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Abstract

Wilms’ tumor is one of the most frequent solid and malignant tu-
mors in childhood. Accurate segmentation of tumor tissue is a key step
during therapy and treatment planning. Since it is difficult to obtain
a comprehensive set of tumor data of children, there is no benchmark
so far allowing to evaluate the quality of human or computer-based
segmentations. The contributions in our paper are threefold: (i) We
present the first heterogeneous Wilms’ tumor benchmark data set. It
contains multi-sequence MRI data sets before and after chemother-
apy, along with ground truth annotation, approximated based on the
consensus of five human experts. (ii) We analyze human expert anno-
tations and interrater variability. It turns out that the current clinical
practice of determining tumor volume is inaccurate and that manual
annotations after chemotherapy may differ substantially. (iii) We eval-
uate six computer-based segmentation methods, ranging from classical
approaches to recent deep learning techniques. We show that the best
ones offer a quality comparable to human expert annotations.

1 Introduction

Wilms’ tumor, or nephroblastoma, accounts for 5 % of all cancers in children
and juveniles. It constitutes the most frequent malignant kidney tumor in
childhood [32]. About 75% of all patients are younger than five years - with
a peak between two and three years [11, 22]. In Europe, diagnosis and ther-
apy follow the guidelines of the International Society of Pediatric Oncology
(SIOP) [15, 21]. One of the most important characteristics of this therapy
protocol is a preoperative chemotherapy. Clinicians categorize patients as
high-, intermediate- or low-risk candidates according to histology, local stage
and tumor volume after chemotherapy. Postoperative treatment ranges from
no chemotherapy (low risk stage I) up to chemotherapy with irradiation of
the tumor bed (high risk, stage II and III).
The most common histological subtypes of regressive and mixed type actu-
ally belong to the intermediate risk tumors. However, if, after chemotherapy,
these tumors have a volume of more than 500 ml, they are highly malignant
and the patients are treated according to the high risk group protocol [14].
In order not to expose children to unnecessary medical burden on the one
hand and to maximize their chances of survival on the other, an exact deter-
mination of the tumor volume is indispensable.
Current Practices of Segmentation by Human Experts. Radiologists
traditionally model the tumor through a time-intensive manual segmenta-
tion procedure involving the outlining of the gross tumor volume on nu-
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merous two-dimensional imaging “slices”. Alternatively, they estimate the
tumor volume by measuring three axes of tumor extension and assuming the
nephroblastoma to have an ellipsoid shape [14]. Usually both variants are
conducted using either computed tomography (CT) or magnetic resonance
imaging (MRI) data. The reliability and consistent reproducibility of expert
delineations of Wilms’ tumors has not been investigated so far.
Computer-based Segmentation Algorithms. One obvious step to avoid
the reproducibily problem is to replace human segmentations by automatic
ones. Fully-automatic segmentation of Wilms’ tumors is a challenging task
as these tumors do not show a discriminative texture, might have intensities
overlapping with the surrounding tissue, and can be directly attached to the
remaining kidney. To the best of our knowledge, there is no method available
so far that does not need massive user interaction. Moreover, the scientific
literature on computer-based segmentation algorithms for Wilms’ tumors is
fairly limited and shall be discussed next.
An initial idea for segmentation is to extend user marked seed points in
the tumor by region growing based on intensity thresholding [10]. A re-
fined approach is to initialize an active contour inside the tumor and to
expand the segmentation according to image intensities and gradients [10].
More recently, a more advanced energy-based method for segmentation of
nephroblastoma has been proposed [30]. User-set scribbles are employed to
approximate the gray value distributions of tumor and surrounding tissues.
The energy is then regularized by an image metric induced by a state-of-the-
art edge detection. However, this method still needs user interaction.
In spite of the fact that segmentation is an active research field in image
analysis for quite some decades, it is remarkable that many well-established
classes of algorithms have not been evaluated in the context of Wilms’ tu-
mor segmentation. Moreover, a comparative evaluation of these algorithms
is prevented by the fact that there is no public benchmark available. So
far the few computer-based algorithms for Wilms’ tumor segmentation have
been tested on different data sets.

