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Abstract
We provide a version of the Hopf-Oleinik boundary point lemma for

general elliptic equations in divergence form under the sharp requirements
on the coefficients of equations and on the boundary of a domain.

1 Introduction
The Boundary Point Principle, known also as the “normal derivative lemma”, is
one of the important tools in qualitative analysis of partial differential equations.
This principle states that a supersolution of a partial differential equation with a
minimum value at a boundary point, must increase linearly away from its bound-
ary minimum provided the boundary is smooth enough.

The history of this famous principle begins with a pioneering paper of S. Zarem-
ba [Zar10] where the above assertion was established for the Laplace equation in a
three-dimensional domain Ω satisfying an interior touching ball condition. Notice
that the major part of all known results on the normal derivative lemma concerns
equations with nondivergence structure and strong solutions. A key contribution
to the investigation of this problem for elliptic equations was made simultaneously
and independently by E. Hopf [Hop52] and O.A. Oleinik [Ole52] (by this reason,
all the statements of such type are often called the Hopf-Oleinik lemma). The
corresponding comprehensive historical review can be found in [AN16].

The case of the divergence-type equations

− div(A(x) gradu(x)) = 0

is less studied. It is well known that the Boundary Point Principle fails for uni-
formly elliptic equations in divergence form with bounded and even continuous
coefficients of the matrix A(x) (see, for instance, [Gil60], [GT83], [PS07] and
[Naz12]). However, the normal derivative lemma holds true if the leading coeffi-
cients are more smooth.

The sharp requirements on the regularity of the boundary of a domain, provid-
ing the validity of the Boundary Point Principle for the Laplace equation, were
independently and simultaneously formulated in the papers [VM67] and [Wid67].

The first result for weak solutions of equations with divergence structure was
proved by R. Finn and D. Gilbarg [FG57]. They considered a two-dimensional
bounded domain with C1,α-regular boundary, the Hölder continuous entries of the
matrix A(x) and continuous lower order coefficients. Recently, in [KK17] (see
also [SdL15]) the normal derivative lemma was established in n-dimensional do-
mains (n > 3) for equations with the lower-order coefficients from the Lebesgue
space Lq, q > n, under the same assumptions on the leading coefficients and on
the boundary as in [FG57].
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The goal of this paper is to prove a version of the normal derivative lemma
for the general divergence-type equations under strongly weakened assumptions
closed to the necessary ones.

1.1 Notation and conventions
Throughout the paper we use the following notation:
x = (x1, . . . , xn−1, xn) is a point in Rn;
Rn

+ = {x ∈ Rn : xn > 0};
|x| is the Euclidean norm in Rn;
Br(x

0) is the open ball in Rn with center x0 and radius r; Br = Br(0);

Di denotes the operator of (weak) differentiation with respect to xi;
D = (D1, . . . , Dn−1, Dn).

We use the letters C and N (with or without indices) to denote various constants.
To indicate that, say, C depends on some parameters, we list them in parentheses:
C(. . . ).

Definition 1. We say that a function σ : [0, 1]→ R+ belongs to the class D if

• σ is increasing, and σ(0) = 0;

• σ(t)/t is summable and decreasing.

It should be noted that our assumption about the decay of σ(t)/t is not restrictive
(see Remark 1.2 [AN16] for more details).

For σ ∈ D we define the function Jσ as

Jσ(s) :=

s∫
0

σ(τ)

τ
dτ.

Definition 2. Let E be a bounded domain in Rn. We say that a function ζ : E → R
belongs to the class C0,D(E), if

• ζ ∈ C(E);

• |ζ(x)− ζ(y)| 6 σ(|x− y|), ∀x, y ∈ E , and σ belongs to the class D.

In what follows, Ω is a bounded domain in Rn with boundary ∂Ω. We suppose
that ∂Ω ∈ C1,D, which means that ∂Ω is locally the graph of a C1-function F
satisfying DF ∈ C0,D.
d(x) denotes the distance between x and ∂Ω.
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L is a uniformly elliptic operator with measurable coefficients:

Lu ≡ −Di(a
ij(x)Dju) + bi(x)Diu. (1)

We adopt the convention that the indices i and j run from 1 to n. We also adopt
the convention regarding summation with respect to repeated indices.

The coefficients of L should satisfy the following conditions:

aij ∈ C0,D(Ω) for all i, j = 1, . . . , n,

νIn ≤ (aij(x)) ≤ ν−1In,
(2)

and

ω(r) := sup
x∈Ω

∫
Br(x)∩Ω

|b(y)|
|x− y|n−1

· d(y)

d(y) + |x− y|
dy → 0 as r → 0. (3)

Here ν is a positive constant, In is identity (n × n)-matrix, while b(y) =
(b1(y), . . . , bn(y)).

