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Irene M. Gamba∗ Sergej Rjasanow†

August 8, 2017

Abstract

In this work, we we propose a new Galerkin-Petrov method for the numeri-
cal solution of the classical spatially homogeneous Boltzmann equation. This
method is based on an approximation of the distribution function by associ-
ated Laguerre polynomials and spherical harmonics and test an a variational
manner with globally defined three-dimensional polynomials. A numerical
realisation of the algorithm is presented. The algorithmic developments are
illustrated with the help of several numerical tests.

1 Introduction

In this paper, we propose a new Galerkin-Petrov method for the numerical solution
of the classical spatially homogeneous Boltzmann equation. This method is based on
an approximation of the distribution function by associated Laguerre polynomials
and spherical harmonics. The test functions are polynomials defined globally in R3.
This choice leads to a rapid numerical scheme with a high spectral accuracy for
smooth solutions.
Deterministic methods for the Boltzmann equation have been extensively studied in
the last decades. Overview of these methods can be found, for example, in the book
of V. Aristov [2] and in a more recent review by A. Narayan and A. Klöckner [34].
Since the pioneering work of D. Goldstein, B. Sturtevant and J. E. Broadwell [24],
many authors proposed different ideas on how to derive a discrete version of the
Boltzmann collision operator [35],[43],[46],[41],[36],[37]. In [29] the authors studied
the difference scheme for a mixture of gases. L. Pareschi and G. Russo [39],[40]
considered deterministic spectral methods for the Boltzmann equation based on the
Fourier transform. In our paper, we limit our consideration to a particular class of
deterministic methods, namely, those based on mesh-free Galerkin-Petrov discretisa-
tion. The main difficulty within the deterministic approximation of the Boltzmann
collision integral, besides its high dimensionality, is the fact that a grid for the inte-
gration over the velocity space R3 is not suitable for the integration over the set of all
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directions (i.e. the unit sphere S2). In the case of a regular tensor discretisation of
the velocity space with n points in each direction, only O(n) irregularly distributed
integration points would belong to the unit sphere. A. Bobylev, A. Palczewski and
J. Schneider [11] considered this direct approximation of the Boltzmann collision
integral and showed that the corresponding numerical method is consistent. This
method requires O(n7) arithmetical operations per time step and has the formal ac-
curacy of O(n−1/2). A. Bobylev and S. Rjasanow considered the case of the Maxwell
pseudo-molecules and utilised an explicit simplification of the Boltzmann equation
for this model of interaction alongside with the Fast Fourier Transform (FFT) to
develop a deterministic numerical method [12], [13]. Their method requires O(n4)
arithmetical operations per time step and achieves the same low formal accuracy
order of O(n−1/2). A similar method was proposed by L. Pareschi and B. Perthame
in [38]. It appears to be the fastest known deterministic numerical method on an
uniform grid. At the same time, its applications are strongly restricted to the case
of Maxwell pseudo-molecules. Considering the case of hard spheres, A. Bobylev and
S. Rjasanow [14] developed an algorithm, where the integration over the unit sphere
is completely separated from the integration over the whole space R3. The resulting
scheme utilises fast evaluation of the generalised Radon and X-Ray transforms via
the FFT and requires O(n6 log(n)) operations per time step with the high formal
accuracy of O(n−2). A further development of this approach in [21] led to spectral
schemes for more general collision kernels with a higher efficiency. I. Ibragimov and
S. Rjasanow in [26] used a special form of the Boltzmann collision operator, which
led to a possibility to omit numerical integration over the unit sphere. This idea
was later used by I. M. Gamba and S. H. Tharkabhushanam [22], [23], to handle
the granular inelastic Boltzmann equation. It was developed further in the recent
paper [20] for most general collision cross-section with anisotropic angular scattering
that includes grazing collisions approximating the Landau collision operator. These
methods have also been extended to treat systems of Boltzmann equations for gas
mixtures and multi-energy level gases (see [33], [48]). In these extensions of the
scheme, the Langrange multiplier method is employed to enforce the total conserva-
tion properties associated with the mixture. The first result on error estimates and
convergence to Boltzmann-Maxwell equilibrium states for Lagrangian based conser-
vative spectral methods for the Boltzmann equation with elastic interactions and
hard potential with angular cut-off collision kernels was published in [1]. A survey
of this subject can be found in [19]. While the majority of authors use an uniform
grid in the velocity space, in [25] A. Heintz, P, Kowalczyk and R. Grzhibovskis have
used a non-uniform grid.
Reviews of an already substantial amount of publications on the Discrete Velocity
Models (DVM) for the Boltzmann equation can be found in [6] and in [8]. Con-
structive ideas in this area have been recently proposed by H. Babowsky and his
co-authors in [3],[4]. Two recent ideas regarding the deterministic solution of the
Boltzmann equation are the use of the Galerkin schemes based on global basis func-
tions (see unpublished manuscripts [18],[28]) and the approximation by means of
three-dimensional algebraic tensors [27],[5]. We refer to the recent monograph by
B. Shizgal [45] devoted to the spectral methods and an enormous amount of cited
literature therein. The approach most similar to ours can be found in [16]. Its
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realisation for a rather simple isotropic situation is published in [17].
This paper is organised as follows. In Section 2, we give a short description of
an initial value problem for the Boltzmann equation and present different collision
kernels. In Section 3, an abstract version of Galerkin-Petrov method for a general
bilinear operator is formulated. We describe a set of basis and test functions in
terms of classical polynomials and spherical harmonics. Furthermore, the mass
and collision matrices are presented in all details. A numerical realisation of the
algorithm is described in Section 4. Here, we use a numerical integration for the
entries of the mass and collision matrices and describe possible time integration
schemes. Finally, in Section 5, we present the results of numerical computations
done by the new method for different initial value problems and different collision
kernels. Conclusions and an outlook can be found in Section 6.

2 Boltzmann equation

We consider the initial value problem for the classical spatially homogeneous Boltz-
mann equation

∂

∂t
f(t, v) = Q(f, f)(t, v) , t ∈ R+ , v ∈ R3 , (1)

which describes the time evolution of the probability density

f : R+ × R3 → R+

from its initial value
f(0, v) = f0(v)

to the final Maxwell distribution

lim
t→∞

f(t, v) = fM(v) =
ρ0

(2π T0)3/2
e
−
|v − V0|2

2T0 . (2)

The right-hand side of the equation (1), known as the collision integral or the collision
term, has the form

Q(f, f)(t, v) =

∫
R3

∫
S2

B(v, w, e)
(
f(t, v′)f(t, w′)− f(t, v)f(t, w)

)
de dw . (3)

Here v, w ∈ R3 are the post-collision velocities, e ∈ S2 ⊂ R3 is a unit vector,
v′, w′ ∈ R3 are the pre-collision velocities, and B(v, w, e) is the collision kernel. The
operator Q(f, f) represents the change of the distribution function f due to the
binary collisions between particles. A single collision results in the change of the
velocities of the colliding partners

v′, w′ → v, w . (4)

The reversible or elastic collision transformation (4) conserves the momentum and
the energy

v + w = v′ + w′ , |v|2 + |w|2 = |v′|2 + |w′|2 , (5)
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implying that the post- and pre-collisional relative velocities u = v − w and u′ =
v′ − w′, respectively, have the same magnitude, i.e. |u′| = |u|. The renormalised
pre-collisional relative velocity u′ defines the scattering direction denoted by the unit
vector e, namely

e = u′|u′|−1 = u′|u|−1 .