1.1 Our Contributions

The goal of our paper is to offer solutions to the before mentioned problems
in a threefold way:

(i) We establish the first publically available heterogeneous benchmark
data set for Wilms’ tumors. This data set will be released once the
paper is accepted.
It allows clinicians to train their segmentation abilities, and computer
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scientists to evaluate their algorithms. Our benchmark consists of
multi-sequence MRI data before and after chemotherapy. Ground truth
segmentations are approximated by consensus truth of five human ex-
perts.

(ii) Based on this benchmark, we scrutinize the widely-used ellipsoid ap-
proximation to the tumor volume as well as the interrater variability of
manual delineations. Both results will reveal substantial shortcomings
of the current standards.

(iii) As a second benchmark application, we evaluate six algorithms w.r.t.
their usefulness for Wilms’ tumor segmentation. Although most of
these segmentation algorithms are popular and time-proven methods in
the computer vision community, none of them has been used for Wilms’
tumor segmentation yet. Our algorithms include a fully-automatic
method based on Chan-Vese active contours [8], a random forest clas-
sifier [7], a support vector machine [6], a k-means clustering algorithm
[25], and a clustering of superpixels [24]. Since the Wilms’ tumor data
are necessarily limited, most segmentation methods based on deep
learning cannot be applied due to an insufficient amount of training
data. One of the few methods that can be used is the U-Net [35],
which we are also evaluating.

In computer vision, benchmarking and performance evaluation have estab-
lished themselves as important triggers for scientific progress in key areas
ranging from motion analysis [4, 3, 13] over optimisation algorithms [19] to
segmentation methods [27]. Pure benchmarking and performance evaluation
have become equally influential in medical image analysis [16, 36], e.g. in
registration [31, 38] and various segmentation problems [5, 20, 26, 29]. The
authors of these publications typically follow the clear scientific practice not
to mix benchmark data with own unpublished algorithms, since this enables
a fair comparison and avoids conflicts of interests. We adhere to these stan-
dards and refrain from proposing novel algorithms: We focus on evaluating
the performance of popular fully-automatic segmentation methods when be-
ing applied to Wilms’ tumor data.

1.2 Paper Organisation

Section 2 introduces our new multi-sequence benchmark for Wilms’ tumor
segmentation. We analyze interoperator variability and compare the deter-
mined volumes with volume approximations used in clinical practice. The
third section evaluates human segmentations, and Section 4 is devoted to the
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Figure 1: Age distribution of patients whose images are made available
anonymously.

evaluation of computer-based segmentation algorithms. Our conclusions are
summarized in Section 5.

2 Benchmark Data

To describe our benchmark data set, we first present details on the acquired
MRI data and the chosen method for ground truth approximation. After-
wards, we introduce our error metrics and evaluate the interoperator vari-
ability on the proposed data set. In the end, we compare volume variability
among human expert raters, ground truth and ellipsoid shapes.

2.1 Data Sets

Our image data set consists of 28 multi-sequence MR scans from 17 Wilms’
tumor patients (5 male, 12 female), out of which 15 have been acquired from
intermediate risk tumor (histological diagnosis: stromal predominant (2),
mixed histology (6) or regressive type (7)) and 2 from high risk tumor types
(histological diagnosis: blastemal predominant). For eleven patients, we have
both data before and after chemotherapy. The remaining ones are missing
either data before or after chemotherapy. Fig. 1 shows the age distribution of
the children. Only patients with histologically confirmed Wilms’ tumors were
eligible for inclusion. The MRI sequences before and after chemotherapy for
one of these patients are shown in Fig. 2.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Example of Wilms’ tumor (training data) before ((a)-(c)) and after
((d)-(f)) chemotherapy with experts’ consensus truth. From left to right: T2,
T1, T1c.

Since it is difficult to obtain a comprehensive and representative set of Wilms’
tumor data, the images have been acquired at different centers over the course
of several years, using MR scanners from different manufacturers, varying
field strength (1.5T and 3T) and implementations of the imaging sequences.
The data sets used in our benchmark share the following three MRI settings:

• T2: T2-weighted images, axial 2D acquisition with 3.6 mm to 9.1 mm
slice thickness and inslice-sampling ranging from 0.3 mm to 1.4 mm.

• T1: T1-weighted images, native image, axial 2D acquisition with 2.5
mm to 9.1 mm slice thickness and inslice-sampling ranging from 0.5
mm to 1.6 mm.

