next up previous contents index
Next: Symbols Up: Interpolation Previous: Intersection and sum   Contents   Index


Interpolation

Let $ E_0$, $ E_1$ be Banach spaces continuously embedded in a Hausdorff topological vector space. The pair $ (E_0,E_1)$ is called a compatiple couple in the sense of interpolation theory [BL76]. Then we can define the interpolation space $ E_\theta:=(E_0,E_1)_\theta$ for $ 0<\theta < 1$.

Pisier introduced the analogous construction for operator spaces [Pis96, §2]: Let $ X_i$ $ (i=0,1)$ be operator spaces continuously embedded in a Hausdorff topological vector space $ V$. Then we have specific norms on $ M_n(X_i)$ and continuous linear inclusions $ M_n(X_i) \hookrightarrow M_n(V)$ for all $ n\in{\mathbb{N}}$.76 The interpolated operator space $ X_\theta$ is defined via $ M_n(X_\theta) := (M_n(X_0),M_n(X_1))_\theta$   .$ $
Let $ X$ be an operator space, $ \H$ a Hilbert space and $ V:\H\rightarrow X$ a bounded linear and injective mapping with dense range such that the mapping77 $ VV^* : \overline{X^*} \rightarrow X$ also is bounded, linear and injective with dense range. Then we have completely isometrically [Pis96, Cor. 2.4]:

$\displaystyle (\overline{X^*},X)_\frac{1}{2} \stackrel{\mathrm{cb}}{=}\mathit{OH}_{\H}$.$\displaystyle $


Examples
  1. $ ({\mathcal{R}}_{\H},{\mathcal{C}}_{\H})_\frac{1}{2} \stackrel{\mathrm{cb}}{=}\...
...{\H} \stackrel{\mathrm{cb}}{=}(\mathit{MIN}_{\H},\mathit{MAX}_{\H})_\frac{1}{2}$
  2. $ ({\mathcal{C}}_{\H} \otimes_h {\mathcal{R}}_{\H}, {\mathcal{R}}_{\H} \otimes_h...
...otimes_h \mathit{OH}_{\H} \stackrel{\mathrm{cb}}{=}\mathit{OH}_{\H\otimes \H}
$
In this manner one also obtains operator space structures on the Schatten ideals $ S_p=(S_\infty,S_1)_\frac{1}{p}$ for $ 1 \leq p \leq \infty$.

Footnotes

....76
We identify $ M_n(V)$ with $ V^{n^2}$.
... mapping77
As usual we identify $ \H$ with its dual.

next up previous contents index
Next: Symbols Up: Interpolation Previous: Intersection and sum   Contents   Index
Prof. Gerd Wittstock 2001-01-07