
Universität des Saarlandes

U
N

IV
E R S IT

A
S

S
A

R
A V I E N

S
I
S

Fachrichtung Mathematik

Preprint Nr. 400

The Virtual Element Method on Anisotropic
Polygonal Discretizations

Paola F. Antonietti, Stefano Berrone,
Marco Verani and Steffen Weißer

Saarbrücken 2018





Fachrichtung Mathematik Preprint No. 400
Universität des Saarlandes submitted: 12.12.2017

The Virtual Element Method on Anisotropic
Polygonal Discretizations

Paola F. Antonietti
MOX, Dipartimento di Matematica

Politecnico di Milano
Italy

paola.antonietti@polimi.it

Stefano Berrone
Dipartimento di Scienze Matematiche

Politecnico di Torino
Italy

stefano.berrone@polito.it

Marco Verani
MOX, Dipartimento di Matematica

Politecnico di Milano
Italy

marco.verani@polimi.it

Steffen Weißer
Saarland University

Department of Mathematics
Germany

weisser@num.uni-sb.de



Edited by
FR Mathematik
Universität des Saarlandes
Postfach 15 11 50
66041 Saarbrücken
Germany

Fax: + 49 681 302 4443
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/



The Virtual Element Method on Anisotropic
Polygonal Discretizations?

Paola F. Antonietti1, Stefano Berrone2, Marco Verani1, and Steffen Weißer3

1 MOX, Dipartimento di Matematica, Politecnico di Milano, Italy
{paola.antonietti;marco.verani}@polimi.it

2 Dipartimento di Scienze Matematiche, Politecnico di Torino, Italy
stefano.berrone@polito.it

3 Universität des Saarlandes, FR Mathematik, Saarbrücken, Germany,
weisser@num.uni-sb.de

Abstract. In recent years, the numerical treatment of boundary value problems
with the help of polygonal and polyhedral discretization techniques has received
a lot of attention within several disciplines. Due to the general element shapes
an enormous flexibility is gained and can be exploited, for instance, in adaptive
mesh refinement strategies. The Virtual Element Method (VEM) is one of the new
promising approaches applicable on general meshes. Although polygonal element
shapes may be highly adapted, the analysis relies on isotropic elements which must
not be very stretched. But, such anisotropic element shapes have a high potential
in the discretization of interior and boundary layers. Recent results on anisotropic
polygonal meshes are reviewed and the Virtual Element Method is applied on layer
adapted meshes containing isotropic and anisotropic polygonal elements.

1 Introduction

In the numerical treatment of boundary value problems the flexibility in the
discretization of the computational domain has gained more and more impor-
tance during the last years. Therefore, approximation strategies applicable
on general polygonal and polyhedral meshes attracted a lot of interest. These
approaches include, e.g., the BEM-based FEM [12], where BEM stands for
Boundary Element Method, the Virtual Element Method (VEM) [5], Mimetic
Finite Differences, polygonal Discontinuous Galerkin methods, and Hybrid
High-Order schemes (see [4] and the papers therein cited). Since polygo-
nal elements may contain an arbitrary number of nodes on their boundary,
the notion of “hanging nodes” is naturally included in the previously men-
tioned approaches. Consequently, the application in adaptive mesh refine-
ment strategies becomes very attractive. For this reason, a posteriori error
estimates have been developed and employed for the BEM-based FEM as
well as for MFD and VEM in recent publications, see [1,7,10,11,17,19,20].

? This article has been accapted for publication in Numerical Mathematics and
Advanced Applications - ENUMATH 2017, Lecture Notes in Computational Sci-
ence and Engineering, Springer International Publishing. The final authenticated
version is available online at https://doi.ort/... (tba)
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For classical Finite Element Methods (FEM), it is widely recognized that
anisotropic mesh refinements have significant potential for improving the effi-
ciency of the solution process when dealing with sharp layers in the solution.
Pioneering works for anisotropic triangular and tetrahedral meshes have been
done by Apel [3] as well as by Formaggia and Perotto [13,14]. Furthermore,
a posteriori error estimates for driving adaptivity with anisotropic elements
have been studied by Kunert [15]. The anisotropic refinement of classical
elements, however, results in certain restrictions due to the limited element
shapes and the necessity to remove or handle hanging nodes in the discretiza-
tion. Polygonal elements, in contrast, are much more flexible and adapt to
anisotropic element shapes easily. This new topic has been addressed in [18],
where anisotropic interpolation error estimates have been proved and utilized
to generate highly adapted meshes.