• T1c: T1-weighted and contrast enhanced (Gadolinium) images, axial
2D acquisition with 1.8 mm to 7.7 mm slice thickness and inslice-
sampling ranging from 0.5 mm to 1.6 mm.
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Table 1: Image properties before and after chemotherapy. The values in
brackets indicate the average occurrence.

Training Set Test Set

Slices Tumor Slices Tumor

Pre-Chemo 19− 55 (31) 9− 25 (15) 26− 50 (35) 11− 28 (18)

Post-Chemo 19− 44 (30) 6− 26 (12) 29− 70 (54) 6− 23 (13)

The different MRI sequences were spatially co-registered on the T2 sequence
using a rigid transformation. We balanced the number of slices with tumor
areas before and after chemotherapy; see Tab. 1. Subtypes are not bal-
anced among the data sets. We deploy all images in NRRD-file format [1].
NRRD stands for “nearly raw raster data” and is a standard file format for
storing medical image data, fully anonymized and without sensitive patient
information.

2.2 Annotations by Human Experts

The images were manually annotated by five human expert raters coauthor-
ing this publication. Rater-1 and Rater-4 are experienced radiologists with
several years of experience in Wilms’ tumor analysis. Rater-2 is a physician
familiar with Wilms’ tumors. Rater-3 is an M.D. student previously trained
in MRI imaging with advanced experience in the field. Rater-5 is an experi-
enced oncologist with decades of practice in Wilms’ tumor exploration. Seg-
mentations were performed using the MITK software from www.mitk.org,
and experts outlined tumor structures in T2-sequences in every axial slice.

2.3 Ground Truth Generation

Since the generation of error-free ground truth information for medical im-
ages is usually not possible, we rely on expert votes to approximate the
tumor area. Majority voting for each voxel has been shown to be useful in
several contexts [17, 33]. Unfortunately, this simple approach neither regards
variability in quality or performance amongst the human raters nor does it
provide guidance as to how many experts should agree before a voxel is la-
beled as tumor. Hence, we decide to use the STAPLE framework [37] to
produce consensus segmentations.
The STAPLE algorithm uses expectation maximization. Let Dx,j, j =

1, . . . , n be the expert decisions and Ĝ the true consensus segmentation.
The performance of each expert is rated on the basis of the sensitivity
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Table 2: Estimated quality parameters of each expert before and after
chemotherapy. Rater-1: Radiologist, Rater-2: Physician, Rater-3: M.D.
student, Rater-4: Radiologist, Rater-5: Oncologist.

Rater-1 Rater-2 Rater-3 Rater-4 Rater-5

Pre-Chemotherapy

Sensitivity 0.76 0.71 0.80 0.65 0.58
Specificity 0.65 0.75 0.73 0.82 0.74

Post-Chemotherapy

Sensitivity 0.78 0.60 0.77 0.70 0.67
Specificity 0.72 0.57 0.75 0.85 0.82

pj = Pr(Dx,j = 1 | Ĝ = 1) and the specificity qj = Pr(Dx,j = 0 | Ĝ = 0). It

iterates between estimating the conditional probability of Ĝ in relation to the
expert decisions and previous estimates of the performance parameters and
estimation of updated reliability parameters. Before chemotherapy, conver-
gence is on average reached with less than 33 iterations. After chemotherapy,
the algorithm converged on average after 52 iterations. The estimated quality
parameters of each expert are shown in Tab. 2 and indicate high inter-rater
variability.
Fig. 3 shows annotations from all five human experts and the final ground
truth approximation.

