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Dedicated to Professor Nina Uraltseva on the occasion of her 85th birthday.

Abstract

The TV-regularization method of Rudin, Osher and Fatemi [ROF]
is widely used in mathematical image analysis. We consider a nonsta-
tionary and iterative variant of this approach and provide a mathemat-
ical theory that extends results of Radmoser et al. [RSW] to the BV
setting. While existence and uniqueness, a maximum–minimum prin-
ciple, and preservation of the average grey value are not hard to prove,
we also establish convergence to a constant steady state and a large
family of Lyapunov functionals. These properties allow to interpret
iterated TV-regularization as a time-discrete scale-space representa-
tion of the original image.

AMS Subject Classification: 49J45, 49N60.
Keywords: regularization methods, scale-spaces, image restoration, functions
of bounded variation, TV-model, Lyapunov functionals.

1 Introduction

The theory of regularisation methods for ill-posed problems goes back to
Tikhonov [Ti2]. It has found numerous applications in inverse problems
and mathematical image analysis, where it is common to model the solu-
tions of ill-posed problems as minimizers of energy functionals. Typically
the Euler–Lagrange equations of these functionals are elliptic PDEs. On the
other hand, parabolic PDEs in image analysis often occur in the context of
scale-space representations. Scale-spaces are embeddings of an image into
a parameterized family of gradually smoothed or simplified versions of it,
provided that this family satisfies a number of properties [Ii, AGLM]. They
are useful intermediate representations for extracting semantic image infor-
mation [Wi]. For nonlinear diffusion processes, scale-space properties have
been established in [We] in the continuous, space-discrete and fully discrete
setting, where the diffusion time serves a scale parameter. These proper-
ties include well-posedness results, preservation of the average grey value,
maximum–minimum principles, Lyapunov functionals, and convergence to a
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constant steady state. It was possible to regard also regularisation meth-
ods as scale-spaces by interpreting their Euler-Lagrange equations as fully
implicit discretizations of a parabolic PDE with a single time step [SW].
Radmoser et al. [RSW] have extended these results to nonstationary iter-
ative regularization methods where the regularization parameter may vary
from iteration to iteration. The energy functionals considered in [RSW] have
densities of superlinear growth with respect to the quantity∇u, as it is stated
in formula (8) of [RSW]. Moreover, they have to satisfy five assumptions I.-
V. that are stated at p. 100 of this reference. Hypothesis IV is violated for
the total variation regularization in its original formulation by Rudin, Os-
her and Fatemi [ROF], which is of linear growth and belongs to the most
widely used energy functionals for image restoration. It is also false for the
variants of the TV-model studied e.g. in [BF1, BF2, BF3] and [BFW]. The
analytical difficulties caused by the linear growth of the underlying energy
densities are explained on p. 101 of [RSW], where the reader will also find
further references.

In the present work we like to demonstrate that even in the linear growth case
it is possible to show that at least a nonstationary iterative regularization
process with adequate formulation in the space BV of functions of finite total
variation has similar scale-space properties as the approaches considered by
Radmoser et al. [RSW]. While it is not very difficult to prove existence,
uniqueness, a maximum–minimum principle, and preservation of the average
grey value, it is more demanding to establish a large family of Lyapunov
functionals and to show convergence in a rather strong sense to a constant
image as the regularization parameter tends to infinity.

To be precise, let us summarize our assumptions:

(A1) Ω ⊂ Rd denotes a bounded Lipschitz domain.

(A2) f is a measurable function Ω→ R, which satisfies 0 ≤ f ≤ 1 a.e.;

(A3) F : Rd → [0,∞) denotes a convex function (w.l.o.g. F (0) = 0) being of
linear growth in the sense that ν1|p| − ν2 ≤ F (p) ≤ ν3|p|+ ν4, p ∈ Rd,
holds with constants ν1, ν3 > 0, ν2, ν4 ≥ 0.