The aim of this paper is to investigate the Virtual Element Method on
such anisotropically adapted meshes. In Sect. 2, some results of [18] are high-
lighted. After a short review of the VEM in Sect. 3, we give a numerical exper-
iment in Sect. 4 demonstrating the applicability of the method on anisotropic
meshes.

2 Preliminaries

Let Ω ⊂ R2 be a bounded polygonal domain and let Kh be a decomposi-
tion of Ω into disjoint polygonal elements K such that Ω =

⋃
K∈Kh

K. Each
element K consists of an arbitrary (uniformly bounded) number of vertices
which correspond to the nodes in the polygonal mesh Kh. The edges e of K
are always located between two nodes. Several nodes may lie on a straight line
and thus the notion of “hanging nodes” in classical finite element discretiza-
tions is naturally included in polygonal meshes. In order to prove convergence
estimates for the later discussed approach, the meshes have to fulfil certain
regularity assumptions. A classical choice for them is, cf. [5,18], that all ele-
ments K ∈ Kh with diameter hK fulfil:

– K is a star-shaped polygon with respect to a circle of radius ρK and with
a uniformly bounded aspect ratio hK/ρK .

– For the element K and all its edges e ⊂ ∂K the ratio hK/|e| is uniformly
bounded, where |e| denotes the edge length.

These regularity assumptions obviously do not allow stretched anisotropic
elements, since their aspect ratio degenerates. Therefore, the regularity for
meshes with anisotropic elements has to be adapted. The geometric informa-
tion of the polygonal element K is encoded in the symmetric and positive
definite covariance matrix

MCov(K) =
1

|K|

∫

K

(x− x̄K)(x− x̄K)> dx ∈ Rd×d, x̄K =
1

|K|

∫

K

x dx.
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Fig. 1. Anisotropic polygonal element (left) and transformed reference configura-
tion (right) with ellipse given by the eigenvectors of MCov scaled by the square root
of the corresponding eigenvalues

This matrix admits an eigenvalue decomposition MCov(K) = UKΛKU
>
K with

U> = U−1 and ΛK = diag(λK,1, λK,2). Exploiting this information, we define
the mapping

x 7→ FK(x) = AKx with AK = Λ
−1/2
K U>K ,

which transforms the element K into a reference configuration FK(K). An
example is given in Fig. 1. Thus, we call Kh a regular anisotropic mesh if:

– The reference configuration FK(K) for all K ∈ Kh is a regular polygonal
element according to the previous assumptions.

– Neighbouring elements in Kh behave similarly in their anisotropy, i.e.,
their characteristic directions are scaled and oriented in a comparable
way, see [18] for details.

Under these assumptions on the mesh, an anisotropic error estimate for the
Clément interpolation operator on polygonal discretizations can be derived,
see [18, Sec. 4.1]. For v ∈ H1(Ω), we denote its interpolation by ICv ∈ Vh,
where the discrete space Vh is given in the next section and the expansion
coefficients are defined as usual as averages over neighbouring elements of the
nodes. The Clément interpolation fulfils

‖v − ICv‖2L2(Ω) ≤ c
∑

K∈Kh

λK,1 u
>
K,1G

∗
K(v)uK,1 + λK,2 u

>
K,2G

∗
K(v)uK,2,

where G∗K(v) =
(∫

K
∂v
∂xi

∂v
∂xj

dx
)2
i,j=1

∈ R2×2 for x = (x1, x2)> and uK,i are

the eigenvectors of MCov(K) corresponding to the eigenvalues λK,i, i = 1, 2.
This result generalizes the work of Formaggia and Perotto [14].