In particular, the conservative exchange of binary states (5) can be written in the
following centre of mass - relative velocity coordinates form

v′ =
1

2

(
v + w + |u|e

)
, w′ =

1

2

(
v + w − |u|e

)
, e ∈ S2 .

In this frame of reference, the collision kernel, or transition probability rate from
the pre to post states, is, in general, a mapping

B : R3 × R3 × S2 → R+. (6)

It usually is written in a form of a product of a power function of the relative speed
and a scattering angular function

B(v, w, e) = B

(
|u|, (u, e)

|u|

)
= Cλ |u|λ b

(
(u, e)

|u|

)
, −3 < λ ≤ 1 . (7)

These kernels include hard spheres (λ = 1 and b = 1), hard potentials (0 < λ < 1),
Maxwell pseudo-molecules (λ = 0), and soft potentials models (−3 < λ < 0). In
addition, the weak formulation associated to the Boltzmann equation can be derived
using the binary structure, the conservative collision law, and the the symmetries
of the collision kernel with respect to the exchange of variables (6). This weak form
reads

∂

∂t

∫
R3

f(t, v)ψ(v) dv =

∫
R3

Q(f, f)(t, v)ψ(v) dv

(8)

=

∫
R3

∫
R3

f(t, v)f(t, w)

∫
S2

B(v, w, e)
(
ψ(v′) + ψ(w′)− ψ(v)− ψ(w)

)
de dw dv

for any test function ψ that makes this integral finite. Note that in this weak
formulation ψ(v′) and ψ(w′) are the evaluations in the post-collisional velocities.
This is what subtlety marks the stability of the Boltzmann equation through the
H-Theorem given below. Taking ψ ∈ span{1, v, |v|2} and using the elastic exchange
of coordinates (5), the following conserved quantities are found

∂

∂t

∫
R3

f(t, v)

 1
v
|v|2

 dv =

∫
R3

Q(f, f)(t, v)

 1
v
|v|2

 dv =

 0
0
0

 .

Thus, the functions from the set {1, v, |v|2} are called collision invariants.
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Finally, we recall the H-theorem that can be obtained by testing with ψ = f(t, ·).
If f ∈ C1

(
(0,∞), L1(R3)

)
, then

∂

∂t

∫
R3

f(t, v) ln f(t, v) dv =

∫
R3

Q(f, f)(t, v) ln f(t, v) dv =

−
∫

R3×R3×S2

(f(v′,t)f(w′,t)− f(v,t)f(w,t))
ln(f(v′,t)f(w′,t))

ln(f(v,t)f(w,t)))
B(v, w, e)dedwdv ≤ 0 .

As anticipated in (2), the Boltzmann H-theorem ensures that the unique stationary
equilibrium state is a Maxwell distribution, whose moments are the the same as
those of the initial state. In addition, this stationary equilibrium state is stable
with convergence rates depending on the potential rates λ and the integrability
properties of the angular part b. We assume that the angular part b of the collision
kernel is integrable over e ∈ S2. If, in addition, the angular function b is bounded,
this condition is referred as the Grad’s cut-off. The integrability condition of the
angular part b implies that the collision operator Q(f, f) splits into a difference of
two positive operators,

Q(f, f)(t, v) = Q+(f, f)(t, v)−Q−(f, f)(t, v) = Q+(f, f)(t, v)− f(t, v) ν(t, v),

where

Q+(f, f)(t, v) =

∫
R3

∫
S2

B(v, w, e)f(t, v′)f(t, w′) de dw

is the gain operator, and

Q−(f, f)(t, v) = f(t, v) ν(t, v)

is the loss operator, provided that the collision frequency integral

ν(t, v) =

∫
R3

∫
S2

B(v, w, e)f(t, w) de dw

is well defined. Without loss of generality, we assume

1

4π

∫
S2

b
((u, e)

|u|

)
de =

1

2

π∫
−π

b(cos θ) sin θ dθ = 1 . (9)

It is important to point out, that the case λ = −3, corresponding to the Coulomb in-
teraction, can not be modelled by the Boltzmann equation if the function b(cos θ) =
cos((u, e)|u|−1 is integrable. This is due to the divergence of the integral of f ∗ |u|−3
in 3-dimensions for any integrable f(t, ·) in v-space. The loss operator Q−(f, f) is
not well defined in this case.
We will also consider the special forms of isotropic cut-off kernel B, namely the
Variable Hard Spheres model (VHS), see [7]. In this model the angular dependence
of the scattering is isotropic, i.e. independent of the scattering angle

B(v, w, e) = Cλ |u|λ , −3 < λ ≤ 1 . (10)
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Our approach can be extended to treat many interesting non-cut-off collision kernels,
in which the angular scattering function b(cos(θ)) becomes singular as the scattering
angle θ approaches zero, or equivalently

cos θ =
(u, e)

|u|
→ 1 . (11)

This limit can be associated to a singular behaviour for near grazing collisions cor-
responding to interactions where v′ ≈ v and w ≈ w. Indeed, by the conservative
interaction law the relation

|v′ − v|2 = |w′ − w|2 = |u|2 1− cos θ

2
, (12)

or equivalently

|v′ − v| = |w′ − w| = |u| sin θ
2

holds. This implies, that |v′− v| ≈ 0 is equivalent to sin(θ/2) ≈ 0 independently on
the norm of the relative speed |u|.
While we will not cover the non cut-off case in this study. We expect, however,
that an application of our proposed Galerkin-Petrov scheme will address this case
as well. It can be done along the lines of the references [47], [49], where a classical
Discontinuous Galerkin, or a non-conformal Finite Element Method, was developed
to compute the spectrum of the linearised Boltzmann equation for angular non cut-
off scattering kernels ranging from hard to soft potentials.
The computational approach for the non cut-off case in these studies uses the weak
formulation (8) with the second order Taylor expansion of the test function terms
ϕ(v′) − ϕ(v). This makes it possible to perform the cancellation of non-integral
angular singularities analytically, i.e. by means of the relation (12). Thus, a sound
numerical scheme, which is able to handle proper Rayleigh quotients, is formulated.
A novel way to numerically compute Rayleigh quotients for solutions of the linearised
radial Landau equation by means of Laguerre polynomial expansion can be found in
a recent publication [10]. This work relates to our Galerkin Method approach, since
it indicates, that we can handle the spectral analysis of general, non-radial solutions
of both the linearised Boltzmann and Landau equations. We will elaborate on this
feature of the method in an upcoming paper.
The fast solver derived in this paper can be used to compute anisotropic collisions for
grazing limits. This allows for obtaining approximation rates of the Landau operator
by a sequence of Boltzmann operators, similarly as it was done in [20], where a
spectral Lagrangian constrains method was employed. One starts by solving the
initial value problem for the non-linear Boltzmann equation (1)-(3) in 3-dimensions
in velocity space with the Coulomb interaction (λ = −3). The collision kernels are
given by a 2-parameter family (ε, δ) ∈ (0, 1]× [0, 2) of cut-off angular cross sections
as

bδε

((u, e)

|u|

)
= bδε(cos θ) = − 4

2πHδ(sin(ε/2))

1

cos3+δ θ
1cos θ≥sin(ε/2) . (13)
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with

Hδ(x) =

{
log x , for δ = 0 ,

−x−δ

δ
, for 0 < δ < 2 .