Typical examples of densities F satisfying (A3) are the TV-density intro-
duced in [ROF]

F (p) := |p|(1)

2



and its approximations (see e.g. [BF1, BF2] and [BFW])

F (p) :=
√
ε2 + |p|2 − ε, ε > 0 ,(2)

F (p) := Φµ(|p|), µ > 1 ,(3)

with function Φµ : [0,∞)→ [0,∞) given by

Φµ(t) :=

∫ t

0

∫ s

0

(1 + r)−µ dr ds(4)

or in more explicit form
Φµ(t) =

1

µ− 1
t+

1

µ− 1

1

µ− 2
t−µ+2 − 1

µ− 1

1

µ− 2
, µ 6= 2 ,

Φ2(t) = t− ln(1 + t) .

(5)

Note, that (5) immediately implies

(µ− 1)Φµ(|p|)→ |p| as µ→∞, p ∈ Rd ,(6)

and relation (6) shows in which way the density introduced in (3) approxi-
mates the TV-case from (1).

(A4) Let (hk) denote a sequence of positive numbers satisfying limk→∞ hk =
∞. We further let tk :=

∑k
i=1 hi, k ∈ N, and define t0 := 0 as well

as u(t0) = u(0) := f with f from (A2) .

For n ∈ N and t ∈ (tn−1, tn] we then consider the functional

J [t, w] :=

∫
Ω

|w − u (tn−1)|2 dx+ (t− tn−1)

∫
Ω

F (∇w) dx ,(7)

and clearly formula (7) needs some comments:

i) For the moment u(tn−1) denotes a measurable function Ω→ R satisfy-
ing the minimal requirement (see (A2), (A4))

0 ≤ u(tn−1) ≤ 1 a.e. on Ω .(8)

In what follows we will give a precise meaning of u(t) for t = tk, k ∈ N0,
and also for arbitrary numbers t ≥ 0.
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ii) Under the hypothesis (8) the energy J [t, ·] introduced in (7) makes
sense for functions w from the Sobolev space W 1,1(Ω) (compare, e.g.
[Ad]) with finite values, if d ≤ 2, which in case d ≥ 3 is true, if we
additionally require w ∈ L2(Ω).

iii) However, due to the non-reflexivity of the class W 1,1(Ω), the problem
J [t, ·]→ min has to be replaced by its relaxed variant, i.e. for functions
w ∈ BV (Ω) (:= the space of L1(Ω)-functions with finite total variation,
see for example [Gi] or [AFP]) we let

J̃ [t, w] :=

∫
Ω

|w − u(tn−1)|2 dx+ (t− tn−1)

∫
Ω

F (∇aw) dx(9)

+ (t− tn−1)

∫
Ω

F∞
(
∇sw

|∇sw|

)
d |∇sw| ,

where ∇w = ∇awLd +∇sw is the Lebesgue decomposition of the mea-
sure ∇w and F∞ denotes the recession function of F , i.e.

F∞(p) := lim
t→∞

1

t
F (tp), p ∈ Rd .

Now we can state our first result. It guarantees existence, uniqueness, a
maximum–minimum principle, and preservation of the average grey value.
Maximum–minimum principles are important in image analysis, since the
grey values of a digital image are bounded due to their bytewise encod-
ing. Thus, one is interested in avoiding filtered results that lie outside these
bounds.

THEOREM 1. Let (A1–A4) hold and let u(tn−1) satisfy (8) for some n ∈
N. Consider t ∈ (tn−1, tn]. Then it holds:

a) The variational problem

J̃ [t, ·]→ min in BV(Ω)(10)

with J̃ from (9) admits a unique solution u(t) ∈ BV(Ω).

b) u(t) satisfies 0 ≤ u(t) ≤ 1 a.e. on Ω.

c) We have M(u(t)) :=

∫
−
Ω

u(t) dx = M(u(tn−1)) .
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We apply Theorem 1 choosing n = 1 and recalling (see (A4)) that u(t0) := f .
According to (A2) we have the validity of (8), and by letting t = t1 in
Theorem 1 we obtain the BV-solution u(t1) of J [t1, w]→ min in BV(Ω), and
u(t1) satisfies (8) as well as M(u(t1)) = M(u(t0)) = M(f). Proceeding by
induction we obtain a sequence (u(tn))n∈N in BV(Ω) with u(tn) being the
solution of (10) for the choice t = tn.

