next up previous contents index
Next: Operator algebras Up: Multiplicative Structures Previous: Basic examples of operator   Contents   Index

Completely bounded module homomorphisms

Let $ A, B \subset B({\mathcal{H}})$ be $ C^*$-algebras with $ \mathrm{1\!\!\!\:l}_{{\mathcal{H}}} \in A, B$, and let $ E$ and $ F$ be two $ (A,B)$-operator modules, i.e. (algebraic) $ A$-left-$ B$-right-modules. A mapping $ \phi \in L(E,F)$ is called $ (A,B)$-module homomorphism (in case $ A=B$ $ A$-bimodule homomorphism) if

$\displaystyle \phi(axb)=a \phi(x) b$

for all $ a\in A$, $ b \in B$, $ x \in E$.
Furthermore we will write $ \mathit{CB}_{(A,B)}(E,F)$ for the set of all completely bounded $ (A,B)$-module homomorphisms between $ E$ and $ F$. The space $ \mathit{CB}_{(A,B)}(E)$ with the composition of operators as multiplication is a Banach algebra.

Let $ A_1, A_2 \subset B(\H)$ be $ C^*$-algebras such that $ {\mathrm{1\!\!\!\:l}}_{\H} \in A_1, A_2$. Let further $ A \subset A_1 \cap A_2$ be a unital $ ^*$-subalgebra of $ A_1$ and $ A_2$ with $ {\mathrm{1\!\!\!\:l}}_{\H} \in A$. An $ A$-bimodule homomorphism

$\displaystyle \Phi: A_1 \rightarrow A_2$

is called self-adjoint if

$\displaystyle \Phi(x)^* = \Phi(x^*)$

for all $ x \in A_1$.

Dealing with completely bounded module homomorphisms, we have at our disposal a representation theorem, an extension theorem and the following decomposition theorem of Wittstock ([Wit81, Satz 4.5] and cf. [Pau86, Thm. 7.5]):

Let $ A$, $ E$ and $ F$ be unital $ C^*$-algebras. Let moreover $ F$ be injective, and $ A$ be a subalgebra of $ E$ and $ F$ with $ \mathrm{1\!\!\!\:l}_E=\mathrm{1\!\!\!\:l}_F=\mathrm{1\!\!\!\:l}_A$. Then for each self-adjoint completely bounded $ A$-bimodule homomorphism $ \phi: E \rightarrow F$, there exist two completely positive $ A$-bimodule homomorphisms $ \phi_1$ and $ \phi_2$ sharing the properties $ \phi=\phi_1 - \phi_2$  and  $ \Vert\phi\Vert _{\mathrm{cb}}=\Vert\phi_1+\phi_2\Vert _{\mathrm{cb}}$ .

Consider two von Neumann algebras $ M$ and $ N$, and two $ C^*$-algebras $ A_1,~A_2 \subset B(H)$, where $ \mathrm{1\!\!\!\:l}_{{\mathcal{H}}} \in A_1$, $ A_2$ and $ A_1 \cup A_2 \subset M \cap N$. We then have the decomposition theorem of Tomiyama-Takesaki (cf. [Tak79, Def. 2.15]): Each operator $ \phi \in \mathit{CB}_{(A_1,A_2)}(M,N)$ has a unique decomposition $ \phi=\phi^{\sigma}+\phi^s$, $ \phi^{\sigma},~\phi^s \in \mathit{CB}_{(A_1,A_2)}(M,N)$ normal resp. singular, where $ \Vert\phi^{\sigma}\Vert _{\mathrm{cb}},~ \Vert\phi^s\Vert _{\mathrm{cb}} \le \Vert\phi\Vert _{\mathrm{cb}}$. We thus obtain the algebraically direct sum decomposition:

$\displaystyle \mathit{CB}_{(A_1,A_2)}(M,N)$ $\displaystyle =$ $\displaystyle \mathit{CB}^{\sigma}_{(A_1,A_2)}(M,N) \oplus
\mathit{CB}^s_{(A_1,A_2)}(M,N).$ (2)

Here, the notions "normal" and "singular", repectively, are built in analogy to the framework of linear functionals on a von Neumann algebra $ M$.24