(14)

Note that the case δ = 0 corresponds to the Rutherford cross section. The cor-
responding Landau operator limit is independent of the angular scattering cross
section bδε. Omitting the time variable, it can be written as

QL(f,f)(v)=divv

(∫
R3

|u|λ+2
(
I − u⊗ u

|u|2
)(
f(w)∇vf(v)− f(v)∇wf(w)

)
dw
)
.

The value δ = 0 is the smallest possible exponent when it is possible to obtain the
Landau equation. For any value δ > 2, however, it is impossible to control the
higher terms of the expansion (see [20]). This particular case will be the subject of
our study an upcoming paper.

3 Galerkin-Petrov approximation

Let V be a space of functions with three independent variables and

Q : V× V→ V (15)

a bilinear operator. Let
f : R+ × R3 → R

be a time dependent function with

f(t, ·) ∈ V for all t ∈ R+ .

We consider an initial value problem

ft = Q(f, f) , for t > 0 , f(0, ·) = f0 . (16)

By the use of a finite dimensional subspace Vn of the space V having a basis

Φ =
(
ϕ1, . . . , ϕn

)
, (17)

we consider an approximation of the function f in the form

f (n) = Φ f =
n∑
j=1

fjϕj , f ∈ Rn . (18)

Furthermore, let
V∗n ⊆ V∗

be a finite dimensional subspace of the space V∗ of distributions over V having a
basis

Ψ =
(
ψ1, . . . , ψn

)
. (19)
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Then the Galerkin-Petrov scheme for the equation (16) reads as follows. Find
f (n)(t, ·) ∈ Vn such that the Galerkin-Petrov equations

d

dt
< f (n)(t, ·), ψi >=< Q(f (n)(t, ·), f (n)(t, ·)), ψi > , i = 1, . . . , n (20)

with the initial condition

< f (n)(0, ·), ψi >=< f0, ψi > , i = 1, . . . , n (21)

are satisfied for t > 0. Here, the brackets< ·, · > denote the action of the distribution
ψi ∈ V∗ on a function from V. The system (20) is in fact a system of ordinary
differential equations for the time-dependent coefficients fj of the vector f ∈ Rn.
By the use of the bilinear structure of the operator Q, we get a shorter form of the
system (20)

d

dt

(
Mf(t)

)
i

= f(t)>Qi f(t) , i = 1, . . . , n (22)

and
Mf(0) = f

0
,
(
f
0

)
i

=< f0, ψi > , i = 1, . . . , n .

The matrices Qi have the entries of the following form

Qi[k, `] =< Q(ϕk, ϕ`), ψi > , i, k, ` = 1, . . . , n ,

while the mass matrix M is defined as

M [i, j] =< ϕj, ψi > , i, j = 1, . . . , n .

Turning back to the Boltzmann equation, we assume that the initial condition f0
belongs to the Schwartz space S of infinitely smooth functions all of whose derivatives
are rapidly decreasing. Then the solution f of the Boltzmann equation f(t, ·) is
again a Schwartz space function for all times t, see [15]. Thus, the basis functions
ϕj belong to the subspace

Sn = spanΦ ⊂ S .

The dual space S∗ is the space of tempered distributions. The space S∗ contains
among others polynomials of arbitrary degree.

3.1 Basis functions

In this subsection, we introduce a set of globally defined basis functions.

3.1.1 Classical polynomials and spherical harmonics

First, we give the definitions and the main properties of the associated Laguerre
polynomials, associated Legendre polynomials, and of the spherical harmonics.
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Associated Laguerre polynomials

The classical associated Laguerre polynomial of degree k is the polynomial solution
of the differential equation

x y′′ + (α− 1 + x) y′ + k y = 0 , α ∈ R+.

It is denoted by L
(α)
k . By the use of the abbreviation(
k + α
m

)
=

(k + α)(k − 1 + α) . . . (k −m+ α)

m!
,

an explicit formula for the polynomial L
(α)
k reads

L
(α)
k (x) =

k∑
i=0

(−1)i
(
k + α
k − i

)
xi

i!
.

The orthogonality property of the associated Laguerre polynomials can be written
as

∞∫
0

xαe−xL
(α)
k (x)L(α)

m (x) dx =
Γ(k + 1 + α)

k!
δk,m ,

where δk,m is the Kronecker symbol. Thus, the polynomials are orthogonal with
respect to the measure xαe−x dx. For numerical computations of the associated
Laguerre polynomials, we use the initial functions

L
(α)
0 (x) = 1 , L

(α)
1 (x) = 1 + α− x

and the following recursion for k ≥ 2

L
(α)
k (x) =

(2k − 1 + α− x)L
(α)
k−1(x)− (k − 1 + α)L

(α)
k−2(x)

k
.

Associated Legendre polynomials

The classical associated Legendre polynomial is the polynomial solution of the dif-
ferential equation

(1− x2) y′′ − 2x y′ +
(
`(`+ 1)− m2

1− x2
)
y = 0 ,

where the index ` is the degree and m the order of the associated Legendre polyno-
mial P`,m. An explicit formula for the polynomial P`,m is

P`,m(x) =
(−1)m

2` `!
(1− x2)m/2 d

`+m

dx`+m
(x2 − 1)` , 0 ≤ m ≤ ` .

The orthogonality properties of the associated Legendre polynomials read as

1∫
−1

P`1,m(x)P`2,m(x) dx = 2
(`+m)!

(2`+ 1)(`−m)!
δ`1,`2 ,
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for fixed m and, in the case `1 = `2 = `. Furthermore,

1∫
−1

1

1− x2
P`,m(x)P`,k(x) dx =

 0 for m 6= k
(`+m)!

m(`−m)!
for k = m 6= 0

for a fixed `. For k = m = 0, the last integral diverges. For numerical evaluations
of the associated Legendre polynomials, we use the initial functions

Pm,m(x) = (−1)m(2m− 1)!! (1− x2)m/2 , Pm+1,m(x) = x (2m+ 1)Pm,m(x)

and the following recursion for k = m+ 2, . . . , `

Pk,m(x) =
(2k − 1)xPk−1,m(x)− (k − 1 +m)Pk−2,m(x)

k −m
.

