next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
NonminimalComplexes :: constantStrand

constantStrand

Synopsis

Description

Warning! This function is very rough currently. It workes if one uses it in the intended manner, as in the example below. But it should be much more general, handling other rings with grace, and also it should handle arbitrary (graded) chain complexes.

i1 : R = QQ[a..d]

o1 = R

o1 : PolynomialRing
i2 : I = ideal(a^3, b^3, c^3, d^3, (a+3*b+7*c-4*d)^3)

             3   3   3   3   3     2         2      3      2              
o2 = ideal (a , b , c , d , a  + 9a b + 27a*b  + 27b  + 21a c + 126a*b*c +
     ------------------------------------------------------------------------
         2          2         2       3      2                  2            
     189b c + 147a*c  + 441b*c  + 343c  - 12a d - 72a*b*d - 108b d - 168a*c*d
     ------------------------------------------------------------------------
                      2         2         2         2      3
     - 504b*c*d - 588c d + 48a*d  + 144b*d  + 336c*d  - 64d )

o2 : Ideal of R
i3 : C = res(ideal gens gb I, Strategy=>4.1)

      1      9      25      31      18      4
o3 = R  <-- R  <-- R   <-- R   <-- R   <-- R
                                            
     0      1      2       3       4       5

o3 : ChainComplex
i4 : betti C

            0 1  2  3  4 5
o4 = total: 1 9 25 31 18 4
         0: 1 .  .  .  . .
         1: . .  .  .  . .
         2: . 5  1  .  . .
         3: . 1  3  1  . .
         4: . 3 17 13  4 .
         5: . .  4 13 10 3
         6: . .  .  4  3 1
         7: . .  .  .  1 .

o4 : BettiTally
i5 : CR = constantStrand(C, RR_53, 3)

               5
o5 = 0 <-- RR    <-- 0 <-- 0 <-- 0 <-- 0
             53                         
     0               2     3     4     5
           1

o5 : ChainComplex
i6 : CR.dd_2

o6 = 0

                5
o6 : Matrix RR    <--- 0
              53
i7 : CR2 = constantStrand(C, RR_1000, 3)

                 5
o7 = 0 <-- RR      <-- 0 <-- 0 <-- 0 <-- 0
             1000                         
     0                 2     3     4     5
           1

o7 : ChainComplex
i8 : CR2.dd_2

o8 = 0

                  5
o8 : Matrix RR      <--- 0
              1000
i9 : kk1 = ZZ/32003

o9 = kk1

o9 : QuotientRing
i10 : kk2 = ZZ/1073741909

o10 = kk2

o10 : QuotientRing
i11 : Cp1 = constantStrand(C, kk1, 3)

               5
o11 = 0 <-- kk1  <-- 0 <-- 0 <-- 0 <-- 0
                                        
      0     1        2     3     4     5

o11 : ChainComplex
i12 : Cp2 = constantStrand(C, kk2, 3)

               5
o12 = 0 <-- kk2  <-- 0 <-- 0 <-- 0 <-- 0
                                        
      0     1        2     3     4     5

o12 : ChainComplex
i13 : netList {{CR.dd_4, CR2.dd_4}, {Cp1.dd_4, Cp2.dd_4}}

      +-+-+
o13 = |0|0|
      +-+-+
      |0|0|
      +-+-+
i14 : (clean(1e-14,CR)).dd_4

o14 = 0

o14 : Matrix 0 <--- 0
i15 : netList {(clean(1e-14,CR)).dd_4}==netList {(clean(1e-299,CR2)).dd_4}

o15 = true

Setting the input ring to be the integers, although a hack, sets each entry to the number of multiplications used to create this number. Warning: the result is almost certainly not a complex! This part of this function is experimental, and will likely change in later versions.

i16 : CZ = constantStrand(C, ZZ, 8)

                          13       4
o16 = 0 <-- 0 <-- 0 <-- ZZ   <-- ZZ  <-- 0
                                          
      0     1     2     3        4       5

o16 : ChainComplex
i17 : CZ.dd_4

o17 = | 0 0 0 0 |
      | 3 0 0 0 |
      | 4 3 2 0 |
      | 5 0 3 2 |
      | 0 3 0 0 |
      | 5 2 3 0 |
      | 6 5 4 0 |
      | 5 4 3 0 |
      | 6 0 4 3 |
      | 7 6 5 4 |
      | 5 4 3 2 |
      | 6 0 4 3 |
      | 7 6 5 4 |

               13        4
o17 : Matrix ZZ   <--- ZZ

Caveat

This function should be defined for any graded chain complex, not just ones created using res(I, Strategy=>4.1). Currently, it is used to extract information from the not yet implemented ring QQhybrid, whose elements, coming from QQ, are stored as real number approximations (as doubles, and as 1000 bit floating numbers), together with its remainders under a couple of primes, together with information about how many multiplications were performed to obtain this number.

See also

Ways to use constantStrand :