next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
NumericalGodeaux :: tricanonicalModelInP3

tricanonicalModelInP3 -- computes the tricanonical model of a numerical Godeaux surface in P3

Synopsis

Description

Given a numerical Godeaux surface X, the tricanonical map induces a birational map to a 3. The procedure computes the birational image of the surface Y ⊂ℙ(22,34) (and hence of the surface X) under this map. The image of the tricanonical map in 3 is a hypersurface of degree (3KX)2 - number of base points of 3KX. Hence, for a surface with a torsion group of order 5 the hypersurface has degree 7, for order 3 and 4 the degree is 8 and for order 1 and 2 the degree is 9.

i1 : kk = ZZ/nextPrime(32001);
i2 : s = "1111";
i3 : I = randomGodeauxSurface(kk,s,1,1);

o3 : Ideal of kk[x , x , y , y , y , y ]
                  0   1   0   1   2   3
i4 : J = tricanonicalModelInP3(I);

o4 : Ideal of kk[y , y , y , y ]
                  0   1   2   3
i5 : tally degrees J

o5 = Tally{{9} => 1}

o5 : Tally
i6 : I = randomGodeauxSurface(kk,s,5);

o6 : Ideal of kk[x , x , y , y , y , y ]
                  0   1   0   1   2   3
i7 : J = tricanonicalModelInP3(I);

o7 : Ideal of kk[y , y , y , y ]
                  0   1   2   3
i8 : tally degrees J

o8 = Tally{{7} => 1}

o8 : Tally
i9 : t = "22";
i10 : I = randomGodeauxSurface(kk,t,4);

o10 : Ideal of kk[x , x , y , y , y , y ]
                   0   1   0   1   2   3
i11 : J = tricanonicalModelInP3(I);

o11 : Ideal of kk[y , y , y , y ]
                   0   1   2   3
i12 : tally degrees J

o12 = Tally{{8} => 1}

o12 : Tally

See also

Ways to use tricanonicalModelInP3 :