Spherical harmonics

The spherical harmonics Y`,m are the complete and orthonormal set of eigenfunctions
of the angular part of the three-dimensional Laplace’s equation(

∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
Y`,m(φ, θ) = −`(`+ 1)Y`,m(φ, θ) ,

for ` ∈ N0 and m = −`, . . . , 0, . . . , `. An explicit formula for the spherical harmonics
with the parameterisation

e =

 cosφ sin θ
sinφ sin θ

cos θ

 (23)

is

Y`,m(φ, θ) =

√
2`+ 1

4 π

(`−m)!

(`+m)!
P`,m(cos θ) eımφ .

Here, P`,m are the associated Legendre polynomials. The orthogonality property of
the spherical harmonics reads as∫

S2

Y`1,m1(e)Y`2,m2(e) de = δ`1,`2δm1,m2 .

However, for our purposes, we will use the real valued version of the spherical har-
monics in the form

Y`,m(φ, θ) =

√
2`+ 1

2 π

(`−m)!

(`+m)!
P`,m(cos θ) cos(mφ)

for m > 0,

Y`,0(φ, θ) =

√
2`+ 1

4 π
P`,0(cos θ)

for m = 0 and

Y`,m(φ, θ) =

√
2`+ 1

2 π

(`−m)!

(`+m)!
P`,m(cos θ) sin(−mφ)

for m < 0.
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3.1.2 Basis functions

In three dimensional spherical coordinates

v = % ev , 0 ≤ ρ <∞ , ev ∈ S2 ,

we decompose the basis function ϕj as follows

ϕj(v) = ϕj(% ev) = Φk,`(%)Y`,m(ev) , k ∈ N0 , ` ∈ N0 , −` ≤ m ≤ ` .

Thus, the global index j is a function of three indices j = (k, `,m). Since the angular
part of the function ϕj is already defined, we look at the radial part and write the
function Φk in the form

Φk,`(%) = µk,` e−%
2/2 L

(`+1/2)
k (%2) %`.

The normalisation parameters µk,` are chosen so, that the functions Φk,` will compose
an orthonormal system with respect to the measure %2 d%. Setting %2 = x , 2 % d% =
dx, we get

∞∫
0

µk1,`µk2,` %
2`+2 e−%

2

L
(`+1/2)
k1

(%2)L
(`+1/2)
k2

(%2) d% =

1

2
µk1,`µk2,`

∞∫
0

%2`+1e−%
2

L
(`+1/2)
k1

(%2)L
(`+1/2)
k2

(%2) 2% d% =

1

2
µk1,`µk2,`

∞∫
0

x`+1/2e−xL
(`+1/2)
k1

(x)L
(`+1/2)
k2

(x) dx =

1

2
µ2
k,`

Γ(k + `+ 3/2)

k!
δk1,k2 ,

in the case k1 = k2 = k. To obtain an orthonormal system, we set

µk,` =

√
2 k!

Γ(k + `+ 3/2)
.

This yields the form of the function f (n) in spherical coordinates v = % ev

f (n)(v) =
K∑
k=0

L∑
`=0

∑̀
m=−`

fk,`,mΦk,`(%)Y`,m(ev) .

The number of the basis functions is

n = (K + 1) (L+ 1)2 .
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3.2 Test functions

All basis functions belong to the Schwartz space S of infinitely smooth functions all
of whose derivatives are rapidly decreasing. Thus the collision integral Q(ϕk, ϕ`) is a
Schwartz function as well and, therefore, any tempered distribution can be chosen as
a test function ψi. In the case of regular distribution ψi identified with a continuous
function

ψi : R3 → R ,

the entries of the matrices Qi can be evaluated for i, k, ` = 1, . . . , n as follows

Qi[k, `] =< Q(ϕk, ϕ`), ψi >=

∫
R3

Q(ϕk, ϕ`)(v)ψi(v) dv

=
1

2

∫
R3

∫
R3

ϕk(v)ϕ`(w)

∫
S2

B(v, w, e)
(
ψi(v

′)+ψi(w
′)−ψi(v)−ψi(w)

)
de dw dv,

where the weak form of the collision integral (8) has been used. If the set of test
functions contains a collision invariant, the corresponding matrices Qi will vanish
completely, and, the corresponding macroscopic quantity will be conserved auto-
matically.
One possible choice is a pure Galerkin method with

ψi = ϕi , i = 1, . . . , n .

In this case, the mass matrix M is the identity matrix due to the orthogonality of
the system. However, an additional numerical conservation procedure is necessary.
Due to an automatic fulfilment of the conservation properties, the following choice
of test functions for a index i = (k, `,m) seems to be natural

ψi(v) = L
(`+1/2)
k (%2) %` Y`,m(ev) , for v = % ev .

These globally defined polynomials are in fact the basis functions without the factor
µk,` e−%

2/2. All five collision invariants are included in the set of the test functions,
namely

ψ0,0,0(v) =

√
1

4 π
,

ψ0,1,−1(v) =

√
3

4 π
% sinφ sin θ =

√
3

4 π
v2 ,

ψ0,1,0(v) =

√
3

4 π
% cos θ =

√
3

4π
v3 ,

ψ0,1,1(v) =

√
3

4 π
% cosφ sin θ =

√
3

4π
v1 ,

ψ1,0,0(v) =

√
1

4 π

(
− %2 +

3

2

)
=

√
1

4π

(
− |v|2 +

3

2

)
.

Thus, the conservation properties are now ensured automatically.
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For a regular Galerkin-Petrov scheme, it is necessary to choose the same number of
basis and test functions, i.e. for

k = 0, . . . , K , ` = 0, . . . , L , −` ≤ m ≤ ` ,

we get
n = (K + 1) (L+ 1)2 .

3.3 Mass matrix

The mass matrix M ∈ Rn×n has the entries

M [i, j] =< ϕj, ψi > , i, j = 1, . . . , n ,

where i = (ki, `i,mi) and j = (kj, `j,mj). Since both, basis and test functions con-
tain spherical harmonics which are mutually orthonormal, in spherical coordinates
we obtain

M [i, j] = 0 , for `i 6= `j or mi 6= mj

and

M [i, j] = µkj ,`

∞∫
0

%2`+2e−%
2/2 L

(`+1/2)
kj

(%2)L
(`+1/2)
ki

(%2) d% (24)

for `i = `j = ` and mi = mj = m. Thus, the mass matrix is rather sparse and, since
M [i, j] do not depend on m, has many equal non-zero entries.