Our second result deals with convergence to a constant steady state. Since
scale-spaces aim at gradually simpler image representations, it is desirable
that the simplest representation consists of a flat image which has the same
average grey value as the original image.

THEOREM 2. Under the assumptions of Theorem 1 and with the notation
introduced above it holds:

a) ‖u(tn)−M(f)‖Lp(Ω) → 0 as n→∞ for any finite p, if d = 1, and for
any p < d

d−1
, if the case d ≥ 2 is considered. Moreover, if d ≥ 2, then

u(tn) ⇁M(f) as n→∞ in Ld/d−1(Ω) .

b) Suppose that F is of type (3) for some µ ∈ (1, 2). Then we have
u(tn)→M(f) as n→∞ locally uniformly on Ω .

REMARK 1. The results of Theorem 2 can be seen as TV-variants of the
statements given in Theorem 4 (b) of [RSW].

REMARK 2. The result of Theorem 2 b) is not limited to the particular
density (3), we can consider any µ-elliptic integrand with µ ∈ (1, 2). The
interested reader is referred to [BF1-3], [BFMT] and [BFW].

As outlined in [SW] or [RSW] we can introduce Lyapunov functionals for
the nonstationary regularization methods considered here leading to an ap-
propriate version of Theorem 4.1 (a) from [RSW] with some adjustments
resulting from the linear growth of F stated in (A3). In what follows let
r : [0, 1] → R denote a function such that r ∈ C2([0, 1]) and r

′′ ≥ 0. With
u(t) from Theorem 1 we define the Lyapunov functional

V (t) := φ(u(t)) :=

∫
Ω

r(u(t)) dx .

THEOREM 3. Let (A1–A4) hold. Referring to the notation introduced
before we have the following properties of the Lyapunov functional:
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a) V is bounded from below in the sense that

V (t) = φ(u(t)) ≥ φ(M(f))

holds, M(·) denoting the mean value.

Suppose that F is of type (3) for some µ ∈ (1, 2) or even more general a
µ-elliptic density of linear growth again with 1 < µ < 2. Then the next
assertions are true:

b) V is a continuous function on the interval [0,∞).

c) For t ∈ (tn−1, tn] we have∫
Ω

r′(u(t))(u(t)− u(tn−1)) dx ≤ 0 .

d) If t ∈ (tn−1, tn], then

V (t)− V (tn−1) ≤ 0 .

REMARK 3. These Lyapunov functionals allow to interpret {u(tn) |n ∈
N} as a family of representations that are simpler in many aspects [We]:
Choosing e.g. r(s) := |s|2, r(s) := (s−M(f))2, and r(s) := s ln s for s > 0
implies that the image energy ‖u(tn)‖2

L2(Ω) and the variance are decreasing in

n, and the entropy −
∫

Ω
u(tn) ln(u(tn)) dx, a measure of missing information,

is increasing in n.

From the proof of Theorem 3 we will deduce

Corollary 1. The continuity of the Lyapunov functional V stated in b) of
the theorem holds just under the assumptions (A1–A4) and does not require
any further properties of the density F . In particular we have the continuity
of V for the TV-density (1).

REMARK 4. For references explaining the notion of µ-ellipticity the reader
should consult Remark 2, the most general discussion can be found in [BFMT],
formulas (1.5) - (1.8).

REMARK 5. If we impose the stronger hypothesis that r′′ > 0 on [0, 1],
then V is a strict Lyapunov functional in the sense of [RSW], Theorem 4.1
(a), 3. - 5. We leave the details to the reader.

6



With respect to Corollary 1 the question arises, if parts c) and d) of Theorem
3 actually can be established under weaker hypotheses on the density F . We
have the following result.

THEOREM 4. The statements c) and d) of Theorem 3 hold under the
assumptions (A1–A4) provided we additionally require that F from (A3) is
of class C1 with DF (0) = 0.

REMARK 6. According to Theorem 4 we have the inequalities stated in c)
and d) of Theorem 3 for smooth variants of the TV-case (1), i.e. we can
consider any density of type (2) or (3).

