We compute the relative resolution of a resonance degenerate K3 in case of k resonance. The first step consists in choosing a prime field which has a k-th root of unity. We then follow the proof of Theorem 4.12 (3) of [ES18].
i1 : F = relativeResolution(5,4,3)
ZZ 1 ZZ 9 ZZ 16 ZZ 9 ZZ 1
o1 = (--[s, t, u , u , u , v , v , v ]) <-- (--[s, t, u , u , u , v , v , v ]) <-- (--[s, t, u , u , u , v , v , v ]) <-- (--[s, t, u , u , u , v , v , v ]) <-- (--[s, t, u , u , u , v , v , v ])
61 0 1 2 0 1 2 61 0 1 2 0 1 2 61 0 1 2 0 1 2 61 0 1 2 0 1 2 61 0 1 2 0 1 2
0 1 2 3 4
o1 : ChainComplex
|
i2 : betti F
0 1 2 3 4
o2 = total: 1 9 16 9 1
0: 1 . . . .
1: . 1 . . .
2: . 7 8 1 .
3: . 1 8 7 .
4: . . . 1 .
5: . . . . 1
o2 : BettiTally
|