3.4 Collision matrices

For a general interaction model, the collision matrices Qi have the entries

Qi[k, `] =

∫
R3

∫
R3

ϕk(v)ϕ`(w)qi(v, w) dw dv , (25)

where

qi(v, w) =

∫
S2

B(v, w, e)
(
ψi(v

′) + ψi(w
′)− ψi(v)− ψi(w)

)
de . (26)

The integration (26) is an important part of the generation of the collision matrices.
For the VHS model of interaction (10), and for general polynomial test functions, this
integration can be done analytically leading to a function qi which is a polynomial
in six variables v and w multiplied by |u|λ. For more general models of interaction
and for test functions given in spherical coordinates an analytic integration seems
to be impossible. Furthermore, for the non cut-off collision models, the kernel B
has a singularity and the corresponding numerical integration should be done very
carefully.
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4 Numerical realisation

The main advantage of the above Galerkin-Petrov method is the possibility to pre-
compute and to store all the collision matrices Qi and the mass matrix M for
different discretisation parameters K and L. Furthermore, these matrices are also
independent of a time discretisation scheme and corresponding time discretisation
parameters. Therefore, once computed, experiments with different time discretisa-
tion schemes can be easily performed. For the numerical integration over R3, we will
use spherical coordinates and a combination of the radial Gauss-Laguerre quadra-
tures with the Lebedev quadratures for the integration over the unit sphere. For
a given function g : R+ → R, the Gauss-Laguerre quadrature is applied to the
integrals of the form

I[g] =

∞∫
0

x1/2e−x g(x) dx

and results in an approximation

INGL [g] =

NGL∑
i=1

ωGLi g(xi) .

The weights ωGLi and the positions xi are available for any NGL with an arbitrary
accuracy (see [44]). By the use of the parameterisation (23), the integral over the
unit sphere for a given function g : S2 → R

I[g] =

∫
S2

g(e) de

can be transformed into the corresponding integrals over the rectangular domain
[0, 2 π] × [0, π] and subject to the subsequent application of the classical Gauss
quadratures. However, the Lebedev quadratures [31],[32]

I[g] = 4 π

NL∑
j=1

ωLj g(ej) , ej ∈ S2

are invariant under finite rotation groups and available for many values of NL. The
first of them are for NL = 6, 14, 26, 38, 50, 74, 86, 110. We claim that this set will be
sufficient for our first tests.

Mass matrix

The Gauss-Laguerre quadratures will be used for numerical computation of the mass
matrix entries corresponding to (24). With the substitution %2 = x , 2 % d% = dx,
we get

M [i, j] =
1

2
µkj ,`

∞∫
0

x`+1/2e−x
(
x`ex/2 L

(`+1/2)
kj

(x)L
(`+1/2)
ki

(x)
)
dx

14



and approximate these entries as

MNGL [i, j] =
1

2
µkj ,`

NGL∑
iv=1

ωGLiv x`ive
xiv/2 L

(`+1/2)
kj

(xiv)L
(`+1/2)
ki

(xiv) .

As we have mentioned before, only few entries of the mass matrix are different from
zero and they are computed numerically during the initialisation. This requires
just a few seconds of computer time. Then we use LAPACK package to perform
the LU decomposition of the matrix MNGL in order to solve the systems of linear
equations with the mass matrix in initial and later in every time step of the algo-
rithm. Formally, the numerical work for this decomposition is O(n3). However, the
corresponding computer time is negligible in our experiments.

Collision matrices

The computation of the collision matrices is the most important and numerically
difficult step of the algorithm. However, it is an initialisation step and will be done
only once for the given collision kernel and for the fixed parameters K,L,NGL and
NL. Then all n collision matrices of the dimension n×n will be stored and used for all
computations on the later stages. By the use of the substitution %2 = x , 2 % d% = dx
again, we get for a function g : R3 → R

I[g] =

∫
R3

g(v) dv =

∞∫
0

%2
∫
S2

g(% e) de d%

=
1

2

∞∫
0

x1/2e−x
(

ex
∫
S2

g(
√
x e) de

)
dx

and approximate these integrals as follows

INGL,NL [g] = 2π

NGL∑
iv=1

ωGLiv exiv
NL∑
jv=1

ωLjvg(
√
xiv ejv) .

Thus, for the entries of the collision matrices Ql[k, `] with k = (kv, `v,mv) and
` = (kw, `w,mw) we get(

QNGL,NL

)
i
[k, `] = (2 π)2

NGL∑
iv=1

ωGLiv x
`v
iv

exiv/2 L
(`v+1/2)
kv

(xiv)×

NL∑
jv=1

ωLjvY`v ,mv(ejv)×

NGL∑
iw=1

ωGLiw x
`v
iw

exiw/2 L
(`w+1/2)
kw

(xiw)×

NL∑
jw=1

ωLjwY`w,mw(ejw)
(
qL
)
i
(viv ,jv , wiw,jw) ,
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where viv ,jv =
√
xivejv , wiw,jw =

√
xiwejw and

(
qL
)
i
(viv ,jv , wiw,jw) =

NL∑
j=1

ωLj B(viv ,jv , wiw,jw , ej)×(
ψi(v

′
iv ,jv ,iw,jw(ej)) + ψi(w

′
iv ,jv ,iw,jw(ej))− ψi(viv ,jv) + ψi(wiw,jw)

)
,

with

v′iv ,jv ,iw,jw(ej) =
viv ,jv + wiw,jw

2
+

1

2
|viv ,jv − wiw,jw |ej ,

w′iv ,jv ,iw,jw(ej) =
viv ,jv + wiw,jw

2
− 1

2
|viv ,jv − wiw,jw |ej .

It is clear that it impossible to compute all these matrices by the direct use of the
above formulae for reasonable discretisation parameters. However, the separated
structure of the factors allows to precompute three arrays PGL, PL and PQ and to
use them to assemble the collision matrices in an efficient manner. The components
of the first array are for k = 0, . . . , K , ` = 0, . . . , L and i = 1, . . . , NGL(

PGL

)
k,`,i

= ωGLi x`ie
xi/2 L

(`+1/2)
k (xi)

leading to (K + 1)(L+ 1)NGL words of computer memory. The components of the
second array are for ` = 0, . . . , L , m = −`, . . . , ` and j = 1, . . . , NL(

PL

)
l,m,j

= ωLj Y`,m(ej)

leading to (L + 1)2NL words of computer memory. Finally, the most complicated
array is (

PQ

)
iv ,jv ,iw,jw,i

=
(
qL
)
i
(viv ,jv , wiw,jw)

leading to nN2
GLN

2
L words of computer memory. The numerical cost of the first two

arrays is sub-linear in n and requires a negligible computer time. The computation
of the third array, however, is more demanding. Formally, it requires only a lin-
ear amount of operations with respect to the number of unknowns and quadratic
with respect to the number of integration points. However, these numbers are not
independent and in order to keep the spectral accuracy, an increase of the num-
ber of integration points is unavoidable with increasing n. The computations of all
Qi , i = 1, . . . , n is as follows

(
QNGL,NL

)
i
[k, `] = (2 π)2

NGL∑
iv=1

NL∑
jv=1

NGL∑
iw=1

NL∑
jw=1

αiv ,jv ,iw,jw

(
PQ

)
iv ,jv ,iw,jw,i

where

αiv ,jv ,iw,jw =
(
PGL

)
kv ,lv ,iv

(
PL

)
lv ,mv ,jv

(
PGL

)
kw,lw,iw

(
PL

)
lw,mw,jw

.
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Note that αiv ,jv ,iw,jw is independent of i and, therefore, once computed, can be used to
update the iv, jv, iw, jw sum for all matrices i. This leads to only a few multiplications
and additions for the entries of the collision matrices without evaluation of special
functions. The numerical work and memory, however, is still of the order O(n3).
Furthermore, the entries k, ` of the collision matrices are independent from each
other and, therefore, their computation can be done in parallel by the use of the
open MP software without any additional programming effort.