2.4 Error Metrics

We show results in terms of the metrics suggested in [29] and compute pre-
cision and recall as

PĜ,G :=
|Ĝ ∩G|
|G|

, RĜ,G :=
|Ĝ ∩G|
|Ĝ|

, (1)

where Ĝ is the experts’ consensus truth, and G the algorithmic prediction.
The harmonic mean of precision and recall is called Dice score. It relates
the area of a cluster to its voxelwise overlap with the approximated ground
truth. The average Dice score determines the overall segmentation accuracy.
Another class of error measures evaluates the distance between the segmen-
tation boundaries, i.e. the surface distance. The best known example of this
is the Hausdorff distance [34]. It calculates for a given volume the shortest
distance to all points on the surface of another volume and vice versa, and
finally extracts the maximal distance. However, the return of the maximum
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Rater-1 Rater-2 Rater-3

Rater-4 Rater-5 consensus truth

Figure 3: Example annotations by human expert raters. Rater-1: Radi-
ologist, Rater-2: Physician, Rater-3: M.D. student, Rater-4: Radiologist,
Rater-5: Oncologist.

over all surface distances makes the Hausdorff measurement very suscepti-
ble to small remote subregions in either ground truth or segmentation re-
sult. In the evaluation of the fully automated methods, predictions with few
false-positive areas - which only marginally influence the overall quality of
the segmentation - can also dramatically influence Hausdorff’s overall result.
Therefore, we refrain from evaluating this error measure. It is not conclusive
in our scenario.

3 Evaluation of Human Expert Segmentations

3.1 Accuracy

3.1.1 Interoperator Variability

We calculate the interoperator variability using all 28 data sets of all 17 pa-
tients. In order to do so, we compute the disagreement of the outlined volume
marked by each physician with each volume outline prepared by each of the
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Table 3: Interoperator variability before and after chemotherapy in terms of
Dice score. Rater-1: Radiologist, Rater-2: Physician, Rater-3: M.D. student,
Rater-4: Radiologist, Rater-5: Oncologist.

Rater-1 Rater-2 Rater-3 Rater-4

Pre-Chemotherapy

Rater-2 0.85± 0.13

Rater-3 0.89± 0.11 0.89± 0.08

Rater-4 0.85± 0.13 0.90± 0.05 0.88± 0.08

Rater-5 0.83± 0.13 0.89± 0.05 0.87± 0.07 0.89± 0.05

Post-Chemotherapy

Rater-2 0.63± 0.37

Rater-3 0.83± 0.24 0.65± 0.37

Rater-4 0.84± 0.10 0.65± 0.36 0.80± 0.24

Rater-5 0.84± 0.10 0.64± 0.35 0.80± 0.24 0.89± 0.05

other four clinicians for the same data set. This process was repeated for each
patient to provide a data set comprising the average disagreement between
the five contours for each data set. We also divide the data sets based on their
acquisition time relative to chemotherapy, i.e. before and after chemother-
apy. Tab. 3 shows the interoperator variability in terms of Dice score before
chemotherapy and after chemotherapy, respectively. Before chemotherapy,
the average Dice score between human experts shows their agreement on
average with 0.87 ± 0.09 on tumor areas. After chemotherapy, when tumor
tissues are barely visible, the average Dice score between human expert raters
drops to 0.78± 0.24 indicating a high inter-rater variability. Especially after
chemotherapy, Rater-2 seems to be the bottleneck in agreement of the hu-
man experts. Therefore, we also computed the average Dice scores excluding
this annotator. It turns out that average Dice score and standard devia-
tion between human expert raters before chemotherapy slightly decreases to
0.87± 0.1. After chemotherapy it improves to 0.83± 0.17, but still shows a
high variability.
We also evaluated our expert annotations with McNemar’s statistical test
[28] :

χ2 =
| b− c |2

b+ c
. (2)

This χ2-test for paired nominal data, based on the contingency matrix of
these samples, provides information on whether there is a statistically signif-
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Table 4: Confusion matrix for McNemar’s statistical test.

a: no / no b: yes / no

c: no / yes d: yes / yes

icant difference. We calculated the corresponding matrix according to Tab.
4. Here, the first entry per field refers to the first expert to be compared
and the second to the other. For example, field b means that the first of
the two has labeled a pixel as tumor and the other as non-tumor region.
Furthermore, a significance level of α = 0.05 corresponds approximately to
a fiducial level of χ2 = 3.8415.
The results in Tab. 5 highlight the differences in expert annotations analo-
gous to our previous analyses: All results of McNemar’s test reject the null
hypothesis that the annotations are similar with high values for all rater
combinations. Unfortunately, it is not possible to compare these test results
before and after chemotherapy: On the one hand, the tumor shrinks during
therapy, and on the other hand, the resolution of the images is usually not
the same. Both result in a different number of pixels in the contingency
matrix.