Notice that condition (3) says that the function
|b(y)|
|x− y|n−1

· d(y)

d(y) + |x− y|
is

integrable uniformly with respect to x. Moreover, in any strict interior subset of Ω
condition (3) means that b is an element of the Kato classKn,1. (For the definition
of the scale of the Kato classes Kn,α with α < n the reader is referred to the paper
[DH98]).

2 Main result
Our main result is stated as follows.

Theorem 2.1. Let Ω be a bounded domain in Rn with boundary ∂Ω ∈ C1,D, let L
be defined by (1), and let assumptions (2)-(3) be fulfilled.

In addition, assume that a nonconstant function u ∈ C1(Ω) satisfies, in the
weak sense, the inequality

Lu > 0 in Ω.

Then, if u attends its minimum at point x0 ∈ ∂Ω, we have

∂u

∂n
(x0) < 0.

Here ∂
∂n

is the derivative with respect to the exterior normal on ∂Ω.
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Remark 2.2. Notice that all the assumptions on aij and b are invariant under
the C1,D-regular change of variables. So, without loss of generality, we may con-
sider ∂Ω locally as a flat boundary xn = 0. In addition we may assume without
restriction that x0 = 0 and BR ∩ Rn

+ ⊂ Ω for some R > 0.

Consider for 0 < ρ < R/2 the point xρ = (0, . . . , 0, ρ) and the annulus

Aρ := {x : ρ/2 < |x− xρ| < ρ} ⊂ Ω.

Let x∗ be an arbitrary point inAρ. Following [FG57] (see also [SdL15]) we define
the auxiliary functions z and ψx∗ as solutions of the problems

L0z = 0 in Aρ,
z = 1 on ∂Bρ/2(xρ),

z = 0 on ∂Bρ(x
ρ),


Lx∗0 ψx∗ = 0 in Aρ,

ψx∗ = 1 on ∂Bρ/2(xρ),

ψx∗ = 0 on ∂Bρ(x
ρ),

(4)

where the operators L0 and Lx∗0 are determined by the formulas

L0z := −Di(a
ij(x)Djz) and Lx∗0 ψx∗ := −Di(a

ij(x∗)Djψx∗),

respectively. It is well known that ψx∗ ∈ C∞(Aρ), and the existence of (unique)
weak solution z follows from the general elliptic theory.

Lemma 2.3. There exists C1 = C1(n, ν, σ) > 0 such that the inequality

|Dz(x∗)−Dψx∗(x∗)| 6 C1
Jσ(2ρ)

ρ
(5)

holds true for all ρ 6 R/2.

Proof. Setting w(1) = z−ψx∗ we observe that w(1) vanishes on ∂Aρ. Hence, w(1)

can be represented in Aρ as

w(1)(x) =

∫
Aρ

Gx∗

ρ (x, y)Lx∗0 w
(1)(y)dy

(?)
=

∫
Aρ

Gx∗

ρ (x, y)
(
Lx∗0 z(y)− L0z(y)

)
dy,

where Gx∗
ρ stands for the Green function of the operator Lx∗0 in Aρ. The equality

(?) follows from the relation Lx∗0 ψx∗ = L0z = 0, see (4).
Applying integration by parts we get another version of the representation for-

mula:
w(1)(x) =

∫
Aρ

DyiG
x∗

ρ (x, y)
(
aij(x∗)− aij(y)

)
Djz(y)dy. (6)
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Differentiating both sides of equality (6) with respect to xk we get the system of
equations

Dkw
(1)(x∗) =

∫
Aρ

DxkDyiG
x∗

ρ (x∗, y)
(
aij(x∗)− aij(y)

)
Djz(y)dy,

k = 1, . . . , n.

(7)

According to Lemma 3.2 [GW82], z ∈ C1(Aρ), and the following estimate
holds for y ∈ Aρ:

|Dz(y)| 6 N1

ρ
, (8)

where N1 depends only on n, ν, and σ. Moreover, due to Theorem 3.3 [GW82]
we have also the estimate for the Green function Gx∗

ρ (x, y):

|DxDyG
x∗

ρ (x, y)| 6 N2

|x− y|n
∀x, y ∈ Aρ, (9)

where N2 is completely determined by n, ν, and σ.
Finally, combination of (7)-(9) with condition (2) implies

|Dw(1)(x∗)| 6 N1N2

ρ

∫
B2ρ(x∗)

σ(|x∗ − y|)
|x∗ − y|n

dy,

and (5) follows.

