of the subset E.

We proceed with the proof of part ii). Let A ∈ [0,Ln(G)) be given and let
F ⊂ G have minimal perimeter L = Per(F ) among all subsets of G with volume
A = Ln(F ). Assume that there is another subset F ′ with Per(F ′) = L and
Ln(F ′) = A′ > A. For α ∈ R consider the half space

Hα :=
{
x ∈ Rn : (x− αen) · en ≥ 0

}
,

where en := (0, ..., 0, 1)T and de�ne the function

h : R→ R, α 7→ Ln(F ′ ∩Hα).

Note that from the continuity properties of Lebesgue's measure together with the
fact that

Ln
({
x ∈ Rn : (x− αen) · en = 0}

)
= 0,

it is clear that the function h is continuous along with

lim
α→−∞

h(α) = A′ and lim
α→∞

h(α) = 0.

Thus, by the intermediate value Theorem there exists α0 ∈ R for which h(α0) =
A.

Lemma 3.1

With α0 and Hα as above, it holds

Per(F ′ ∩Hα0) < Per(F ′) = L.

Thus, we see that the set F ′ ∩Hα0 contradicts the perimeter minimality of the
set F . It remains to give a proof of the above assertion.

Proof of the lemma. Without loss of generality we may assume α0 = 0. Set

H+ :=
{
x ∈ Rn : x · en > 0

}
,

H0 :=
{
x ∈ Rn : x · en = 0

}
,

H− :=
{
x ∈ Rn : x · en < 0

}
.

Due to Ln(F ′ ∩ H0) = 0, we have Per(F ′) = Per
(
(F ′ ∩ H+) ∪ (F ′ ∩ H−)

)
. Let

further χ+, χ− ∈ L1(H0) be the trace of χF ′∩H+ and χF ′∩H− in H0, respectively,
in the sense of BV -functions. (Note, that these exist by Theorem 3.77 in [1] and
are summable w.r.t. Hn−1 H0 since F

′ ∩H+ and F ′ ∩H− have �nite perimeter
in Rn). Then it holds

Per(F ′) = Per(F ′, H+) + Per(F ′, H−) +

∫
H0

|χ+ − χ−| dHn−1
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as well as

Per(F ′ ∩H+) = Per(F ′, H+) +

∫
H0

|χ+| dHn−1.

It therefore follows

Per(F ′ ∩H+) ≤ Per(F ′, H+) + Per(F ′, H−) +

∫
H0

|χ+ − χ−| dHn−1

+

∫
H0

|χ−| dHn−1 − Per(F ′, H−)

= Per(F ′)−
[
Per(F ′, H−)−

∫
H0

|χ−| dHn−1
]
.

It thus remains to show, that Per(F ′, H−) −
∫
H0
|χ−| dHn−1 > 0. Note that due

to our choice of α0 in Lemma 3.1 it holds

Ln(F ′ ∩H−) = A′ − A > 0.

In [15], Theorem 19.15 it is shown that the following constrained isoperimetric
problem in the half space,

�minimize Per(S,H−) among all sets S ⊂ H− with Ln(S) = v

and Per(S,H0) = σ”

for some given v > 0, σ ≥ 0 is solved by the segment of a ball BR

(
(0, ..., 0, xn)

)
,

where R, xn ≥ 0 are such that Ln(BR ∩H−) = v and Hn−1(BR ∩H0) = σ. But
for a ball which intersects H− in a set of positive measure it is surely true that
Per(BR, H−)− Per(BR, H0) > 0. Hence, choosing

v = A′ − A, σ =

∫
H0

|χ−| dHn−1

we infer that Per(F ′, H−)−
∫
H0
|χ−| dHn−1 > 0.

4 Proof of Theorem 2.2

Ad i). We start with the observation, that the so called isoperimetric pro�le of
G, i.e. the function

l : [0,Ln(G))→ R, l(A) := inf
{
Per(E) : E ⊂ G with Ln(E) = A

}
is well-de�ned for any open subset G ⊂ Rn. Our further proof relies on the
following properties of the function l on bounded regions, which might be well
known in the more general context of compact Riemannian manifolds (see, e.g.,
[17]):

8



Lemma 4.1

Let G ⊂ Rn be a bounded region and let l : [0,Ln(G)) → R be de�ned as above.
Then it holds

a) The function l is strictly increasing,

b) l is continuous,

c) l maps the interval [0,Ln(G)) bijectively to the interval [0,Per(G)).

Before we prove the lemma, let us see how it applies to the proof of Theorem
2.2. Assume that L ∈ [0,Per(G)) is given. Then, by part c) of the Lemma there
is A ∈ [0,Ln(G) such that l(A) = L. Let E ⊂ G be a subset with Ln(E) = A
and Per(E) = l(A) = L (which exists due to the boundedness of G). Then E
has maximal volume among all subsets with perimeter L, because the existence
of any set with strictly larger measure and the same perimeter L would be in
contradiction to the monotonicity of l from part a). Hence E is a solution of
problem (P ).

