next up previous contents index
Next: Bipolar theorems Up: Matrix convexity Previous: Examples   Contents   Index

Separation theorems

An important tool in the theory are the following separation theorems.

Let $ \langle V,W\rangle$ be a (non degenerate) duality of complex vector spaces. Thus $ V$ and $ W$ have weak topologies, and the matrix levels have the corresponding product topology. For $ v=[v_{i,j}]\in M_n(V)$ and $ w=[w_{k,l}]\in M_m(W)$, $ \langle v,w\rangle$ is defined by the joint amplifications of the duality:

$\displaystyle \langle v,w\rangle=[\langle v_{i,j},w_{k,l}\rangle]_{(i,k),(j,l)}$   .

Note that the matrices, ordered by the cone of the positive semidefinite matrices, are not totally ordered; $ \not\leqslant$ does not imply $ \geqslant$.

Theorem:62Let $ \langle V,W\rangle$ be a duality of complex vector spaces, $ K$ a closed set of matrices over $ V$ and $ v_0\in M_n(V)\setminus K_n$ for some $ n$.

a)
[WW99, Thm. 1.6] If $ K$ is matrix convex, then there are $ w\in M_n(W)$ and $ \alpha\in (M_n)_{\mathrm{sa}}$ such that for all $ m\in{\mathbb{N}}$ and $ v\in K_m$

$\displaystyle \mathrm{Re}\langle v,w\rangle\leqslant\mathrm{1\!\!\!\:l}_m\otimes\alpha$   , but $\displaystyle \mathrm{Re}\langle v_0,w\rangle\not\leqslant\mathrm{1\!\!\!\:l}_n\otimes\alpha$   .

b)
[EW97b, Thm. 5.4] If $ K$ is matrix convex and $ 0\in K_1$, then there is $ w\in M_n(W)$ such that for all $ m\in{\mathbb{N}}$ and $ v\in K_m$

$\displaystyle \mathrm{Re}\langle v,w\rangle\leqslant\mathrm{1\!\!\!\:l}_{nm}$   , but $\displaystyle \mathrm{Re}\langle v_0,w\rangle\not\leqslant\mathrm{1\!\!\!\:l}_{n^2}$   .

c)
[Bet97, p. 57] If $ K$ is a matrix cone, then there is $ w\in M_n(W)$ sucht that for all $ m\in{\mathbb{N}}$ and $ v\in K_m$

$\displaystyle \mathrm{Re}\langle v,w\rangle\leqslant 0$   , but $\displaystyle \mathrm{Re}\langle v_0,w\rangle\not\leqslant 0$   .

d)
[EW97a, Thm. 4.1] If $ K$ is absolutely matrix convex, then tere is $ w\in M_n(W)$ such that for all $ m\in{\mathbb{N}}$ and $ v\in K_m$

$\displaystyle \Vert\langle v,w\rangle\Vert\leqslant 1$   , but $\displaystyle \Vert\langle v_0,w\rangle\Vert >1$   .

One can prove Ruan's theorem using the separation theorem for absolutely matrix convex sets, applied to the unit ball of a matricially normed space .

If $ V$ is a complex involutive vector space, one can find selfadjoint separating functionals:

Theorem: 63Let $ \langle V,W\rangle$ be a duality of complex involutive vector spaces, $ K$ a closed set of selfadjoint matrices over $ V$ and $ v_0\in M_n(V)\setminus K_n$ for some $ n$.

b)
If $ K$ is matrix convex and $ 0\in K_1$, then there is a $ w\in M_n(W)_{\mathrm{sa}}$ such that for all $ m\in{\mathbb{N}}$ and $ v\in K_m$

$\displaystyle \langle v,w\rangle\leqslant\mathrm{1\!\!\!\:l}_{nm}$   , but $\displaystyle \mathrm{Re}\langle v_0,w\rangle\not\leqslant\mathrm{1\!\!\!\:l}_{n^2}$   .



Footnotes

...Theorem:62
From this theorem one can easily get the following sharper version of the parts a), b) and d):
a)
If $ K$ is matrix convex, then there are $ w\in M_n(W)$, $ \alpha\in (M_n)_{\mathrm{sa}}$ and $ \varepsilon>0$ such that for all $ m\in{\mathbb{N}}$ and $ v\in K_m$

$\displaystyle \mathrm{Re}\langle v,w\rangle\leqslant\mathrm{1\!\!\!\:l}_m\otimes(\alpha-\varepsilon\mathrm{1\!\!\!\:l}_n)$   , but $\displaystyle \mathrm{Re}\langle v_0,w\rangle\not\leqslant\mathrm{1\!\!\!\:l}_n\otimes\alpha$   .

b)
If $ K$ is matrix convex and $ 0\in K_1$, then there are $ w\in M_n(W)$ and $ \varepsilon>0$ such that for all $ m\in{\mathbb{N}}$ and $ v\in K_m$

$\displaystyle \mathrm{Re}\langle v,w\rangle\leqslant(1-\varepsilon)\mathrm{1\!\!\!\:l}_{nm}$   , but $\displaystyle \mathrm{Re}\langle v_0,w\rangle\not\leqslant\mathrm{1\!\!\!\:l}_{n^2}$   .

d)
If $ K$ is absolutely matrix convex, then there are $ w\in M_n(W)$ and $ \varepsilon>0$ such that for all $ m\in{\mathbb{N}}$ and $ v\in K_m$

$\displaystyle \Vert\langle v,w\rangle\Vert\leqslant 1-\varepsilon$   , but $\displaystyle \Vert\langle v_0,w\rangle\Vert >1$   .

... 63
This theorem can be obtained from the above separation theorem, part a) and b). Note that for selfadjoint $ v$, the mapping $ w\mapsto\langle v,w\rangle$ is selfadjoint.

next up previous contents index
Next: Bipolar theorems Up: Matrix convexity Previous: Examples   Contents   Index
Prof. Gerd Wittstock 2001-01-07