Time discretisation

Once the mass matrix M and all collision matrices Qi are computed (from now on
the subscripts NGL and NL are omitted), we can start a numerical solution of the
problem. First of all, the initial right hand side f

0
has to be computed(

f
0

)
i

=< f0, ψi > , i = 1, . . . , n .

We use the numerical quadrature

(
f
0

)
i

= 2π

NGL∑
iv=1

ωGLiv exiv
NL∑
jv=1

ωLjvf0(
√
xiv ejv)ψi(

√
xiv ejv) , i = 1, . . . , n

and compute the initial coefficient vector

f (0) = M−1f
0
.

Then we choose a time step τ > 0 and the final time T = τ Nt. For the time
integration of the system (22), we can choose any classical solver, for example the
most simple Euler scheme or the Runge-Kutta method of the second or a higher
order. For the Euler method the kth step, k = 0, . . . , Nt− 1, is as follows. Compute
the vector q with

q
i

= (Qif
(k), f (k)) , i = 1, . . . , n

by the use of the BLAS library. Compute the next coefficient vector f (k+1) as

f (k+1) = f (k) + τ M−1q

by utilising the functionality of the LAPACK package and the BLAS library once
again.

5 Numerical examples

In this section we consider three examples of relaxation. The collision kernel of the
first two examples will be constant, i.e.

B(v, w, e) =
1

4π
.

This is the most simple case of Maxwell pseudo–molecules. For this kernel, the exact
relaxation time of any moment of the distribution function is known. Thus, we will
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be able to check the accuracy of our scheme very carefully. In the first example,
we will consider a sum of two Maxwell distributions as an initial condition. The
second example is the famous BKW solution for which not only the time relaxation
of the moments but the distribution function itself is analytically known. However,
this solution is an isotropic function and, therefore, its numerical approximation by
our spectral scheme is rather simple. The third example will be the classical hard
spheres model with the collision kernel

B(v, w, e) =
1

4π
|v − w| .

No analytic dependencies are available for this example. Thus, we will compare our
results with those obtained by the use of a stochastic particle method.

5.1 Relaxation of a mixture of two Maxwellian’s

For the spatially homogeneous relaxation, the density, the mean velocity and the
temperature

ρ =

∫
R3

f(t, v) dv , V =
1

ρ

∫
R3

v f(t, v) dv , T =
1

3 ρ

∫
R3

|v − V |2 f(t, v) dv

are conserved quantities. The relaxation of the flow of momentum, the flow of energy
and of the special fourth moment

M(t) =

∫
R3

vv> f(t, v) dv , r(t) =

∫
R3

v|v|2 f(t, v) dv , s(t) =

∫
R3

|v|4 f(t, v) dv

is given as in [42] by

M(t) = M0 e
−t/2 +

(
T I + V V >

)(
1− e−t/2

)
, (27)

r(t) = r0 e
−t/3 +

(
5T + |V |2

)
V
(

1− e−t/3
)

+2
(
M0 − V V > − T I

)
V
(
e−t/2 − e−t/3

)
,

s(t) = s0 e
−t/3 +

(
|V |4 + 15T 2 + 10T |V |2

)(
1− e−t/3

)
(28)

+
1

2

(
||M0||2F − 3T 2 + |V |4 − 2

(
M0V, V

))(
e−t − e−t/3

)
+4
((
M0V, V

)
− |V |4 − T |V |2

)(
e−t/2 − e−t/3

)
,

where

M0 =

∫
R3

vv> f0(v) dv , r0 =

∫
R3

v|v|2 f0(v) dv , s0 =

∫
R3

|v|4 f0(v) dv

and ‖ · ‖F denotes the Frobenius norm. We will consider the initial distribution f0
in the form of a convex sum of two Maxwell distributions

f0(v) = αfM1(v) + (1− α)fM2(v) , 0 ≤ α ≤ 1 , (29)
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where

fMi
(v) =

1

(2π Ti)3/2
e
−|v − Vi|

2

2Ti , i = 1, 2 .

In these settings, the initial values are

ρ = 1 ,

V = αV1 + (1− α)V2 ,

T = αT1 + (1− α)T2 +
1

3
α(1− α)|V1 − V2|2 ,

M0 = α
(
T1 I + V1V

>
1

)
+ (1− α)

(
T2 I + V2V

>
2

)
,

r0 = α
(

5T1 + |V1|2
)
V1 + (1− α)

(
5T2 + |V2|2

)
V2 ,

s0 = α
(
|V1|4 + 15T 2

1 + 10T1 |V1|2
)

+

(1− α)
(
|V2|4 + 15T 2

2 + 10T2 |V2|2
)
.

For our first example, we choose

α = 1/2 , V1 = (−1, 0, 0)> , V2 = (+1, 0, 0)> , T1 = T2 =
2

3

and obtain
V = (0, 0, 0)> , T = 1 .
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Figure 1: Initial and final distributions for n = 27

Initial condition

For a series of discretisation parameters K and L, we first define the parameters of
the Gauss-Laguerre and Lebedev quadratures NGL and NL in the following way. We
perform approximation of the initial condition and choose the minimal values of NGL

and NL leading to the highest approximation quality for the given values of K and
L. In the first two figures we illustrate the approximation of the initial condition
f0(v1, 0, 0) , v1 ∈ [−4, 4] and of the final Maxwell distribution fM(v1, 0, 0) , v1 ∈
[−4, 4] for K = L = 2 with n = 27 basis functions (Figure 1) and for K = L = 4
with n = 125 basis functions (Figure 2). The initial condition and the final Maxwell
distribution are shown with thick dashed lines, while the numerical approximation is
depicted by the thin solid line. There is a clear numerical error by the approximation
of the initial condition for n = 27. For n = 125, however, the error can not be
optically seen on the figure. The final Maxwell distribution is perfectly approximated
in both cases. The L2(R3) error

‖f (n)(0, ·)− f0‖L2(R3)

‖f0‖L2(R3)

of the approximation of the initial condition f0 is summarised in Table 1 and its
logarithmic plot is shown in Figure 3. The last column in Table 1 contains the
Convergence Factor (CF), i.e. a quotient of two consecutive errors. The exponential
convergence of the error is clearly seen.
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Figure 2: Initial and final distributions for n = 125

Table 1: Approximation error for the initial condition

K L n NL NGL L2(R3)-Norm CF

2 2 27 38 8 5.07 · 10−2 -
4 4 125 50 8 3.45 · 10−3 14.7
6 6 343 110 16 2.51 · 10−4 13.7
8 8 729 110 16 1.72 · 10−5 14.6
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Figure 3: log10 course of the L2(R3) error
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Figure 4: Course of the functional M11(t)
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Figure 5: Course of the functional s(t)