2 Proofs of the results

Proof of Theorem 1.

a) The existence of at least one solution u ∈ BV(Ω) to problem (10) is
an immediate consequence of the lower semicontinuity results stated
in e.g. [AFP], Theorem 5.47 (and subsequent remarks) applied to a

J̃ [t, ·]-minimizing sequence. The unique solvability of problem (10)
follows from the strict convexity of w 7→

∫
Ω
|w − u(tn−1)|2 dx.

b) As outlined in e.g. [BF2] we can combine (8) with the J̃ [t, ·]-minimality
of u(t) to get

J̃ [t, u(t)] ≤ J̃ [t,max {u(t), 0}] ,
J̃ [t, u(t)] ≤ J̃ [t,min {u(t), 1}] ,

thus 0 ≤ u(t) ≤ 1 a.e. by uniqueness.

c) We have for any ε ∈ R

J̃ [t, u(t) + ε · 1] ≥ J̃ [t, u(t)] ,(11)

and since ∇ (u(t) + ε · 1) = ∇u(t) we find from (11)

0 =
d

dε|0

∫
Ω

|u(t) + ε · 1− u(tn−1)|2 dx ,

which immediately shows M (u(t)) = M (u(tn−1)).
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Proof of Theorem 2. We first recall the properties of the sequences hk and
tk from (A4) and observe that by definition of u(tn) we have J̃ [tn, u(tn)] ≤
J̃ [tn, w] for any w ∈ BV(Ω). Choosing w = 0 we obtain

hn

∫
Ω

F (∇au(tn)) dx+ hn

∫
Ω

F∞
(
∇su(tn)

|∇su(tn)|

)
d |∇su(tn)|

+

∫
Ω

|u(tn)− u(tn−1)|2 dx

≤ hn

∫
Ω

F (0) dx+

∫
Ω

|0− u(tn−1)|2 dx ≤ Ld(Ω) ,

since we assume F (0) = 0 and 0 ≤ u(tn−1) ≤ 1 holds a.e. on Ω for our
sequence u(tk). The linear growth of F stated in (A3) therefore yields for
the total variation of u(tn)∫

Ω

|∇u(tn)| → 0 as n→∞ ,(12)

in particular, we find that u(tn) is a bounded sequence in BV(Ω) and by
BV-compactness there exists u ∈ BV(Ω) such that for a subsequence u(tnk) ‖u(tnk)− u‖Lp(Ω) → 0 as k →∞ for p <

d

d− 1
(:=∞, if d = 1)

and u(tnk) ⇁ u in Ld/d−1(Ω), if d ≥ 2 .

(13)

From (12) we deduce ∇u = 0, thus u is a constant function. But then we
have (by the convergences (13))

u =

∫
Ω

u dx = lim
k→∞

∫
−
Ω

u(tnk) dx .

At the same time (see Theorem 1.c)) M(u(tn)) = M(f), thus u = M(f)
and the convergences (13) are true not only for a subsequence. This proves
part a) of Theorem 2.
Next we discuss b) for d = 2. The case d = 1 is analyzed in [FMT], for
d ≥ 3 we refer to [Ti1], which means that in these references one will find
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the adjustments of the following arguments. Now, for d = 2, it has been
shown in [BFT] that u(tn) ∈ C1(Ω), which obviously improves the W 2,s

loc (Ω)-
regularity of u(tn) established for s < 2 in (3.13) of [BF2] to any s <∞. We

therefore deduce from the J̃ [tn, ·]-minimality of u(tn) (observing that J̃ = J
on W 1,1(Ω) and letting uk := u(tk))

hn

∫
Ω

D2F (∇un) (∂α∇un,∇ϕ) dx = 2

∫
Ω

(un − un−1) ∂αϕdx, α = 1, 2 ,

for ϕ with compact support in Ω. Letting ϕ := η2∂αun with η ∈ C1
0(Ω),

0 ≤ η ≤ 1, we get (from now on summation with respect to α)

hn

∫
Ω

D2F (∇un) (∂α∇un, ∂α∇un) η2 dx(14)

= −2hn

∫
Ω

D2F (∇un) (∂α∇un,∇η) η ∂αun dx

+ 2

∫
Ω

(un − un−1) ∂α
(
η2∂αun

)
dx .