Table 5: Interoperator variability before and after chemotherapy in terms
of McNemar’s test averaged on all data sets. Rater-1: Radiologist, Rater-2:
Physician, Rater-3: M.D. student, Rater-4: Radiologist, Rater-5: Oncologist.

Rater-1 Rater-2 Rater-3 Rater-4

Pre-Chemotherapy

Rater-2 11169

Rater-3 7594 7158

Rater-4 15840 4683 8636

Rater-5 19106 7195 10538 5916

Post-Chemotherapy

Rater-2 10898

Rater-3 2423 10152

Rater-4 11668 11765 9187

Rater-5 13733 14598 11293 1502
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3.1.2 Deviation from Ground Truth

The average Dice score before chemotherapy of human experts in comparison
to ground truth is 0.93 ± 0.05. After chemotherapy, the contrast of tumor
regions is usually lower and the tumor outlines are more ambiguous. Conse-
quently, human experts agree less on tumor areas. The average Dice score
decreases to 0.85, and variability increases dramatically to 0.16.

3.2 Volume Variability

Tumor expansion after preoperative chemotherapy is an important metric
used to categorize patients as high-, intermediate- or low-risk candidates.
High-risk patients receive an additional postoperative chemotherapy aligned
with an irradiation. Therefore, an accurate determination of tumor volume is
critical. The clinical volume equals the volume information used in therapy
and treatment planning. It approximates the tumor by an ellipsoid shape. It
is computed as width× height× depth× 0.524 [14], where width, height
and depth of tumor denote the maximal expansion of tumor tissue on MR
images. Note that the volume of the largest ellipsoid that fits in a cuboid
is π/6 ≈ 0.524 times the cuboid volume. Starting with the assumption that
the true tumor volume is found through the consensus of our five human ex-
perts, we compare human expert annotations and clinical volumes in terms
of percental volume differences in relation to the ground truth volume before
and after chemotherapy, respectively. It turns out that clinical volumes differ
before chemotherapy on average by 22.62 ± 16.12 %, and after chemother-
apy by 35.07 ± 41.01 % from the ground truth volumes. Before and after
chemotherapy, clinical volumes are on average smaller than the ground truth
volume, i.e. 85.71 % before and 92.86 % after chemotherapy. In contrast,
human experts differ before chemotherapy on average by 10.58± 5.90 % and
after chemotherapy by 25.98± 34.57 % from the ground truth volume.
This shows that assuming an ellipsoid shape for Wilms’ tumors is an erro-
neous oversimplification, and human expert annotations are helpful to deter-
mine tumor volumes more precisely.

4 Evaluation of Segmentation Algorithms

In the following, we conduct example evaluations on our new benchmark
data with six fully-automatic methods:

• Chan-Vese active contours [8] with two level sets.

• K-means clustering [25] with intensities.
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• Entropy Rate Superpixel Segmentation [24].

• Classification with a support vector machine [6] with intensities and
HOG-features [9].

• Random-forest classification [7], either with intensities or HOG-features
[9].

• Segmentation with a U-Net [35].

To guarantee a fair evaluation, we equally split the data sets in training and
test data, each containing seven data sets before and after chemotherapy.
For each segmentation approach we include information from all modalities.
The slice thickness of up to 9.1mm inhibits 3D segmentations, so we perform
all segmentations in 2D slices. Let us now sketch each of the evaluated
segmentation approaches.

4.1 Chan-Vese Active Contours

We consider a cubic data domain Ω ⊂ R3 and a volumetric data set f : Ω→
R3. In our setting, the co-domain describes the different MRI modalities T2,
T1, and T1c. Then a segmentation of f by means of the Chan-Vese active
contour model [8] minimizes the cost function

E(u, C) = λin

∫
Cin

‖uin−f‖2dx

+λout

∫
Cout

‖uout−f‖2dx + ν `(C)

(3)

where the data domain Ω is split in two regions Cin and Cout. The function
f is approximated by a piecewise constant function where uin and uout are
the arithmetic means of f inside and outside the segment boundaries C,
respectively. The positive weights λin and λout control the influence of each
region to the final partitioning, ‖ . ‖ denotes the Euclidean norm in R3, and
C are the segment boundaries with a (Hausdorff) length of `(C). This length
is weighted with a parameter ν > 0.