Proof of the lemma. Ad a). Assume there are numbers 0 ≤ A < A′ < Ln(G) with
l(A′) ≤ l(A). Since G is bounded, we �nd subsets E and E ′ of G of volume A and
A′, such that Per(E) = l(A) and Per(E ′) = l(A′). Then, as in Lemma 3.1 from
the previous section, we can choose a real number α0 such that the intersection
of E ′ with the half space Hα0 has volume A. But as it was shown in Lemma 3.1,
it then follows

Per(E ′ ∩Hα) < Per(E ′) ≤ Per(E).

Consequently, the set E ′ ∩ Hα0 has perimeter less than the set E, which is a
contradiction.

Ad b). Let A ∈ [0,Ln(G)) be arbitrary and let (Ak)k∈N be a sequence in [0,Ln(G))
which converges to A from below. From the monotonicity of l, we infer that the
limit of l(Ak) exists and satis�es lim

k→∞
l(Ak) ≤ l(A). Let Ek ⊂ G be such that

Per(Ek) = l(Ak). By the BV-compactness property (Theorem 3.23 in [1]) there
is a subset E ⊂ G such that (at least for a subsequence)

χEk
→ χE in L1(G) and Per(E) ≤ lim inf

k→∞
Per(Ek) = lim

k→∞
Per(Ek).

Now if lim
k→∞

l(Ak) < l(A), then the set E would satisfy Ln(E) = A and Per(E) <

l(A), which contradicts the de�nition of l(A).

Let now (Ak) converge to A from above and let ε > 0 be given. Let E ⊂ G
be such that Ln(E) = A and Per(E) = l(A). Since Ln(G − E) > 0, Lebesgue's
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density theorem implies the existence of a point x0 ∈ G− E for which

lim
ρ↓0

Ln(Bρ(x0) ∩ E)
Ln(Bρ(x0))

= 0.

Choose ρ0 > 0 so small, that Ln(Bρ(x0) ∩ E) < 1
2
Ln(Bρ(x0)) and such that

Per(Bρ0(x0)) < ε. Consider the set

E ′ := E ∪Bρ0(x0).

Then it holds

Ln(E ′) := A′ > A and Per(E ′) ≤ Per(E) + Per(Bρ0(x0)) ≤ l(A) + ε.

Thus, if we choose N ∈ N large enough such that Ak < A′ for all k > N , it
follows from the monotonicity of l that

l(A) ≤ l(Ak) ≤ l(A′) ≤ l(A) + ε,

and b) of Lemma 4.1 is proved.

Ad c). Having established parts a) and b), it su�ces to prove l(A) → Per(G)
as A → Ln(G). But this follows easily from the lower semicontinuity of the
perimeter with respect to L1-convergence: let Ak → Ln(G) in [0,Ln(G)) and
choose Ek with Per(Ek) = l(Ak). Then χEk

→ χG in L1(Rn) and therefore

Per(G) ≤ lim inf
k→∞

Per(Ek) = lim inf
k→∞

l(Ak) ≤ Per(G).

Ad ii). Let L > Per(G) be given. Assume that E ⊂ G has maximal volume
among all subsets of perimeter G. Let x0 ∈ G be some point and choose r > 0
such that Br(x0) ⊂ G. For any k ∈ N, let Ck b Br/k(x0) denote a compact subset
with perimeter Per(Ck) = L− Per(G) and consider the sequence

Ek := G− Ck

of subsets of G. Then Per(Ek) = Per(G) + Per(Ck) = L and Ln(G − Ek) → 0
for k → ∞. Therefore it must hold Ln(E) = L(G) and thus L(G − E) = 0.
But then Per(E) = Per(G) = Per(G) in contradiction to our assumption, that E
solves (P ) for L > Per(G).

5 Proof of Theorem 2.3

Let G ⊂ R2 be an open convex set and let w.l.o.g. B1(0) ⊂ G be a maximal
disk in G. We may assume L > 2π (since otherwise the disk BL/(2π)(x) ⊂ B1(0)
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would be a trivial solution of problem (P )) as well as Per(G) =∞ (since otherwise
diam(G) ≤ 1

2
Per(G) <∞ and existence in bounded regions is clear by Theorem

2.2). For k ∈ N we de�ne

Gk := G ∩ [−k, k]× [−k, k],

which is a convex and bounded subset of R2. Let

A := sup
{
L2(E) : E ⊂ G, Per(E) = L

}
≤ L2

4π
.

We claim the following:

Lemma 5.1

Choose k ∈ N large enough such that Per(Gk) > L and let Ek ⊂ Gk be sets of
maximal area among all subsets of Gk with perimeter L (note that such a set
exists by Theorem 2.2 i)). Then

lim
k→∞
L2(Ek) = A,

i.e. (Ek) is an area-maximizing sequence in G.