Further, we introduce the barrier function v defined as the weak solution of the
Dirichlet problem 

Lv = 0 in Aρ,

v = 1 on ∂Bρ/2(xρ),

v = 0 on ∂Bρ(x
ρ).

(10)

Theorem 2.4. There exists ρ0 > 0 such that for all ρ 6 ρ0 the problem (10)
admits a unique solution v ∈ C1(Aρ). Moreover, the inequality

|Dv(x)−Dz(x)| 6 C2
ω(2ρ)

ρ
(11)

holds true for any x ∈ Aρ. Here C2 = C2(n, ν, σ) > 0, ρ0 is completely defined
by n, ν, σ, and ω, while z ∈ C1(Aρ) is defined in (4).
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Proof. Consider in Aρ the auxiliary function w(2) = v − z. We observe that w(2)

vanishes on ∂Aρ, and

L0w
(2) = L0v = Lv − biDiv = −bi

(
Diw

(2) +Diz
)

in Aρ.

Hence, w(2) can be represented in Aρ via corresponding Green function G0,ρ(x, y)
as

w(2)(x) = −
∫
Aρ

G0,ρ(x, y)bi(y)
(
Diw

(2)(y) +Diz(y)
)
dy.

Differentiation with respect to xk gives

Dkw
(2)(x) = −

∫
Aρ

DxkG0,ρ(x, y)bi(y)
(
Diw

(2)(y) +Diz(y)
)
dy.

Therefore, we get the relation

(I + T)Dw(2) = −TDz, (12)

where I stands for the identity operator, while T denotes the matrix operator whose
(k, i) entries are integral operators with kernels DxkG0,ρ(x, y)bi(y).

The statement of Theorem follows from the next assertion.

Lemma 2.5. The operator T is bounded in C(Aρ), and

‖T‖C→C 6 C3 ω(2ρ),

where C3 depends only on n, ν, and σ.

Proof. Theorem 3.3 [GW82] provides the estimate

|DxG0,ρ(x, y)| 6 N3 min
{
|x− y|1−n; dist{y, ∂Aρ}|x− y|−n

}
(13)

for any x, y ∈ Aρ. Here N3 is the constant depending only on n, ν, and σ.
Since dist{y, ∂Aρ} 6 d(y) for any y ∈ Aρ, the combination of estimate (13)

with condition (3) gives∫
Br(x)∩Aρ

|DxG0,ρ(x, y)| |b(y)| dy 6 N3ω(r), ∀x ∈ Aρ, r 6 2ρ. (14)

For arbitrary vector function f ∈ C(Aρ) we have

|Tf(x)| 6 ‖f‖C(Aρ) ·
∫
Aρ

|DxG0,ρ(x, y)| |b(y)| dy 6 N3 ω(2ρ) ·‖f‖C(Aρ), x ∈ Aρ.
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It remains to show that Tf ∈ C(Aρ). For x, x̃ ∈ Aρ and any small δ > 0 we
have

(Tf)(x)− (Tf)(x̃) = J1 + J2

:=
( ∫
Aρ∩Bδ(x̃)

+

∫
Aρ\Bδ(x̃)

)(
DxG0,ρ(x, y)−DxG0,ρ(x̃, y)

)
⊗ [b(y) · f(y)] dy.

If |x− x̃| 6 δ/2 then (14) gives

|J1| 6 ‖f‖C(Aρ) ·
∫

Bδ(x̃)∩Aρ

(
|DxG0,ρ(x, y)|+ |DxG0,ρ(x̃, y)|

)
|b(y)| dy

6 2N3 ω(3δ/2) · ‖f‖C(Aρ).

Thus, given ε we can choose δ such that |J1| 6 ε.
On the other hand, DxG0,ρ(x, y) is continuous w.r.t. x for x 6= y. Thus, it is

equicontinuous on the compact set

{(x, y) : x ∈ Bδ/2(x̃) ∩ Aρ, y ∈ Aρ \Bδ(x̃)}.

Therefore, for chosen δ we obtain, as |x− x̃| → 0,

|J2| 6 ‖f‖C(Aρ) ·
∫
Aρ

|b(y)| dy · max
y∈Aρ\Bδ(x̃)

|DxG0,ρ(x, y)−DxG0,ρ(x̃, y)| → 0,

and the Lemma follows.

We continue the proof of Theorem 2.4. Choose the value of ρ0 so small that
ω(2ρ0) 6 (2C3)−1, where C3 is the constant from Lemma 2.5. Then by the Ba-
nach theorem the operator (I + T) in (12) is invertible. This gives the existence
and uniqueness of w(2) ∈ C1(Aρ), and thus, the unique solvability of the prob-
lem (10). Moreover, Lemma 2.5 and inequality (8) provide (11). The proof is
complete.