We list some basic facts about the spaces and mappings mentioned in ([*]):

(a)
In case $ M=N$, all the spaces in ([*]) are Banach algebras.
(b)
The following properties of $ \phi$ are hereditary for the normal part $ \phi^{\sigma}$ and the singular part $ \phi^s$ : completely positive, homomorphism, $ ^*$-homomorphism.
(c)
If $ \alpha \in {\rm {Aut}}(M)$ and $ \beta \in {\rm {Aut}}(N)$ are $ ^*$-automorphisms, we have $ (\beta \phi \alpha)^{\sigma} = \beta \phi^{\sigma} \alpha$ and $ (\beta \phi \alpha)^s = \beta \phi^s \alpha$ .
(d)
For $ \phi \in \mathit{CB}(B({\mathcal{H}}))$, $ {\mathcal{H}}$ a Hilbert space, we have: $ \phi \in
\mathit{CB}^s(B({\mathcal{H}})) \Leftrightarrow
\phi\vert _{K({\mathcal{H}})} \equiv 0$ .
Let $ {\mathcal{H}}$ be a Hilbert space, and let $ A_1, A_2 \subset B({\mathcal{H}})$ be two $ C^*$-algebras with $ \mathrm{1\!\!\!\:l}_{{\mathcal{H}}} \in A_1, A_2$. Then we obtain [Pet97, Prop. 4.2.5]:
$\displaystyle \mathit{CB}^{\sigma}_{(A_1,A_2)}(B({\mathcal{H}}))$ $\displaystyle \stackrel{{\rm {cb}}}{=}$ $\displaystyle \mathit{CB}_{(A_1,A_2)}(K({\mathcal{H}}),B({\mathcal{H}}))$ (3)
$\displaystyle \mathit{CB}^s_{(A_1,A_2)}(B({\mathcal{H}}))$ $\displaystyle \stackrel{{\rm {cb}}}{=}$ $\displaystyle \mathit{CB}_{(A_1,A_2)}(Q({\mathcal{H}}),B({\mathcal{H}}))$ (4)

completely isometrically, where $ Q({\mathcal{H}})=B({\mathcal{H}}) / K({\mathcal{H}})$ denotes the Calkin algebra.

Let $ X$ be an arbitrary operator space. Then the space of all completely bounded $ (A_1,A_2)$-module homomorphisms between $ X$ and $ B({\mathcal{H}})$ can be identified with the dual of a module Haagerup tensor product in the following way ([Pet97, p. 67], cf. also [ER91, Cor. 4.6], [Ble92b, Prop. 2.3]):

$\displaystyle \mathit{CB}_{(A_1, A_2)}(X, B({\mathcal{H}})) \stackrel{{\rm {cb}...
...\overline{{\mathcal{H}}}} \otimes_{hA_1} X \otimes_{hA_2} C_{{\mathcal{H}}})^*
$

completely isometrically. Hence we see that $ \mathit{CB}(B({\mathcal{H}}))$ itself and (looking at ([*]), ([*])), just so, $ \mathit{CB}^\sigma_{(A_1,A_2)}(B({\mathcal{H}}))$ and $ \mathit{CB}^s_{(A_1,A_2)}(B({\mathcal{H}}))$ are dual operator spaces [Pet97, p. 70].



Footnotes

....24
Let $ M_*$ denote the (unique) predual of $ M$. Then we have the $ \ell_1$-direct sum decomposition

$\displaystyle M^* = M_* \oplus_{\ell_1} (M^*)^{s}
$

of $ M^*$ into normal (i.e. $ w^*$-continuous) and singular functionals. [In the literature, one usually writes $ M_*^{\perp}$ instead of $ M^{*s}$, corresponding to $ M_*(=M^{*\sigma})$.] Analogously, an operator $ \phi \in B(M,N)$, $ M$, $ N$ von Neumann algebras, is called normal (i.e. $ w^*$-$ w^*$-continuous), if $ \phi^*(N_*) \subset M_*$, and it is called singular, if $ \phi^*(N_*)
\subset M^{*s}$.

next up previous contents index
Next: Operator algebras Up: Multiplicative Structures Previous: Basic examples of operator   Contents   Index
Prof. Gerd Wittstock 2001-01-07