We compute the equation and nonminimal resolution F of the carpet of type (a,b) where a ≥b over a larger finite prime field, lift the complex to the integers, which is possible since the coefficients are small. Finally we study the nonminimal strands over ZZ by computing the Smith normal form. The resulting data allow us to compute the Betti tables for arbitrary primes.
i1 : a=5,b=5 o1 = (5, 5) o1 : Sequence |
i2 : h=carpetBettiTables(a,b) -- 0.0160468 seconds elapsed -- 0.00894026 seconds elapsed -- 0.0368792 seconds elapsed -- 0.0218862 seconds elapsed -- 0.0061828 seconds elapsed 0 1 2 3 4 5 6 7 8 9 o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1} 0: 1 . . . . . . . . . 1: . 36 160 315 288 . . . . . 2: . . . . . 288 315 160 36 . 3: . . . . . . . . . 1 0 1 2 3 4 5 6 7 8 9 2 => total: 1 36 167 370 476 476 370 167 36 1 0: 1 . . . . . . . . . 1: . 36 160 322 336 140 48 7 . . 2: . . 7 48 140 336 322 160 36 . 3: . . . . . . . . . 1 0 1 2 3 4 5 6 7 8 9 3 => total: 1 36 160 315 302 302 315 160 36 1 0: 1 . . . . . . . . . 1: . 36 160 315 288 14 . . . . 2: . . . . 14 288 315 160 36 . 3: . . . . . . . . . 1 o2 : HashTable |
i3 : T= carpetBettiTable(h,3) 0 1 2 3 4 5 6 7 8 9 o3 = total: 1 36 160 315 302 302 315 160 36 1 0: 1 . . . . . . . . . 1: . 36 160 315 288 14 . . . . 2: . . . . 14 288 315 160 36 . 3: . . . . . . . . . 1 o3 : BettiTally |
i4 : J=canonicalCarpet(a+b+1,b,Characteristic=>3); ZZ o4 : Ideal of --[x , x , x , x , x , x , y , y , y , y , y , y ] 3 0 1 2 3 4 5 0 1 2 3 4 5 |
i5 : elapsedTime T'=minimalBetti J -- 0.397022 seconds elapsed 0 1 2 3 4 5 6 7 8 9 o5 = total: 1 36 160 315 302 302 315 160 36 1 0: 1 . . . . . . . . . 1: . 36 160 315 288 14 . . . . 2: . . . . 14 288 315 160 36 . 3: . . . . . . . . . 1 o5 : BettiTally |
i6 : T-T' 0 1 2 3 4 5 6 7 8 9 o6 = total: . . . . . . . . . . 1: . . . . . . . . . . 2: . . . . . . . . . . 3: . . . . . . . . . . o6 : BettiTally |
i7 : elapsedTime h=carpetBettiTables(6,6); -- 0.0051224 seconds elapsed -- 0.0291207 seconds elapsed -- 0.171453 seconds elapsed -- 1.98615 seconds elapsed -- 0.720547 seconds elapsed -- 0.136969 seconds elapsed -- 0.0157682 seconds elapsed -- 5.45649 seconds elapsed |
i8 : keys h o8 = {0, 2, 3, 5} o8 : List |
i9 : carpetBettiTable(h,7) 0 1 2 3 4 5 6 7 8 9 10 11 o9 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55 1 0: 1 . . . . . . . . . . . 1: . 55 320 891 1408 1155 . . . . . . 2: . . . . . . 1155 1408 891 320 55 . 3: . . . . . . . . . . . 1 o9 : BettiTally |
i10 : carpetBettiTable(h,5) 0 1 2 3 4 5 6 7 8 9 10 11 o10 = total: 1 55 320 891 1408 1275 1275 1408 891 320 55 1 0: 1 . . . . . . . . . . . 1: . 55 320 891 1408 1155 120 . . . . . 2: . . . . . 120 1155 1408 891 320 55 . 3: . . . . . . . . . . . 1 o10 : BettiTally |