Relaxation of the moments

In the study of the accuracy of the time dependent moments of the distribution
function, two new aspects have to be considered, namely the value of the time
discretisation parameter τ and the quality of the time integrating scheme. We
will demonstrate the efficiency of the simplest Euler scheme and of the Runge-
Kutta method of orders two and four. For the given example, there is a non-trivial
relaxation of the main diagonal components of the flux of momentum tensor (27)
and of the fourth moment (28). Figure 4 shows the course of the function M11(t)
where the thick dashed line is the analytic solution and the thin solid line is the
computed moment for n = 125. There is no optical difference. The time relaxation
of the function s(t) is shown in Figure 5. The right plots on both figures show the
time evolution of the difference between the analytic and the numerical solutions.
In the next three tables we present the maximal error for these moments computed
with different time steps on the time interval [0, 16] for different values of n. The
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Table 2: Error for the moments M11(t) and s(t), Euler method

Nt n M11(t) CF s(t) CF

32 27 2.78 · 10−2 - 1.75 · 10−3 -
64 27 1.33 · 10−2 2.09 8.01 · 10−4 2.18
128 27 6.61 · 10−3 2.01 4.13 · 10−4 1.94
256 27 3.37 · 10−3 1.96 2.40 · 10−4 1.72
256 125 3.17 · 10−3 - 1.61 · 10−4 -
512 125 1.58 · 10−3 2.01 7.98 · 10−5 2.02
1024 125 7.89 · 10−4 2.00 4.01 · 10−5 1.99
2048 125 3.95 · 10−4 2.00 2.05 · 10−5 1.96
4096 125 1.99 · 10−4 1.98 1.08 · 10−5 1.90
8192 125 1.00 · 10−4 1.99 5.98 · 10−6 1.81

Table 3: Error for the moments M11(t) and s(t), Runge-Kutta 2

Nt n M11(t) CF s(t) CF

32 27 2.34 · 10−3 - 2.63 · 10−4 -
64 27 4.16 · 10−4 5.63 9.93 · 10−5 4.19
64 125 5.72 · 10−4 - 7.49 · 10−5 -
128 125 1.34 · 10−4 4.27 1.68 · 10−5 4.46
256 125 3.11 · 10−5 4.31 3.26 · 10−6 5.15
512 125 6.03 · 10−6 5.16 1.48 · 10−6 2.20
1024 343 2.05 · 10−6 - 2.63 · 10−7 -
2048 343 5.12 · 10−7 4.00 6.55 · 10−8 4.05
4096 343 1.27 · 10−7 4.03 1.63 · 10−8 4.02
8192 343 3.19 · 10−8 3.98 4.07 · 10−9 4.00

lines indicated in bold, shows the best accuracy reached for the given value of n and
for a maximal number of time steps Nt ≤ 8192. The linear, quadratic and fourth
order convergences in time for different time integration schemes are evident. In
the last table, we observe no proper convergence of the finest discretisation with
n = 729. The errors for Nt = 128, 256 is practically identical to those obtained
for n = 343. For Nt = 512, the error for M11 practically jumps to the machine
accuracy, while the error for s increases. This is a clear indicator that the numerical
integration with NLG = 16 and NL = 110 is not sufficiently accurate to yield the
theoretically achievable high accuracy for this n.

H-functional and convergence to equilibrium

In Figures 6 and 7, we show the plots of the numerical density function f (n)(t, v1,v2, 0)
and its contours for (v1, v2) ∈ [−4, 4]× [−4, 4] with 32× 32 points and for the times
t = 0, 1/4, 1, 16 obtained for n = 125.
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Table 4: Error for the moments M11(t) and s(t), Runge-Kutta 4

Nt n M11(t) CF s(t) CF

32 27 4.16 · 10−4 - 4.20 · 10−4 -
32 125 5.81 · 10−6 - 5.41 · 10−6 -
64 343 4.53 · 10−7 - 2.18 · 10−8 -
128 343 2.68 · 10−8 16.9 1.28 · 10−9 17.0
256 343 1.58 · 10−9 17.0 6.33 · 10−11 20.2
512 343 1.36 · 10−10 9.41 2.43 · 10−11 2.61
128 729 2.68 · 10−8 - 1.28 · 10−9 -
256 729 1.58 · 10−9 17.0 6.32 · 10−11 20.2
512 729 1.71 · 10−14 - 1.63 · 10−9 -
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Figure 6: Density function for t = 0, 1/4, 1, 16
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26



0 5 10 15

-4.25

-4.20

-4.15

-4.10

0 5 10 15

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Figure 8: Course of the H-functional and of the L2−error for n = 343

Finally, in Figure 8, we show the time relaxation of the numerical Boltzmann H-
functional (left plot)

H(t) =

∫
R3

f (n)(t, v) ln f (n)(t, v) dv

for n = 125. Its analytically known asymptotic value

lim
t→∞

H(t) = ln
1

(2 π)3/2
− 3

2
= −4.25681 . . . .

is shown as a dashed thick line, while the course of the H-functional is depicted by
the thin solid line. The right plot in Figure 8 shows the log10-course of the relative
L2-norm of the difference of the current distribution function to the final Maxwell
distribution.

‖f (n)(t, ·)− fM‖L2(R3)

‖fM‖L2(R3)

which obviously shows exponential convergence.

5.2 BKW solution

In this subsection, we consider the famous exact solution of the Boltzmann equation
found by Bobylev [9] and Krook and Wu [30]. The solution is obtained for λ = 0 in
(7) and is of the form

f(t, v) =

ρ

(2 πT )3/2
(β(t) + 1)3/2

(
1 + β(t)

(β(t) + 1

2T
|v|2 − 3

2

))
e
−β(t) + 1

2T
|v|2

,

with

β(t) =
β0 e−α ρ t/2

1 + β0 (1− e−α ρ t/2)
,
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Table 5: Approximation error for the BKW initial condition

K L n NL NGL L2(R3)-Norm CF

11 0 12 38 16 9.77 · 10−5 -
12 0 13 38 16 2.00 · 10−5 4.89
13 0 14 38 16 2.95 · 10−6 6.78
14 0 15 38 16 2.66 · 10−7 11.09

where β0 denotes the initial value for the function β and α is defined as

α = C0π

π∫
0

b(cos θ) sin3 θ dθ .

This solution is non-negative for

0 ≤ β0 ≤ 2/3 .

The density ρ and the temperature T are two additional parameters. We will use
the following setting for our tests

C0 =
1

4 π
, b(cos θ) = 1 , α = 1/3 , ρ = 1 , T = 1 , β0 = 2/3,

leading to the solution

f(t, v)=
1

(2π)3/2
(
β(t) + 1

)3/2 (
1 + β(t)

(β(t) + 1

2
|v|2 − 3

2

))
e
−β(t) + 1

2
|v|2

,

where

β(t) =
2 e−t/6

5− 2 e−t/6
.

