next up previous contents index
Next: Completely integral mappings Up: Mapping Spaces Previous: Mapping Spaces   Contents   Index

Completely nuclear mappings

Let $ X$ and $ Y$ be operator spaces. The completely nuclear mappings from $ X$ to $ Y$ [ER94, §2], [EJR98, §3] are defined by the projective operator space tensor norm. We consider the extension of the canonical identity $ X^*
\otimes Y = F(X,Y)$:

$\displaystyle \Phi :X^*\stackrel{\scriptscriptstyle \wedge}{\otimes}Y\rightarrow X^*\stackrel{\scriptscriptstyle \vee}{\otimes}Y\subset
CB(X,Y)$.$\displaystyle $

$ \stackrel{\scriptscriptstyle \vee}{\otimes}$ is the injective tensor product and $ \stackrel{\scriptscriptstyle \wedge}{\otimes}$ the projective tensor product .

A mapping in the range of $ \Phi$ is called completely nuclear. One denotes by

$\displaystyle \mathit{CN}(X,Y):=(X^*\stackrel{\scriptscriptstyle \wedge}{\otimes}Y)/ {\rm Ker}(\Phi)
$

the space of the completely nuclear mappings and endows it with the quotient operator space structure. The operator space norm is denoted by $ \nu(\cdot)$. $ M_n(\mathit{CN}(X,Y))$ and $ \mathit{CN}(X,M_n(Y))$ are in general not isometric.

Nuclear 68 mappings are completely nuclear. [ER94, 3.10]

In general, the projective tensor norm does not respect complete isometries. Hence,even for subspaces $ Y_0\subset Y$ the canonical embedding $ \mathit{CN}(X,Y_0)\to \mathit{CN}(X,Y)$ is generally only completely contractive and not isometric. Since the projective tensor norm respects quotient mappings, every nuclear map $ \varphi:X_0\to Y$ on a subspace $ X_0\subset X$ with $ \nu(\varphi)<1$ has an extension $ \tilde{\varphi}$ to the whole of $ X$ satisfying $ \nu(\tilde{\varphi})<1$.

The completely nuclear mappings enjoy the $ \mathit{CB}$-ideal property . Furthermore, the adjoint $ \varphi^*$ is completely nuclear if $ \varphi$ is, and the inequality: $ \nu(\varphi^*)\leq\nu(\varphi)$ [EJR98, Lemma 3.2] holds.

A mapping $ \varphi$ is completely nuclear, if and only if there is a factorization of the form

$\displaystyle B(\ell_2)$ $\displaystyle \stackrel{M(a,b)}{\rightarrow }$ $\displaystyle T(\ell_2)$  
$\displaystyle \uparrow r$   $\displaystyle \downarrow s$  
$\displaystyle X\quad$ $\displaystyle \stackrel{\varphi}{\rightarrow }$ $\displaystyle Y$  

Here $ a$, $ b$ are Hilbert-Schmidt operators defining the mapping $ M(a,b): x \mapsto a x b$. For the completely nuclear norm we have: $ \nu (\varphi )=1$ precisely if for all $ \epsilon>0$ there exists a factorization with $ \Vert r\Vert _{cb}\Vert a\Vert _2\Vert b\Vert _2\Vert s\Vert _{cb}\leq 1+\epsilon$ 69 [ER94, Thm. 2.1].

The completely nuclear mappings are not local .



Footnotes

...Nuclear 68
The completely nuclear mappings owe their definition to the one of the nuclear mappings of the Banach space theory. There, one considers a corresponding mapping $ \Phi_B:E^*\otimes_\gamma F
\rightarrow B(E,F)$ for two Banach spaces $ E$ and $ F$.
... 69
In the Banach space theory one has an analogous statement: A mapping $ \varphi$ is nuclear, if and only if there's a diagram
$\displaystyle \ell_\infty$ $\displaystyle \stackrel{d}{\rightarrow }$ $\displaystyle \ell_1$  
$\displaystyle r\uparrow$   $\displaystyle \downarrow s$  
$\displaystyle E$ $\displaystyle \stackrel{\varphi}{\rightarrow }$ $\displaystyle F,$  

where $ d$ is a diagonal operator, i.e. , there is a $ (d_i)\in \ell_1
$, such that $ d((a_i))=(d_i\cdot a_i)$ for all $ (a_i)\in \ell_\infty$. The nuclear norm is then computed as: $ \nu_B(\varphi)=\inf\Vert r\Vert\Vert d\Vert _{\ell_1}\Vert s\Vert$, where the infimum runs over all possible factorizations.

next up previous contents index
Next: Completely integral mappings Up: Mapping Spaces Previous: Mapping Spaces   Contents   Index
Prof. Gerd Wittstock 2001-01-07