The generation of such general meshes, however, cannot be performed
with standard tools. For the mesh refinement we use a bisection of the polyg-
onal element through its barycentre into two new elements. The direction of
the bisection might be determined by uK,2 that yields an isotropic refinement
or by the eigenvector corresponding to the smallest eigenvalue of G∗K(v). The
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Fig. 2. Uniform (left) and adaptive meshes with isotropic (middle) and anisotropic
elements (right) after 6 refinement steps starting from a hexagonal mesh.

later strategy results in an anisotropic refinement, where the characteristics of
the function v are incorporated. In Fig. 2, three meshes are visualized which
are obtained after 6 refinement steps using a uniform and adaptive strat-
egy with isotropic and anisotropic bisection, starting from a hexagonal mesh.
These refinement procedures are exploited in the later numerical experiment.

3 Virtual Element Method

It remains to discuss the numerical approximation of boundary value prob-
lems on polygonal meshes. We restrict ourselves for simplicity to the Poisson
problem. For a given source function f ∈ L2(Ω), we consider the following
formulation: find u ∈ V = H1

0 (Ω) such that:

a(u, v) =

∫

Ω

fv, ∀v ∈ V, (1)

where a(·, ·) = (∇·,∇·)0,Ω . Problem (1) is well-posed. For future use, it is
convenient to split the (continuous) bilinear form a(·, ·) defined in (1) into a
sum of local contributions:

a(u, v) =
∑

K∈Kh

aK(u, v) ∀u, v ∈ V, where aK(·, ·) = (∇·,∇·)0,K .

In order to construct the lowest order VEM approximation of (1), we need
the following ingredients:

– Finite dimensional subspaces Vh(K) of V (K) = V ∩H1(K) ∀K ∈ Kh;
– Local symmetric bilinear forms aKh : Vh(K) × Vh(K) → R ∀K ∈ Kh so

that
ah(uh, vh) =

∑

K∈Kh

aKh (uh, vh) ∀uh, vh ∈ Vh; (2)

– A duality pairing 〈fh, ·〉h, where fh ∈ V ′h and V ′h is the dual space of Vh.
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The above ingredients must be built in such a way that the discrete version
of (1): find uh ∈ Vh such that:

ah(uh, vh) = 〈fh, vh〉h, ∀vh ∈ Vh, (3)

is well-posed and optimal a priori energy error estimates hold, cf. [5].
We begin by introducing the local space Vh(K) for K ∈ Kh

Vh(K) =
{
vh ∈ H1(K) | ∆vh = 0, vh|∂K ∈ B1(∂K)

}
, (4)

where B1(∂K) =
{
vh ∈ C0(∂K) | vh|e ∈ P1(e), ∀e ∈ ∂K

}
. The global space

is then obtained by gluing continuously the local spaces:

Vh =
{
vh ∈ H1

0 (Ω) ∩ C0(Ω) | vh|K ∈ Vh(K), ∀K ∈ Kh
}
. (5)

Here, we only revised the space yielding first order approximations. But, the
approach can be extended to k-th order approximation spaces V kh for k > 1,
cf. [5,6]. We endow the space (4) with the values of vh at the vertices of K.
Reasoning as in [5], it is easy to see that this is a unisolvent set of degrees
of freedom. Owing the definition (4) of the VE local space and the choice
of the degrees of freedom, it is possible to compute the H1(K) projector
Π∇1 : Vh(K)→ P1(K)

{
aK(Π∇1 vh − vh, q) = 0, ∀q ∈ P1(K),∫
∂K

(Π∇1 vh − vh) = 0,
∀vh ∈ Vh(K), (6)

see [5] for details. We observe that the last condition in (6) is needed in order
to fix the constant part of the energy projector.

Next, we introduce the discrete right-hand side fh ∈ V ′h and the associated
duality pairing, i.e. 〈fh, vh〉h =

∑
K∈Kh

∫
K
Π0

0fvh, where Π0
0 is the L2 projec-

tion on constants and vh = 1
|∂K|

∫
∂K

vh. Finally, we consider the discrete bilin-

ear form and we require that the local bilinear forms aKh : Vh(K)×Vh(K)→ R
satisfy, for all K ∈ Kh, the following two assumptions

(A1) consistency: aK(q, vh) = aKh (q, vh) ∀q ∈ P1(K), ∀vh ∈ Vh(K);
(A2) stability: there exist two positive constants 0 < α∗ < α∗ < +∞ (possibly

depending on the shape regularity of K), such that ∀vh ∈ Vh(K)

α∗|vh|21,K ≤ aKh (vh, vh) ≤ α∗|vh|21,K .