Applying the Cauchy-Schwarz inequality to the bilinear form D2F (∇un) and
then using Young’s inequality we easily deduce from (14) (c denoting a con-
stant > 0 independent of n)

hn
1

2

∫
Ω

D2F (∇un) (∂α∇un, ∂α∇un) η2 dx(15)

≤ 2

∫
Ω

(un − un−1)∂α
(
η2∂αun

)
dx

+ chn

∫
Ω

|∇η|2
∣∣D2F (∇un)

∣∣ |∇un|2 dx .
In order to proceed we observe that for F as in (3)

ν5 (1 + |p|)−µ |q|2 ≤ D2F (p)(q, q) ≤ ν6 (1 + |p|)−1 |q|2, p, q ∈ R2 ,(16)

holds with constants ν5, ν6 > 0. Applying (16) on both sides of (15) and
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observing (after integration by parts)∫
Ω

(un − un−1)∂α
(
η2∂αun

)
dx

= −
∫

Ω

∂αun∂αunη
2 dx−

∫
Ω

un−1∂α
(
η2∂αun

)
dx

(0≤un≤1)

≤ −
∫

Ω

∂αun∂αunη
2 dx+

∫
Ω

|∇η2||∇un| dx+

∫
Ω

η2|∇2un| dx

we obtain

hn

∫
Ω

(1 + |∇un|)−µ
∣∣∇2un

∣∣2 η2 dx+

∫
Ω

η2 |∇un|2 dx(17)

≤ c

{
hn

∫
Ω

|∇η|2 |∇un| dx+

∫
Ω

∣∣∇η2
∣∣ |∇un| dx+

∫
Ω

η2
∣∣∇2un

∣∣ dx} .

To the last term on the right-hand side of (17) we apply Young’s inequality:∫
Ω

η2
∣∣∇2un

∣∣ dx =

∫
Ω

(1 + |∇un|)−µ/2
∣∣∇2un

∣∣ (1 + |∇un|)+µ/2 η2 dx(18)

≤ 1

2
hn

∫
Ω

η2 (1 + |∇un|)−µ
∣∣∇2un

∣∣2 dx+ ch−1
n

∫
Ω

η2 (1 + |∇un|)µ dx ,

and since µ < 2, we can control
∫

Ω
η2(1 + |∇un|)µ dx through the quan-

tity
∫

Ω
η2|∇un|2 dx occurring on the left-hand side of (17). Therefore, using

estimate (18), we finally arrive at

hn

∫
Ω

(1 + |∇un|)−µ
∣∣∇2un

∣∣2 η2 dx+

∫
Ω

η2 |∇un|2 dx(19)

≤ c

{
hn

∫
Ω

|∇η|2 |∇un| dx+

∫
Ω

∣∣∇η2
∣∣ |∇un| dx} .

Dividing both sides of (19) by hn and quoting (12), it follows∫
Ω

η2 (1 + |∇un|)−µ
∣∣∇2un

∣∣2 dx→ 0 as n→∞ .(20)

Next let ϕn := (1 + |∇un|)1−µ/2. Combining (12) and (20) we infer

sup
n
‖ϕn‖W 1,2(Ω∗) ≤ c(Ω∗) <∞

10



for any subdomain Ω∗, thus by Sobolev’s embedding theorem

sup
n
‖ϕn‖Lq(Ω∗) ≤ c(Ω∗, q) <∞

for any finite q and in conclusion

sup
n
‖un‖W 1,q(Ω∗) ≤ c(Ω∗, q) <∞

again for any q <∞, hence (by Sobolev’s embedding)

sup
n
‖un‖C0,β(Ω∗) ≤ c(Ω∗, β) <∞

for arbitrary β ∈ (0, 1). Quoting Arcela’s theorem and using part a) of
Theorem 2, our claim follows. �

Proof of Theorem 3.

a) Let t ∈ (tn−1, tn] for some n ∈ N. From Jensen’s inequality we get

V (t) = Ld(Ω)

∫
−
Ω

r(u(t)) dx ≥ Ld(Ω)r

∫−
Ω

u(t) dx

 =

∫
Ω

r (M(u(t)) dx

and Theorem 1 c) implies

V (t) ≥ φ (M (u (tn−1))) .