Proof of the lemma. Let ε > 0 be given. Choose a subset F ⊂ G of perimeter L,
for which L2(F ) > A− ε

2
and k0 ∈ N large enough, such that

L2(F )− L2
(
F ∩ [−k0, k0]× [−k0, k0]

)
<
ε

2
.

We set Fk0 := F ∩ [−k0, k0]× [−k0, k0]. Then

Per(Fk0) := L′ ≤ Per(F ) = L.

From the proof of Theorem 2.2 i) we see, that on the bounded region Gk the
function

ak : [0,Per(Gk))→ R, L 7→ sup
{
L2(E) : E ⊂ Gk, Per(E) = L

}
is the inverse of the corresponding function

lk : [0,L2(Gk))→ R, A 7→ inf
{
Per(E) : E ⊂ Gk, L2(E) = A

}
and thus, by Lemma 4.1, it is strictly increasing. Therefore we have

L2(Ek0) = ak0(L) ≥ ak0(L
′) ≥ L2(Fk0) ≥ A− ε.

The result now follows since the sequence L2(Ek) is increasing.
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Lemma 5.2

The sets Ek from Lemma 5.1 are convex. In particular, diam(Ek) ≤ L
2
for all

k ∈ N.

Proof of the lemma. By Theorem 1.1, each set Ek is also a solution of the
corresponding reciprocal problem in the convex and bounded set Gk. Convexity
of the Ek thus follows from quoting Theorem 3.24 in [18] (see also Remark 3.25).

For a plane convex set E, the inequality diam(E) ≤ Per(E)
2

is a triviality. (Note
that this is wrong in Rn for n ≥ 3).

The further idea of the proof is the following: in a convex set G, which contains
a maximal disk, i.e. a disk of radius r(G), any bounded convex subset E ⊂ G
has a translate E ′ (i.e. E ′ = E + p for some p ∈ R2) such that E ′ intersects the
maximal disk (see Lemma 5.3 below). Hence we may assume that the sets Ek
from Lemma 5.1 all lie within some set GK for a �xed integer K > L+1. Let now
E ⊂ GK be a set of maximal area among all subsets of GK which have perimeter
L. Then L2(E) ≥ L2(Ek) for all k ∈ N and by Lemma 5.1, the constant sequence
(E) is seen to be an area-maximizing sequence of subsets in G. Hence E is a
solution of the problem (P ) in G. It remains to prove the following result on
convex sets:

Lemma 5.3

Let K ⊂ R2 be a closed convex set and B ⊂ K any maximal disk in K. Then
every convex subset C ⊂ K has a translate in K which intersects B, i.e. there
exists p ∈ R2 such that

p+ C ⊂ K and (p+ C) ∩B 6= ∅.

Proof of the lemma. We may assume that B = B1(0) and that C ∩ B = ∅. Let
H ⊂ R2 be a common line of support of both B and C, i.e. H is a line which
intersects B as well as C and such that B,C lie in the same of the two halfspaces
which are separated by H (see the picture below).

B
C H

Such a line H can always be found by taking a line of support at any boundary
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point of the convex hull conv(B∪C), which neither lies on ∂B nor on ∂C. W.l.o.g.
we may assume that

H =

〈(
1
0

)〉
−
(
0
1

)
.

Then we claim that C lies completely within the stripe

S :=
{
(x, y) ∈ R2 : |y| ≤ 1

}
.

Indeed, let a ∈ H ∩ C and assume that there exists a point b ∈ C − S. Note
that due to the convexity of C and our assumption B ∩ C = ∅, the line ab does
not intersect B. Let K ′ be the convex hull of the disk B and the points a, b.
Due to convexity, we have K ′ ⊂ K. Furthermore, we see that B cannot be a
maximal disk in K ′: since ε := dist(B, ab) > 0, we can translate B by ε

2
in x

direction, so that the shifted disk B′ intersects the boundary of K ′ only in the
point (ε/2,−1). Due to b /∈ S, B′ has positive distance to ∂K ′ − H and can
therefore not be maximal in K ′ (see the picture below), which is in contradiction
to our assumption.

︸ ︷︷ ︸
ε/2

B′

a

b

S

x

y

It follows that C ⊂ S. Let d := dist(B,C). Then, by the convexity of K the
translate

C − (d+ 1)

(
1
0

)
lies inside K and intersects B, as claimed.

Remark 5.1

We would like to note, that the method described above probably applies to a larger
class of two-dimensional regions G. We say that G ⊂ R2 has the "translation
property�, if G contains a maximal disk B such that any connected subset E ⊂ G
has a translate E ′ = E+ p in G which intersects B. An example of a non-convex
set which has the translation property is shown in the following picture:
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y

x

y(x) = 1
x2

B

G

Then if G is a region with the translation property and in addition has C1-
smooth boundary, we can repeat the argument from the proof of Theorem 2.3 for
each connected component of an area maximizing sequence in G, which by [19] is
C1-smooth as well. However, it seems to be di�cult to give a sharp characteri-
zation of sets having the translation property in geometrical terms.
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