To prove Theorem 2.1 we need the following maximum principle.

Lemma 2.6. Let L be defined by (1), and let assumptions (2)-(3) be satisfied in a
domain E . Suppose that a function w ∈ C1(E) satisfies

Lw > 0 in E ; w > 0 on ∂E .

Then w > 0 in E .
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Proof. In the paper [Zha96] the Harnack inequality was established for the diver-
gence-type operators with the Hölder continuous coefficients aij and bi belonging
to the Kato class Kn,1. However, it is mentioned in [Zha96] that the assumption
of the Hölder continuity of leading coefficients is needed only for the pointwise
gradient estimate of the Green function for the operator L0. Since by [GW82,
Theorem 3.3] this estimate holds for operators with Dini coefficients (see (13)),
the Harnack inequality is valid for the operator L. This implies the assertion of
Lemma.

Proof of Theorem 2.1. It is well known that the Boundary Point Principle holds
true for the operator with constant coefficients. Using this statement for the oper-
ator Lx∗0 (see (4)) with x∗ = 0 in the annulus A1 and rescaling A1 into Aρ we get
the estimate

Dnψ0(0) >
N4(n, ν)

ρ
> 0.

Furthermore, the inequalities (5) and (11) imply for sufficiently small ρ

Dnv(0) > Dnψ0(0)− |Dz(0)−Dψ0(0)| − |Dv(0)−Dz(0)|

>
N4

ρ
− C1

Jσ(2ρ)

ρ
− C2

ω(2ρ)

ρ
>
N4

2ρ
.

Given ρ, we have for sufficiently small ε

L(u− u(0)− εv) > 0 in Aρ; u− u(0)− εv > 0 on ∂Aρ.

By Lemma 2.6 the estimate u − u(0) > εv holds true in Aρ, with equality at the
origin. This gives

∂u

∂n
(0) = −Dnu(0) 6 −εDnv(0),

which completes the proof.

3 Some sufficient conditions for validity of (3)
Throughout this section we will denote various constants depending on n only by
the letter N without indices.

In the paper [Naz12], where equations in non-divergence form were studied,
the following restrictions on the lower order coefficients bi were imposed: either

b ∈ Ln(Ω); sup
x∈Ω
‖b‖n,Bρ(x)∩Ω 6 Cσ1(ρ), (15)

or

|b(y)| 6 C
σ1(d(y))

d(y)
(16)

(here σ1 ∈ D).
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Lemma 3.1. The restriction (15) implies the validity of condition (3). The same
statement is true for (16), if ∂Ω ∈ C1,D.

Proof. To simplify the notation, assume that b is extended by zero outside of Ω.
Let (15) hold. Then one can estimate ω(r) as

ω(r) 6 sup
x∈Ω

∞∑
k=0

r/2k∫
r/2k+1

∫
S1

|b(x+ ρΘ)| dΘdρ

6 sup
x∈Ω

∞∑
k=0

( r/2k∫
r/2k+1

∫
S1

|b(x+ ρΘ)|nρn−1 dΘdρ

) 1
n

·
( r/2k∫
r/2k+1

∫
S1

dΘdρ

ρ

)n−1
n

6 NC
∞∑
k=0

σ1(r/2k) 6 NCJσ1(2r),

and (3) follows.
Now let ∂Ω ∈ C1,D, and let (16) hold. If d(x) ≥ 2r then we use the decay of

σ1(t)/t and estimate the integral in (3) via

C
σ1(r)

r

∫
Br(x)

dy

|x− y|n−1
6 NCσ1(r).

If d(x) < 2r then, as in Remark 2.2, we can assume that ∂Ω is locally the plane
xn = 0, and x = (0, . . . , 0, ρ). We split the integral in (3) into two parts

I1 + I2 :=

( ∫
Br(x)\A

+

∫
Br(x)∩A

)
|b(y)|
|x− y|n−1

· yn
yn + |x− y|

dy,

where A = {y : |yn − ρ| < ρ/2}.
On the set Br(x) \ A we have |xn − ρ| > 3yn, and therefore

I1 6 NC

3r∫
0

r∫
0

σ(yn)tn−2

(yn + t)n
dtdyn 6 NCJσ1(3r).

Next,

I2 6 NCσ(3ρ/2)

r∫
0

3ρ/2∫
ρ/2

dyn
(yn + t)n−1

tn−2

ρ+ t
dt 6 NCσ(3r),

and (3) again follows.
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