From the comments after Theorem 1 concerning the definition of the
sequence u(tn) our claim follows.

Suppose now that we are in the µ-elliptic case (3) for some µ ∈ (1, 2).
Quoting Theorem 1 a) and Theorem 2 from [BFMT] covering even the
case of general µ-elliptic densities, we find that the solution u(t) of
problem (10) actually is of class W 1,1(Ω) and thereby minimizes the
functional J defined in (7) within the space W 1,1(Ω), in particular we
have for t ∈ (tn−1, tn] and ϕ ∈ W 1,1(Ω)

0 = (t− tn−1)

∫
Ω

DF (∇u (t)) · ∇ϕdx(21)

+ 2

∫
Ω

ϕ (u (t)− u (tn−1)) dx .

11



b) We fix some s ∈ (tn−1, tn) and choose a sequence (sk) such that sk ∈
(tn−1, tn) and sk → s. The case s = tn is left to the reader. Letting
t = s and t = sk in (21), choosing ϕ = u(s) − u(sk) in both cases and
subtracting the results we get

0 = 2

∫
Ω

(u(s)− u(sk))
2 dx

+

∫
Ω

[(s− tn−1)DF (∇u(s))− (sk − tn−1)DF (∇u(sk))] ·

(∇u(s)−∇u(sk)) dx

= 2

∫
Ω

(u(s)− u(sk))
2 dx

+ (s− tn−1)

∫
Ω

(DF (∇u(s))−DF (∇u(sk))) · (∇u(s)−∇u(sk)) dx

+ (s− sk)
∫

Ω

DF (∇u(sk)) · (∇u(s)−∇u(sk)) dx

=: T
(k)
1 + T

(k)
2 + T

(k)
3

with T
(k)
2 ≥ 0 by the convexity of F . From the J [s, ·]-minimality of u(s)

it follows J [s, u(s)] ≤ J [s, 0], hence account of (A3) and (8) combined
with b) of Theorem 1∫

Ω

|∇u(s)| dx ≤ c/s− tn−1 ,(22)

and from J [sk, u(sk)] ≤ J [sk, 0] we get∫
Ω

|∇u(sk)| dx ≤ c/sk − tn−1 .(23)

The boundedness of DF together with (22) and (23) yields

0 = lim
k→∞

T
(k)
3 ,

and we end up with

lim
k→∞

T
(k)
1 = lim

k→∞
2

∫
Ω

(u(s)− u(sk))
2 dx = 0 .(24)

12



Equation (24) states that limk→∞ ‖u(sk) − u(s)‖L2(Ω) → 0, thus we
obtain

u(s̃k)→ u(s) a.e. on Ω(25)

at least for a subsequence (s̃k) ⊂ (sk). Recalling r ∈ C2([0, 1]) and
0 ≤ u(·) ≤ 1 a.e. on Ω, Lebesgue’s theorem on dominated convergence
implies on account of (25)

lim
k→∞

∫
Ω

r(u(s̃k)) dx =

∫
Ω

r(u(s)) dx .(26)

Suppose now that (26) does not hold for the sequence (sk). Then, for
some ε > 0 and a subsequence (s′k) ⊂ (sk) we have∣∣∣∣∫

Ω

r (u(s′k)) dx−
∫

Ω

r ((s)) dx

∣∣∣∣ ≥ ε .(27)

But by the same reasoning as above we can extract a subsequence
(s′′k) ⊂ (s′k) with (25) and in conclusion (26) contradicting (27), hence
(26) is true for (sk) and the continuity of V at s follows.

c) We choose ϕ = r′(u(t)) in (21), hence

0 = 2

∫
Ω

r′(u(t))(u(t)− u(tn−1)) dx

+ (t− tn−1)

∫
Ω

DF (∇u(t)) · ∇(r′(u(t))) dx ,

andDF (∇u(t))·∇(r′(u(t)) = DF (∇u(t))·∇u(t)r′′(u(t)) is non-negative
on account of r′′ ≥ 0 and DF (ξ) · ξ ≥ 0.

d) We just oberve that convexity of r implies

r (u(tn−1)) ≥ r (u(t)) + r′ (u(t)) (u(tn−1))− u(t))

and from c) we obtain our claim by integrating the above inequality.