Assumption (A1) guarantees that the method is exact whenever the solution
of (1) is a polynomial of degree one, whereas assumption (A2) guarantees
the well-posedness of problem (3). Let now Idh be the identity operator on
the space Vh(K), we set for every uh, vh ∈ Vh(K)

aKh (uh, vh) = aK(Π∇1 uh, Π
∇
1 vh) + SKh ((Idh −Π∇1 )uh, (Idh −Π∇1 )vh), (7)
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Fig. 3. Computed solution on uniform (left) and adaptive meshes with isotropic
(middle) and anisotropic elements (right) after 8 refinement steps, with k = 1

where Π∇1 is defined in (6) and the local bilinear form SKh (·, ·)

SKh (uh, vh) =

dim(Vh(K)∩Vh)∑

i=1

dofi(uh)dofi(vh) (8)

satisfies c∗|vh|21,K ≤ SKh (vh, vh) ≤ c∗|vh|21,K for all vh ∈ ker(Π∇1 ), where c∗
and c∗ might depend on the shape regularity of the polygon, and the local
discrete bilinear form (7) satisfies (A1) and (A2).

4 Numerical Experiment

In this last section we report some preliminary results obtained solving the
Poisson problem with non-homogeneous Dirichlet boundary condition

−∆u = f in Ω = (0, 1)2, u = g on ∂Ω,

by the Virtual Element Method on uniformly and locally refined meshes with
isotropic as well as anisotropic elements. The computations are done with first
and higher order approximation spaces V kh . In the considered test problem,
the exact solution is

u(x) = tanh (60x2)− tanh (60(x1 − x2)− 30) , x = (x1, x2)> ∈ R2,

chosen because it has a strong boundary layer on the bottom of the domain
and a strong internal layer connecting the bottom and the right part of the
boundary. The Dirichlet data and the forcing function are chosen appropri-
ately as g = u

∣∣
∂Ω

and

f(x) = 14400
tanh (30− 60(x1 − x2))

cosh2 (30− 60(x1 − x2))
+ 7200

tanh (60x2)

cosh2 (60x2)
.

In Fig. 2, we display the meshes and in Fig. 3 the projections of the VEM
solution with order k = 1 on piecewise linear functions over each element. We
can easily observe that the solution is properly described on all the meshes,
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Fig. 4. Errors (L2 left and H1 right) on uniform and adaptive meshes with isotropic
and anisotropic elements in logarithmic scale

although the number of degrees of freedom (dofs) on them is very different.
Similar approximations can be obtained considering advection dominated
advection diffusion problems. For these problems the VEM solution requires
special stabilization for preventing spurious oscillations [8]. The anisotropic
VEM elements generated by the approach presented in [18] have a quite
large aspect ratio. For these elements the VEM construction could require
the implementation of suitable polynomial basis functions in order to prevent
problems due to the ill conditioning of the VEM projectors introduced in
Sect. 3 as described, e.g., in [2,9,16].

In Fig. 4, we report the convergence histories in the approximate L2 error
norm defined by the Π∇k -projection of the VEM solution and the H1 error
semi-norm defined considering the L2 projection on the space of polynomials
of order k − 1 of the gradient of the solution, cf. [6]. In the convergence
graphs, we consider k = 1 and k = 3, where the continuous lines indicate
the theoretical rates of convergence. The errors are given with respect to the
number of degrees of freedom and, in the legend, we recall the corresponding
rates with respect to the mesh-size h on quasi uniform meshes as well. Both,
for the L2 and H1 errors as well as for k = 1 and k = 3, the convergence
histories fit very well the expected theoretical behaviours. The anisotropic
meshes always perform superior providing a smaller error with respect to the
uniform or the isotropic adaptive mesh.
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