next up previous contents index
Next: Tensor matrix multiplication Up: Tensor products Previous: Tensor products of operator   Contents   Index


Joint amplification of a duality

The matrix dualitywhich is fundamental in the duality theory of operator spaces, is a special case of the joint amplification of a bilinear mapping. The joint amplification of a duality $ \langle X, X^ * \rangle$ of vector spaces is defined by

$\displaystyle \langle x, \varphi \rangle^{p \times q}
=
\langle [x_{ij}], [\v...
...=
[ \langle x_{ij}, \varphi_{\kappa\lambda} \rangle ]
\in M_p(M_q) = M_{pq}
$

for $ x = [x_{ij}] \in M_p(X)$, $ \varphi = [\varphi_{\kappa\lambda}] \in M_q(X^*)$. Interpreting $ \varphi$ as a mapping $ \varphi : X \rightarrow M_q$ we have

$\displaystyle \varphi^{(p)}(x) = \langle x, \varphi \rangle^{p \times q}.
$

Associated to the duality of tensor products74 $ \langle X \otimes Y, X^* \otimes Y^*\rangle$ is the joint amplification

$\displaystyle \langle M_p(X \otimes Y), M_q(X^* \otimes Y^*) \rangle.
$

Especially, the equation
$\displaystyle {\langle x \otimes y, \varphi \otimes \psi \rangle =
\langle [x_{ij}] \otimes [y_{kl}],
[\varphi_{\kappa\lambda}] \otimes [\psi_{\mu\nu}] \rangle}$
  $\displaystyle :=$ $\displaystyle [\langle x_{ij}, \varphi_{\kappa\lambda} \rangle
\langle y_{kl}, ...
...a\mu),(jl\lambda\nu)}
\in M_{p_1}(M_{p_2}(M_{q_1}(M_{q_2}))) = M_{p_1p_2q_1q_2}$  

obtains, where $ x = [x_{ij}] \in M_{p_1}(X)$, $ y = [y_{kl}] \in M_{p_2}(Y)$, $ \varphi = [\varphi_{\kappa\lambda}] \in M_{q_1}(X^*)$, $ \psi = [\psi_{\mu\nu}] \in M_{q_2}(Y^*)$.

Footnotes

... products74
The duality $ \langle X \otimes Y, X^* \otimes Y^*\rangle$ is defined by $ \langle x \otimes y, \varphi \otimes \psi \rangle :=
\langle x,\varphi \rangle \langle y,\psi \rangle$ for $ x \in X$, $ y \in Y $, $ \varphi \in X^* $, $ \psi \in Y^* $.


Prof. Gerd Wittstock 2001-01-07