�

Proof of Corollary 1. We consider sk and s as specified after (21) and
observe that the inequalities (22) and (23) continue to hold now for the total

13



variations of the measures ∇u(sk),∇u(s). From (23) we deduce the existence
of ũ ∈ BV(Ω) such that

u(s̃k)→ ũ in L1(Ω)(28)

holds, and by passing to another subsequence, if necessary, we may assume
that

u(s̃k)→ ũ a.e. on Ω .(29)

Let us fix a function w ∈ BV(Ω). From the J̃ [s̃k, ·]-minimality of u(s̃k) it
follows

J̃ [s̃k, u(s̃k)] ≤ J̃ [s̃k, w] ,(30)

and clearly

lim
k→∞

J̃ [s̃k, w] = J̃ [s, w] .(31)

Writing

J̃ [s̃k, u(s̃k)] =

∫
Ω

|u(s̃k)− u(tn−1)|2 dx

+ (s− tn−1)

∫
Ω

F (∇u(s̃k)) + (s̃k − s)
∫

Ω

F (∇u(s̃k)) =: U
(k)
1 + U

(k)
2 + U

(k)
3

with an obvious meaning of
∫

Ω
F (. . .), we deduce from (29) (recall 0 ≤

u(. . .) ≤ 1 a.e.)

lim
k→∞

U
(k)
1 =

∫
Ω

|ũ− u(tn−1)|2 dx .(32)

Recalling (23) (valid for the total variations of the measures ∇u(sk)) it is
immediate that

lim
k→∞

U
(k)
3 = 0 .(33)

Finally, the lower semicontinuity of
∫

Ω
F (. . .) w.r.t. the convergence (28)

(compare, e.g., [AFP], Theorem 5.47 and the subsequent remarks) implies∫
Ω

F (∇ũ) ≤ lim inf
k→∞

∫
Ω

F (∇u(s̃k)) .(34)

14



Putting together (30) - (34), it follows J̃ [s, ũ] ≤ J̃ [s, w], thus ũ = u(s) by the

uniqueness of the J̃ [s, ·]-minimizer. This means that we actually have (25),
and we can proceed as done in the proof of b) from Theorem 3. �

Proof of Theorem 4. As in [BF1] we consider the δ-regularization of
the variational problem (7), i.e. for δ > 0 we let Fδ(p) := δ

2
|p|2 + (t −

tn−1)F (p), p ∈ Rd, and denote by uδ ∈ W 1,2(Ω) the unique minimizer of

Jδ[t, w] :=

∫
Ω

|w − u(tn−1)|2 dx+

∫
Ω

Fδ(∇w) dx→ min in W 1,2(Ω) .(35)

As discussed in [BF1-3] the structure of problem (35) together with the bound
(8) yield

0 ≤ uδ ≤ 1 a.e. on Ω ,(36)

uδ → u(t) as δ → 0 in L1(Ω) ,(37)

where u(t) is the unique solution of problem (10) defined in Theorem 1.
Moreover, on account of (37), we may assume

uδ → u(t) a.e. on Ω as δ → 0 .(38)

Recalling our assumptions concerning F , we deduce from (35)

0 = 2

∫
Ω

ϕ (uδ − u(tn−1)) dx+

∫
Ω

DFδ(∇uδ) · ∇ϕdx(39)

valid for any ϕ ∈ W 1,2(Ω), in particular the choice ϕ := r′(uδ) is admissible
(recall that r ∈ C2(|0, 1]) ). Observing the inequality

r′′(uδ)DFδ(∇uδ) · ∇uδ ≥ 0 a.e. on Ω ,

we obtain from (39) ∫
Ω

r′(uδ)(uδ − u(tn−1)) dx ≤ 0 ,(40)

and by combining (40) with (36) and (38), we see the validity of claim c) of
Theorem 3 for the situation at hand. Once having established c), part d) is
obvious. �
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