4.2 K-means Clustering

K-means clustering [25] is a vector quantization method that partitions n
observations into k clusters. Data points are assigned to cluster centers,
prototypes of corresponding classes, with minimal Euclidean distance. In
our application, we want to split the observations into two classes, tumor
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and non-tumor points.
Given a set of data points f : Ω → D with D ⊂ R3 and Ω ⊂ R3, k-means
minimizes

E(D1, D2) =

∫
D1

‖ξ − u1‖2dξ +

∫
D2

‖ξ − u2‖2dξ

D = D1 ∪D2, D1 ∩D2 = ∅,
(4)

where u1 and u2 are the arithmetic means of both classes. In this case,
k-means clustering is equivalent to Otsu’s method [23].

4.3 Support Vector Machine

Support Vector Machines [6] are based on the concept of hyperplanes in a
multidimensional space, separating between sets of objects having different
classes, e.g. tumor and non-tumor points. In our application, we use a five-
fold cross validation to find optimized hyperparameters. Training was per-
formed using MATLAB (www.mathworks.com/products/matlab) and
the problem was solved via Sequential Minimal Optimization [12]. Further-
more, we used Gaussian-like kernels and the classification error, i.e. the
weighted fraction of misclassified observations, as loss function.

4.4 Random-forest Classification

Ensemble methods employ a finite set of different learning algorithms to
get better predictive performance than using a single learning algorithm.
Random forests [7] are ensemble approaches for classification combining a
group of decision trees. A single tree is highly sensitive to noise, while the
average of many decorrelated trees is not. Training all decision trees of a
random forest on the same training data would result in strongly correlated
trees. Bagging (bootstrap aggregation) generates new training sets K by
sampling from the original training set Y uniformly and with replacement.
In this way, decision trees are decorrelated by using different training data.
Additionally, random forests use feature bagging, i.e. features are randomly
sampled for each decision tree [18]. To estimate how well the results can be
generalized, we use 2-fold-cross validation, i.e. we train two sets of models.

4.5 Entropy Rate Superpixel Segmentation

The method of Liu et al. [24] formulates the superpixel segmentation problem
as maximization of the entropy rate of cuts in the graph. Optimizing this
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entropy rate encourages the clustering of compact and homogeneous regions,
which also favors the superpixels to overlap with only one single object on
the perceptual boundaries.
This technique starts with each pixel being considered as a separate cluster.
Clusters are then gradually merged into larger superpixels. In this way,
during segmentation, a hierarchy of superpixels is created until finally only
one superpixel, the image itself, is left. In our case we want to segment a
tumor, i.e. we use the hierarchy of superpixels to divide the image into three
groups: tumor, body and background. Unfortunately we do not know in
advance which superpixel contains which class. This objective function is
optimized with a greedy algorithm.

4.6 U-Net

In many areas of medical image processing, deep learning and especially
convolutional neural networks (CNN) have proven to be very powerful tools.
Within these, the U-net architecture [35] is one of the standard CNNs in the
field of medical image segmentation. It learns segmentation in an end-to-
end setting and only needs a few training examples. Since our benchmark
consists of real clinical data, they are available in different resolutions. Some
of them also contain other parts of the body, e.g. the arms. Therefore, the
amount of non-tumor areas outweighs the tumor areas substantially, such
that it becomes necessary to balance the classes. This is done in three steps:
First we determine the connected components, i.e. connected parts of the
body, and remove everything except the largest one. Then we determine the
maximum extent of the existing object and extract this part to a new, smaller
image; see Fig. 4. This is then rescaled to a size of 512× 512 pixels. We use
the implementation presented in [2] to solve our segmentation problem and
set up the network with batch size 5 and 50 epochs.

