next | previous | forward | backward | up | top | index | toc | Macaulay2 website
NumericalGodeaux :: surfaceInWeightedP5

surfaceInWeightedP5 -- compute the surface in P(2,2,3,3,3,3)

Synopsis

Description

Given a standard resolution $F$ of an $S$-module $R$ or its first syzygy matrix $d_1$, the procedure computes the annihilator of $R = coker d_1$ as an $S$-module which is a surface in the weighted projective space $\mathbb{P}(2,2,3,3,3,3)$. If $R$ is the canonical ring of a numerical Godeaux surface $X$, then $I$ defines the image of canonical model under the projection to this weighted projective space.

i1 : kk = QQ;
i2 : s = "1111";
i3 : F = randomStandardResolution(kk,s,5);
i4 : I = surfaceInWeightedP5(F);

o4 : Ideal of QQ[x ..x , y ..y ]
                  0   1   0   3

See also

Ways to use surfaceInWeightedP5 :

For the programmer

The object surfaceInWeightedP5 is a method function.