Initial condition

Since the BKW solution is an isotropic function, we change only the parameter K
and let L be zero for all tests. This leads to a very low number of unknowns and
to an extremely fast numerical solution of the Boltzmann equation taking only a
few seconds. A stable spectral convergence starts with K = 11 and the results of
the approximation of the initial condition are shown in Table 5 and in Figure 10.
However, for these values no optical difference to the initial condition and to the
final Maxwell distribution can be seen on a figure. Thus, we show the approximation
of the initial condition and of the final Maxwell distribution for K = 6 , n = 7 in
Figure 9.

Relaxation of the moments

For the BKW solution, all physical moments remain constant in time and they are
approximated with an accuracy of about 10−14 − 10−15 even for n = 7. Thus, we
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show only the course of the fourth moment s(t) on the time interval [0, 16] as well
as the difference to the exact curve for n = 7 in Figure 11. The results are obtained
with the Runge-Kutta method of the fourth order with Nt = 128 time steps.

5.3 Hard spheres

There is no analytic information about the exact solution for the case of hard spheres.
Thus, we consider the above mixture of two Maxwell distributions as the initial
condition and choose the solution obtained by the use of the stochastic particle
method (see [42]) as a reference. We choose 8192 equally weighted particles and
compute 8192 independent trajectories of the process on the time interval [0, 4].
Thus the accuracy of the stochastic solution should be of the order 10−3−10−4. For
comparison, we take the curves obtained for K = L = 4, i.e. for n = 125 unknowns.
For the time integration, the Runge-Kutta method of the fourth order with Nt = 128
time steps has been used. The dependence of the moment M11(t) on time is shown
in Figure 12. The thick dashed line represents the stochastic reference solution on
the left plot. The thin solid line is the Galerkin-Petrov solution. The right plot
shows the difference between the curves. The accuracy is of the order 10−4. The
same data is shown for the fourth moment s(t) in Figure 13. Here, the accuracy is
of the order 10−3 and some oscillations of the stochastic solution are apparent. The
computational time for the stochastic particle method on a single Intel i7 processor
was about 10 minutes while the Galerkin-Petrov solution with precomputed collision
matrices (NGL = 8, NL = 50) was obtained in 20 seconds. The computational time
for the collision matrices was about 12 minutes, which is to the computation time
of the stochastic solution. It seems, that the error is mostly due to the stochastic
approximation, but to obtain an additional order of its accuracy, the computational
effort must be increased 100-fold .

30



0 1 2 3 4

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 1 2 3 4

-0.0002

0.0000

0.0002

0.0004

0.0006

Figure 12: Course of the functional M11(t), Hard Spheres

0 1 2 3 4

14.4

14.5

14.6

14.7

14.8

14.9

15.0

0 1 2 3 4

-0.005

-0.004

-0.003

-0.002

-0.001

Figure 13: Course of the functional s(t), Hard Spheres

31



6 Conclusions

In this paper we present a new deterministic numerical scheme for the classical
spatially homogeneous Boltzmann equation. The scheme is based on a spectral
Galerkin-Petrov scheme. The main features of the method are the following:

1. The method uses mutually orthonormal, globally defined basis functions de-
rived from the normalised Maxwell distribution, the Laguerre polynomials and
the spherical harmonics;

2. The system of test functions consists of globally defined low order polynomials;

3. Since the set of test functions contains all collision invariants, the method
is automatically conservative, i.e. the numerical collision invariants remains
constant up to the machine accuracy without any additional numerical effort;

4. The approximation quality of the method is spectral, i.e. there is an expo-
nential convergence. However, this property holds only for infinitely smooth
functions;

5. The main numerical work of the method is the initial computation of the
collision matrices. However, once computed, these matrices can be used for
different initial conditions, on different time intervals and for different time in-
tegration schemes. Then the computational procedure for the whole relaxation
in time takes only seconds on a single processor;

6. Two classical numerical examples for the spatially homogeneous relaxation,
namely mixture of two Maxwell distributions as an initial condition and the
BKW solution were computed up to a very high accuracy with a low number
of basis function of 101 − 103;

7. The error due to the time integration dominated over the spectral error. The
Runge-Kutta method of the fourth order was sufficient to equalise both errors;

8. For the hard spheres model, we’ve shown an excellent agreement of the re-
sults obtained by the new scheme with those obtained by a stochastic particle
scheme.

A future work in this research area should certainly contain the following points:

1. Development of numerical integration quadratures for non-cutoff kernels B for
an effective evaluation of the integrals (26), as mentioned in the end of Section
3;

2. Spatially homogeneous numerical tests to understand how far can the com-
putations be done with the deviation of the temperature from its value equal
to one and with the deviation from the zero mean velocity. This will help to
formulate criteria for an enrichment of the system of the basis functions;
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3. The method can be easily adapted for the inelastic Boltzmann equation with
constant or even variable (relative velocity dependent) restitution coefficient.
The main difference is in the term (26). However, since the tails of the dis-
tribution function of the inelastic Boltzmann equation exhibit an asymptotic
different from the Maxwell distribution, the system of basis function should
be modified as well;

4. The main goal is an application of the proposed approach to the spatially
inhomogeneous Boltzmann equation. In this case the system (22) of ODE’s
will be transformed into the hyperbolic system

∂

∂t

(
Mf(t, x)

)
i
+ divx(Fif(t, x)) = f(t, x)>Qi f(t, x) , i = 1, . . . , n ,

where the flow matrices Fi ∈ R3×n have the entries

Fi[m, j] =< vmϕj, ψi > , m = 1, 2, 3 , j = 1, . . . , n .

for i = 1, . . . , n. These matrices can be easily precomputed and stored requir-
ing much less memory than the collision matrices Qi;

5. The proposed spatially inhomogeneous method can be especially efficient for
very slow flows with a small deviation of the temperature from its mean value.
Exactly for such flows, the application of the stochastic particle methods is
problematic;

6. In spatially inhomogeneous flows, the situations occur where the distribution
function becomes almost discontinuous. Thus, the system of basis functions
should be enriched to account for this fact. The appropriate choice of functions
for such enrichment is a topic for further research.

7. A rigorous proof of error estimates and the convergence to the Boltzmann-
Maxwell equilibrium for the case of hard potentials with cut-off collision kernels
is also a subject of an upcoming study.
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[28] G. Kitzler and J. Schöberl. Efficient spectral methods for the spatially homo-
geneous Boltzmann equation. Technical Report 13/2013, Institute for Analysis
and Scientific Computing, Vienna University of Technology, Austria, 2013.

[29] S. Kosuge, K. Aoki, and S. Takata. Shock-wave structure for a binary gas
mixture: Finite-difference analysis of the Boltzmann equation for hard-sphere
molecules. Eur. J. Mech., B/Fluids, 20:87–, 2001.

[30] M. Krook and T. T. Wu. Exact solutions of Boltzmann equation. Phys. Fluids,
20(10):1589–1595, 1977.

[31] V. I. Lebedev. Quadratures on the sphere. Ž. Vyčisl. Mat. i Mat. Fiz.,
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