4.7 Results

In Tab. 6 we present the mean precision, recall and Dice score over the 14
test data sets of the different segmentation algorithms. Since the Chan-Vese
method is region-based, it suffers from the fact that the visual appearance
of Wilms’ tumors can be highly heterogeneous. Our experiments show that
intensities are an important feature to identify tumor areas, resulting in high
precision values for the pixel-based classifiers k-means clustering and random
forests. However, spatial information is essential as intensities of a tumor can
overlap with those of the surrounding tissue. Accordingly, the pixel-based
methods suffer from low recall. Using HOG-features in addition to intensities
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Figure 4: Exemplary pre-processing step for the U-Net. (a) Original image
containing abdomen and extremities, (b) Image after pre-processing.

improves k-means clustering after chemotherapy, SVM classification as well
as random forests both before and after chemotherapy.
The results of the superpixel-based method are unexpectedly poor both be-
fore and after chemotherapy. The optimum number of superpixels depends
strongly on the image and it is also difficult to identify the respective seg-
ments. We could not find a parameter set that worked on all data sets. Deep
learning methods usually require a large amount of training data. The U-net
used here deviates from this paradigm and can also be trained with smaller
amounts of data. Tab. 6 shows that it gives a high mean recall, but a low
mean precision. This indicates that although the network can recognize the
basic structure of the nephroblastoma, it is not able to distinguish it from
similar tissue.
Overall, segmentation with random forests provides the best results before
chemotherapy, but is also the leading approach after chemotherapy, yielding
the highest quality measures. Therefore, we suggest random forests trained
on HOG-features as well as intensities as the baseline method for this bench-
mark data set. Since the tumor volume after chemotherapy is decisive for
postoperative treatment planning, it is currently the optimal method for this
purpose. The segmentation quality lies within the variability of human ex-
perts.
In order to ensure spatial consistency, we also apply Chan-Vese active con-
tours on the predicted probabilities of the random forest. It turns out that
predictions of this method lack too much global information and the result-
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Table 6: Results on the proposed benchmark data set (test data). k-means:
k-means clustering, CV: Chan-Vese active contours, RF: Random Forest
Classification, SVM: Support Vector Machine, INT: Intensity values, HOG:
HOG-features, PP: Post-processing. Best results are depicted in bold face.

Method Dice Score Precision Recall

Pre-Chemotherapy

CV [8] 0.57 0.48 0.69

k-means [25] (INT) 0.53 0.76 0.41

Superpixel [24] 0.41 0.33 0.56

SVM [6] (INT + HOG [9]) 0.71 0.71 0.72

RF [7] (INT + HOG [9]) 0.92 0.92 0.91

U-net [35] 0.64 0.49 0.94

Post-Chemotherapy

CV [8] 0.41 0.32 0.58

k-means [25] (INT) 0.35 0.50 0.27

Superpixel [24] 0.41 0.29 0.68

SVM [6] (INT + HOG [9]) 0.68 0.69 0.67

RF [7] (INT + HOG [9]) 0.81 0.73 0.92

U-net [35] 0.30 0.25 0.61

ing segmentation loses quality. These observations highlight the challenges
in the data set.

5 Conclusions

We have proposed the first multi-sequence benchmark for segmentation of
Wilms’ tumors. In spite of the fact that such a data set involving tumors in
children is necessarily limited in size, its amount of information is rich: There
are multi-sequence MRT images for all patients, and for eleven patients both
pre- and post chemotherapy images. That is supplemented by manual anno-
tations by five independent human experts, as well as histological diagnoses.
Our benchmark allows several important conclusions:
We have demonstrated that human expert annotations suffer from a large in-
teroperator variability especially after pre-operative chemotherapy. Further-
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more, we have shown that the popular tumor volume determination based
on ellipsoid shapes tends to be highly erroneous.
Our data set also allowed to evaluate six computer-based algorithms. At
this time, all fully-automatic segmentations apart from random forests un-
dersegment the tumor volume compared to human expert raters. Thus, their
precision is insufficient, especially after chemotherapy. Our experiments indi-
cate that segmentation with random forests [7] is the most appropriate tool
for Wilms’ tumors. Its results lie within the variability of the contouring
performed by human expert raters on the same data. Moreover, it offers the
advantage that it is much faster than a full segmentation by human experts.
In our ongoing research, we plan to include more anatomical knowledge into
our segmentation strategies and to constantly enlarge the number of avail-
able data sets. It is our hope that our benchmark data set for segmentation
of nephroblastoma will stimulate a growing interest in this research field
which is challenging both from a medical and a computer vision viewpoint.
Most importantly, we are confident that the resulting progress will help to
maximize the survival chances of the affected children.
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